首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this study, the endogenous lipid signalling molecules, N ‐myristoylethanolamine, were explored as a capping agent to synthesise stable silver nanoparticles (AgNPs) and Ag sulphide NPs (Ag2 S NPs). Sulphidation of the AgNPs abolishes the surface plasmon resonance (SPR) maximum of AgNPs at 415 nm with concomitant changes in the SPR, indicating the formation of Ag2 S NPs. Transmission electron microscopy revealed that the AgNPs and Ag2 S NPs are spherical in shape with a size of 5–30 and 8–30 nm, respectively. AgNPs and Ag2 S NPs exhibit antimicrobial activity against Gram‐positive and Gram‐negative bacteria. The minimum inhibitory concentrations (MIC) of 25 and 50 μM for AgNPs and Ag2 S NPs, respectively, were determined from resazurin microtitre plate assay. At or above MIC, both AgNPs and Ag2 S NPs decrease the cell viability through the mechanism of membrane damage and generation of excess reactive oxygen species.Inspec keywords: cellular biophysics, biomembranes, transmission electron microscopy, nanomedicine, microorganisms, molecular biophysics, antibacterial activity, nanofabrication, silver, biomedical materials, surface plasmon resonance, nanoparticles, materials preparation, silver compounds, lipid bilayersOther keywords: Gram‐negative bacteria, Gram‐positive bacteria, endogenous lipid signalling molecules, N‐myristoylethanolamine, capping agent, silver nanoparticles, Ag sulphide NPs, sulphidation, surface plasmon resonance, concomitant changes, transmission electron microscopy, minimum inhibitory concentrations, resazurin microtitre plate assay, cell viability, membrane damage, reactive oxygen species, Ag toxicities, Ag, Ag2 S  相似文献   

2.
Due to their unique properties, zinc oxide nanoparticles (ZnO NPs) are invested in many industries, commercial products, and nanomedicine with potential risk for human health and the environment. The present study aims to focus on alterations that might be induced by ZnO NPs in the nephron ultrastructure. Male Wister Albino rats were subjected to ZnO NPs at a daily dose of 2 mg/kg for 21 days. Kidney biopsies were processed to transmission electron microscopy (TEM) and ultrastructural pathology examinations. Exposure to ZnO NPs‐induced ultrastructural alterations in the proximal convoluted tubules (PCTs) and to lesser extent in the distal ones (DCTs), while the loops of Henle were almost not affected. The glomeruli demonstrated dilatation, partial mesangial cells loss, matrix ballooning, slits filtration widening, and basement membrane thickening. Moreover, PCT revealed cytoplasmic necrosis, vacuolation, erosion, and disorganisation of the apical microvilli together with mitochondrial swelling and cristae destruction. The nuclei of the renal cells exhibited nuclear deformity, heterochromatin accumulation, and apoptotic activities. The findings indicate that ZnO nanomaterial have the potential to affect the nephron ultrastructure suggesting alteration in the kidney functions. More work is needed for better understanding the toxicity and pathogenesis of ZnO oxide nanomaterial.Inspec keywords: electron microscopy, zinc compounds, transmission electron microscopy, nanomedicine, biochemistry, diseases, cellular biophysics, biomembranes, kidney, nanofabrication, molecular biophysics, nanoparticles, II‐VI semiconductors, biomedical optical imagingOther keywords: electron microscopic study, unique properties, zinc oxide nanoparticles, ZnO NPs, nephron ultrastructure, Male Wister Albino rats, ultrastructural pathology examinations, NPs‐induced ultrastructural alterations, partial mesangial cells loss, ZnO nonmaterial, ZnO oxide nonmaterial, nephron ultrastructural alterations, kidney biopsies, time 21.0 d, ZnO  相似文献   

3.
Recently the use of medicinal plants potential in the production of nanoparticles has received serious attention. Here, the main component of Camellia sinensis L. (green tea) extract was detected by spectroscopy and the optimal conditions were determined for their performance in green synthesis of silver nanoparticles at room temperature. Epigallocatechin gallate was identified as the dominant component in the extract as determined by spectroscopy, and it was established that its oxidation was a function of the solution pH. Transmission electron microscopy, dynamic light scattering, and visible absorption spectroscopy (UV‐Vis) confirmed the reduction in silver ions to silver nanoparticles (Ag NPs). Controlling over Ag NPs shape and narrow size distribution was achieved with 10 ml green tea leaf extract solution and in different reaction pH. Spherical colloidal Ag NPs with well‐defined hydrodynamic diameters (with average hydrodynamic size of 27.9–50.2 nm) were produced. Silver nitrate concentrations used in this study were lower than that of reported in similar works, and synthesis efficiency was also higher. Nanoparticles were perfectly spherical and their uniformity, compared to similar studies, was much higher. These NPs showed higher degree of stability and were aqueously stable for >10 months in dark glasses at 4°C.Inspec keywords: hydrodynamics, nanoparticles, particle size, pH, visible spectra, ultraviolet spectra, reduction (chemical), transmission electron microscopy, silver, microorganisms, nanofabrication, colloids, biomedical materials, nanomedicine, drug delivery systemsOther keywords: transmission electron microscopy, dynamic light scattering, visible absorption spectroscopy, silver ions, narrow size distribution, silver nitrate concentrations, green synthesis, medicinal plants, solution pH, green tea leaf, hydrodynamic size, silver nanoparticles, Camellia sinensis L, drug delivery, reduction component, epigallocatechin gallate, UV‐visible spectra, hydrodynamic diameters, spherical colloidal Ag NPs, temperature 4.0 degC, Ag  相似文献   

4.
Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO3) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet –visible (UV–Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV–Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405–420 nm for 1 mM metal precursor solution (AgNO3) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO3 with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO3 concentration and the size of produced Ag NPs.Inspec keywords: enzymes, molecular biophysics, silver, nanoparticles, nanofabrication, microorganisms, cellular biophysics, silver compounds, ultraviolet spectra, visible spectra, light scattering, transmission electron microscopyOther keywords: nitrate reductase enzyme activity, optimisation, silver nanoparticle synthesis, Escherichia coli bacterium, E. coli bacterium, biosynthesis, ultraviolet‐visible spectrophotometer, UV‐vis spectrophotometer, dynamic light scattering technique, transmission electron microscopy, supernatant, metal precursor solution, AgNO3 ‐Ag  相似文献   

5.
The current research study focuses on biosynthesis of silver nanoparticles (Ag NPs) for the first time from silver acetate employing methanolic root extract of Diospyros assimilis. The UV–Vis absorption spectrum of biologically synthesised nanoparticles displayed a surface plasmon peak at 428 nm indicating the formation of Ag NPs. The influence of metal ion concentration, reaction time and amount of root extract in forming Ag NPs by microscopic and spectral analysis was thoroughly investigated. Structural analysis from transmission electron microscopy confirmed the nature of metallic silver as face‐centered cubic (FCC) crystalline with an average diameter of 17 nm, which correlates with an average crystallite size (19 nm) calculated from X‐ray diffraction analysis. Further, the work was extended for the preliminary examination of antimicrobial activity of biologically synthesised Ag NPs that displayed promising activity against all the tested pathogenic strains.Inspec keywords: antibacterial activity, nanoparticles, silver, particle size, nanofabrication, nanomedicine, biomedical materials, ultraviolet spectra, visible spectra, optical microscopy, surface plasmon resonance, transmission electron microscopy, crystallites, X‐ray diffraction, microorganismsOther keywords: Diospyros assimilis root extract assisted biosynthesised silver nanoparticles, antimicrobial activity, silver acetate, methanolic root extract, UV‐visible absorption spectrum, biologically synthesised nanoparticles, surface plasmon peak, Ag NPs formation, metal ion concentration, reaction time, microscopic analysis, spectral analysis, structural analysis, transmission electron microscopy, metallic silver, FCC crystalline phase, average crystallite size, X‐ray diffraction analysis, pathogenic strains, Ag  相似文献   

6.
This study is planned to synthesise new biocompatible, nano antimicrobial formulation against biofilm producing strains. Aqueous root extract of Arctium lappa l. was used to synthesise ceria nanoparticles (CeO2 ‐NPs). The synthesised nanoparticles were encapsulated with nano‐chitosan by sol–gel method and characterised using standard techniques. Gas chromatography‐mass spectrometer of Arctium lappa l. revealed the presence of ethanol, acetone, 1‐ propanol, 2‐methylethane, 1,1‐di‐ethoxy, 1‐Butanol, and oleic acid acted as reducing and surface stabilising agents for tailoring morphology of CeO2 ‐NPs. Erythrocyte integrity after treatment with synthesised nanomaterials was evaluated by spectrophotometer measurement of haemoglobin release having biocompatibility. Scanning electron microscopy revealed the formation of mono dispersed beads shaped particles with mean particle size of 26.2 nm. X‐ray diffractometry revealed cubic crystalline structure having size of 28.0 nm. After encapsulation by nano‐chitosan, the size of CeO2 ‐NPs enhances to 48.8 nm making average coverage of about 22.6 nm. The synthesised nanomaterials were found effective to disrupt biofilm of S. aureus and P. aeruginosa. Interestingly, encapsulated CeO2 ‐NPs revealed powerful antibacterial and biofilm disruption activity examined by fluorescent live/dead staining using confocal laser scanning microscopy. The superior antibacterial activities exposed by encapsulated CeO2 ‐NPs lead to the conclusion that they could be useful for controlling biofilm producing multidrug resistance pathogens.Inspec keywords: particle size, microorganisms, organic compounds, nanomedicine, sol‐gel processing, cellular biophysics, scanning electron microscopy, optical microscopy, nanoparticles, antibacterial activity, fluorescence, biomedical materials, nanofabrication, X‐ray diffraction, chromatography, filled polymers, cerium compoundsOther keywords: microbial biofilms, aqueous root extract, sol–gel method, gas chromatography‐mass spectrometer, 1‐di‐ethoxy, 1‐Butanol, nanomaterial synthesis, mean particle size, antibacterial activities, ethanol, acetone, 1‐ propanol, biocompatible ceria‐nanoparticle encapsulation, nano‐chitosan, Arctium lappa l., oleic acid, erythrocyte integrity, spectrophotometer measurement, haemoglobin release, mono dispersed beads shaped particle formation, X‐ray diffractometry, cubic crystalline structure, fluorescent live/dead staining, confocal laser scanning microscopy, multidrug resistance pathogens, size 26.2 nm, size 28.0 nm, size 48.8 nm, size 22.6 nm, CeO2   相似文献   

7.
Silver nanoparticles (NPs) are immobilised on pistachio shell surface by Cichorium intybus L. leaves extract as an antioxidant media. The Fourier transform infrared spectra, X‐ray diffraction, field‐emission scanning electron microscopy equipped with energy‐dispersive X‐ray spectroscopy, and transmission electron microscope analyses confirmed the support of silver NPs on the pistachio shell (Ag NPs/pistachio shell). Ag NPs on the pistachio shell had a diameter basically in the 10–15 nm range. Reduction reactions of 4‐nitrophenol (4‐NP), and organic dyes at ambient condition were used in the investigation of the catalytic performance of the prepared catalyst. Through this research, the Ag NPs/pistachio shell shows a high activity and recyclability, and reusability without loss of its catalytic activity.Inspec keywords: transmission electron microscopy, nanoparticles, X‐ray diffraction, catalysis, nanofabrication, dyes, X‐ray chemical analysis, reduction (chemical), silver, catalysts, Fourier transform infrared spectra, field emission scanning electron microscopyOther keywords: waste pistachio shell, silver nanoparticles, catalytic reduction processes, pistachio shell surface, antioxidant media, infrared spectra, X‐ray diffraction, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscope analyses, reduction reactions, catalytic performance, catalytic activity, Cichorium intybus L. leaves extract, size 10.0 nm to 15.0 nm, Ag  相似文献   

8.
Silver nanoparticles (Ag NPs) were synthesised using the crude ethyl acetate extracts of Ulva lactuca and evaluated their bioefficacy against two crop‐damaging pathogens. The sets of lattice planes in the XRD spectrum for the Ag NPs were indexed to the 111, 200, 220 and 311 orientations and support the crystalline nature of the Ag NPs. The 3414 and 2968 cm−1 peaks were observed in crude algal thallus extract and they were characteristic of terpenoids. Further, a peak at 1389 cm−1 was observed as fatty acids. The marine macroalgae terpenoids and palmitic acid acted as reducing agent and stabiliser, respectively. The size (3 and 50 nm) and shape (spherical) of Ag NPs were recorded. The energy‐dispersive X‐ray spectroscopy analysis exemplified the presence of silver in its elemental nature. Moreover, U. lactuca Ag NPs were effective against two cotton phytopathogens namely Fusarium oxysporum f.sp. vasinfectum (FOV) and Xanthomonas campestris pv. malvacearum (XAM). The minimum inhibitory concentration was found to be 80.0 and 43.33 μg ml−1 against FOV and XAM, respectively. Results confirmed the anti‐microbial activity of green nanoparticles against select pathogens and suggest their possible usage in developing antifungal agents for controlling destructive pathogens in a cotton agroecosystem.Inspec keywords: nanoparticles, biotechnology, antibacterial activity, silver, microorganisms, X‐ray chemical analysis, crops, X‐ray diffraction, cottonOther keywords: crude ethyl acetate extracts, crop‐damaging pathogens, lattice planes, XRD spectrum, crystalline nature, crude algal thallus, fatty acids, marine macroalgae terpenoids, palmitic acid, energy‐dispersive X‐ray spectroscopy analysis, elemental nature, cotton phytopathogens, green nanoparticles, destructive pathogens, cotton agroecosystem, green preparation, seaweed‐based silver nanoliquid, cotton pathogenic fungi management, silver nanoparticles, Ag NP, Ag  相似文献   

9.
The present study focused on the synthesis of spherical silver nanoparticles (Ag NPs) using Gundelia tournefortii L. aerial part extract. The plant extract could reduce silver ions into Ag NPs. To identify the compounds responsible for the reduction of silver ions, functional groups present in plant extract were investigated by Fourier transform infrared spectroscopy. Techniques used to characterise synthesised nanoparticles included field emission scanning electron microscopy, X‐ray diffraction and transmission electron microscopy. UV‐visible spectrophotometer showed the absorbance peak in the range of 400–450 nm. The Ag NPs showed antibacterial activities against both gram positive (Staphylococcus aureus and Bacillus Cereus) and gram negative (Salmonella typhimurium and Escherichia coli) microorganisms. The results confirmed that this protocol was simple, rapid, eco‐friendly, low‐priced and non‐toxic; therefore, it could be used as an alternative to conventional physical/chemical methods. Only 5 min were required for the conversion of silver ions into Ag NPs at room temperature, without the involvement of any hazardous chemical.Inspec keywords: nanoparticles, silver, nanofabrication, microorganisms, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: Ag, temperature 293 K to 298 K, chemical method, physical method, Salmonella typhimurium, Escherichia coli, gram negative microorganisms, Bacillus Cereus, Staphylococcus aureus, gram positive microorganisms, antibacterial activities, absorbance peak, UV‐visible spectrophotometer, transmission electron microscopy, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, functional groups, plant extract, Gundelia tournefortii L. aerial part extract, spherical silver nanoparticle synthesis, silver nanoparticle green synthesis, natural source  相似文献   

10.
The development of reliable and green methods for the fabrication of metallic nanoparticles (NPs) has many advantages in the field of nanotechnology. In this direction, the present work describes an eco‐friendly and cost‐effective protocol for the production of silver NPs (AgNPs) using an aqueous extract of Quercus semecarpifolia leaves. Different techniques were carried out for the characterisation of the synthesised AgNPs. The ultraviolet–visible spectroscopic analysis showed the highest absorbance peak at 430 nm. The particle size and structure were confirmed by scanning electron microscopy as well as transmission electron microscopy (TEM) analysis. From TEM imaging, it was revealed that the formed particles were spherical with an average size of 20–50 nm. The crystalline nature of the NPs was determined by X‐ray powder diffraction patterns. Thermogravimetry and differential thermal analysis were also evaluated by a temperature increment from 100 to 1000°C. Bio‐inspired synthesis of AgNPs was performed for their pharmacological evaluation in relation to the activities of the crude methanolic, n ‐hexane, chloroform, ethyl acetate, and aqueous extracts. Good cytotoxic activity was exhibited by the green‐synthesised AgNPs (77%). Furthermore, the AgNPs were found to exhibit significant antioxidant activity at 300 μg/ml (82%). The AgNPs also exhibited good phytotoxic potential (75%).Inspec keywords: scanning electron microscopy, toxicology, visible spectra, particle size, nanofabrication, nanomedicine, transmission electron microscopy, silver, ultraviolet spectra, differential thermal analysis, nanoparticles, X‐ray diffraction, botany, biochemistry, cellular biophysicsOther keywords: green synthesis, biological evaluation, plant‐based silver nanoparticles, reliable methods, metallic nanoparticles, eco‐friendly cost‐effective protocol, silver NPs, ultraviolet–visible spectroscopic analysis, highest absorbance peak, particle size, structure, transmission electron microscopy analysis, TEM imaging, crystalline nature, X‐ray powder diffraction patterns, differential thermal analysis, pharmacological evaluation, aqueous extracts, good cytotoxic activity, significant antioxidant activity, AgNPs exhibited good phytotoxic potential, bio‐inspired synthesis, Quercus semecarpifolia Smith aqueous leaf extract, scanning electron microscopy, thermogravimetry, crude methanolic, n‐hexane, chloroform, ethyl acetate, phytotoxic potential, haemagglutination activity, size 20.0 nm to 50.0 nm, wavelength 430.0 nm, temperature 100 degC to 1000 degC, Ag  相似文献   

11.
In this work, an Fe3 O4 /HZSM‐5 nanocomposite was synthesised in the presence of Juglans regia L. leaf extract. Then, silver nanoparticles (Ag NPs) were immobilised on the surface of prepared magnetically recoverable HZSM‐5 using selected extract for reduction of Ag+ ions to Ag NPs and their stabilisation on the surface of the nanocomposite. The reduction of Ag+ ions occurs at room temperature within a few minutes. Characterisation of the prepared catalysts has been carried out using fourier transform infrared (FT‐IR), X‐ray diffraction, field‐emission scanning electron microscopy (FESEM), energy‐dispersive spectroscopy, Brunauer–Emmett–Teller method, and a vibrating sample magnetometer. According to the FESEM images of the nanocomposites, the average size of the Ag NPs on the Fe3 O4 /HZSM‐5 surface was >70 nm. The Ag/Fe3 O4 /HZSM‐5 nanocomposite was a highly active catalyst for the reduction of methyl orange and 4‐nitrophenol in aqueous medium. The utilisation of recycled catalyst for three times in the reduction process does not decrease its activity.Inspec keywords: silver, X‐ray chemical analysis, X‐ray diffraction, nanocomposites, reduction (chemical), nanofabrication, nanoparticles, transmission electron microscopy, catalysts, Fourier transform infrared spectra, iron compounds, field emission scanning electron microscopy, zeolites, magnetometry, particle sizeOther keywords: Ag‐Fe3 O4 , temperature 293 K to 298 K, green synthesis, catalyst material, 4‐nitrophenol reduction, methyl orange reduction, particle size, vibrating sample magnetometry, Brunauer–Emmett–Teller method, field‐emission scanning electron microscopy, X‐ray diffraction, FT‐IR spectroscopy, silver nanoparticles, Juglans regia L. leaf extract, organic pollutant reduction, magnetically recoverable nanocomposites, energy‐dispersive spectroscopy  相似文献   

12.
Biosynthesis of silver nanoparticles (AgNPs) using plant extract is a cheap, easily accessible and natural process in which the phyto‐constituents of the plants act as capping, stabilising and reducing agent. The present study explored the biosynthesis of AgNPs using aqueous leaf extract of Tinospora cordifolia and characterised via various techniques such as Fourier transform infrared, scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X‐ray analysis and X‐ray diffraction. Here, TEM confirmed the spherical morphology with 25–50 nm size of synthesised AgNPs. Further, anticancer efficiency of AgNPs synthesised using T. cordifolia leaves were evaluated against human lung adenocarcinoma cell line A549 by MTT, trypan blue assay, apoptotic morphological changes using Annexin V‐FITC and Propidium iodide (PI), nuclear morphological changes by DAPI (4, 6‐diamidino‐2‐phenylindole dihydrochloride) staining, reactive oxygen species generation and mitochondrial membrane potential determination. Results confirmed the AgNPs synthesised using T. cordifolia leaves are found to be highly toxic against human lung adenocarcinoma cell line A549.Inspec keywords: toxicology, cellular biophysics, cancer, silver, biomembranes, drugs, nanofabrication, nanoparticles, transmission electron microscopy, drug delivery systems, nanomedicine, lung, biomedical materials, antibacterial activity, X‐ray diffraction, Fourier transform infrared spectra, scanning‐transmission electron microscopyOther keywords: cytotoxicity, phytosynthesised silver nanoparticles, A549 cell line, biosynthesis, aqueous leaf, transmission electron microscopy, TEM, X‐ray analysis, X‐ray diffraction, spherical morphology, human lung adenocarcinoma cell line, nuclear morphological changes, 4, 6‐diamidino‐2‐phenylindole dihydrochloride, Tinospora cordifolia leaves, scanning electron microscopy, Fourier transform infrared, energy dispersive X‐ray analysis, Ag, size 25.0 nm to 50.0 nm, anticancer efficiency, trypan blue assay, propidium iodide, Annexin V‐FITC, DAPI staining, reactive oxygen species generation, mitochondrial membrane potential determination  相似文献   

13.
Biological routes of synthesising metal nanoparticles (NPs) using microbes have been gaining much attention due to their low toxicity and eco‐friendly nature. Pseudomonas aeruginosa JP2 isolated from metal contaminated soil was evaluated towards extracellular synthesis of silver NPs (AgNPs). Cell‐free extract (24 h) of the bacterial isolate was reacted with AgNO3 for 24 h in order to fabricate AgNPs. Preliminary observations were recorded in terms of colour change of the reaction mixture from yellow to greyish black. UV‐visible spectroscopy of the reaction mixture has shown a progressive increase in optical densities that correspond to peaks near 430 nm, depicting reduction of ionic silver (Ag+) to atomic silver (Ag0) thereby synthesising NPs. X‐ray diffraction spectra exhibited the 2θ values to be 38.4577° confirming the crystalline and spherical nature of NPs [9.6 − 26.7 (Ave. = 17.2 nm)]. Transmission electron microscopy finally confirmed the size of the particles varying from 5 to 60 nm. Moreover, rhamnolipids and proteins were identified as stabilising molecules for the AgNPs through Fourier transform‐infrared spectroscopy. Characterisation of bacterial crude and purified protein fractions confirmed the involvement of nitrate reductase (molecular weight 66 kDa and specific activity = 3.8 U/mg) in the Synthesis of AgNPs.Inspec keywords: microorganisms, silver, nanoparticles, enzymes, molecular biophysics, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectra, catalysis, biochemistry, nanobiotechnologyOther keywords: catalytic protein, stabilising agents, Pseudomonas aeruginosa, metal nanoparticles, UV–visible spectroscopy, optical densities, ionic silver, atomic silver, X‐ray diffraction spectra, transmission electron microscopy, nitrate reductase, rhamnolipids, Fourier transform‐infrared spectroscopy, Ag  相似文献   

14.
In the present study, silver (Ag) and Ag–zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound‐healing efficacy on rat model. Ultraviolet–visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X‐ray diffraction analysis Ag–ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face‐centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag–ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi‐hexagonal NPs with distribution of particle size of 20–40 nm. Furthermore, the authors investigated the wound‐healing properties of Ag–ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.Inspec keywords: wounds, tissue engineering, biomedical materials, nanocomposites, nanofabrication, nanomedicine, silver, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, visible spectra, nanoparticles, particle size, surface plasmon resonance, spectral line shift, X‐ray diffraction, scanning electron microscopy, transmission electron microscopyOther keywords: enhanced wound healing activity, Ag‐ZnO composite nanoparticles, Wistar Albino rats, wound‐healing efficacy, ultraviolet‐visible spectroscopy, intense surface plasmon resonance absorption, aqueous Zn acetate solution, SP resonance band, blue shift, X‐ray diffraction analysis, diffraction peaks, face‐centred cubic structures, scanning electron microscope, SEM, transmission electron microscope, TEM, monodispersed hexagonal nanoparticles, quasihexagonal nanoparticles, particle size, animal model, time 10 d, size 20 nm to 40 nm, Ag‐ZnO  相似文献   

15.
This study is aimed to explore the capacity of metal nanoparticles (NPs) iron, zinc, copper and their combinations introduced in the Murashige–Skoog (MS) nutrient medium (NM) to affect the growth and development of tomato plants (Solanum lycopersicum L.). NPs were prepared by a flow‐levitation method. Metal NPs were characterised by transmission and scanning electron microscopy, X‐ray phase analysis. Average NPs diameters were: iron – 27.0 nm, zinc – 54.0 nm, copper – 79.0 nm. MS NM was modified by substitution of common metal sulphates by neutral metal NPs instead of salts. Tomato seedlings cultivation on NM MS with NPs instead of salts assures improved seedling parameters (root length and root activity) in comparison with plants grown on standard MS. Venice cultivar tomato seedlings grown on NM with metal NPs demonstrated an increase in: seed germination by 10–180%, root length by 10–20%, and root activity by 10 –125%. After 45 days of cultivation, tomato seedlings were transplanted in a greenhouse and were grown up to the harvest. Effects in seed germination and increase of crop mass depended on metal nature and NPs concentration.Inspec keywords: copper, crops, nanoparticles, scanning electron microscopy, greenhouses, agriculture, nanofabrication, iron, zinc, transmission electron microscopyOther keywords: size 27.0 nm, size 54.0 nm, size 79.0 nm, time 45.0 d, Fe, Zn, Cu, metal nanoparticles, iron, zinc, tomato plants growth, Solanum lycopersicum L., flow‐levitation method, scanning electron microscopy, X‐ray phase analysis, metal sulphates, tomato seedlings cultivation, Murashige‐Skoog nutrient medium, Venice cultivar, copper, transmission electron microscopy, seed germination, greenhouse, seedlings transplantion  相似文献   

16.
Silver nanoparticles (AgNPs) have attracted the attention of researchers due to their properties. Biological synthesis of AgNPs is eco‐friendly and cost‐effective preferred to physical and chemical methods, which utilize environmentally harmful agents and large amounts of energy. Microorganisms have been explored as potential biofactories to synthesize AgNPs. Bacterial NP synthesis is affected by Ag salt concentration, pH, temperature and bacterial species. In this study, Bacillus spp., isolated from soil, were screened for AgNP synthesis at pH 12 with 5 mM Ag nitrate (AgNO3) final concentration at room temperature. The isolate with fastest color change and the best ultraviolet‐visible spectrum in width and height were chosen as premier one. AgNO3 and citrate salts were compared in terms of their influence on NP synthesis. Spherical Ag chloride (AgCl) NPs with a size range of 35–40 nm were synthesized in 1.5 mM Ag citrate solution. Fourier transform infrared analysis demonstrated that protein and carbohydrates were capping agents for NPs. In this study, antimicrobial and antitumor properties of the AgNP were investigated. The resulting AgCl NPs had bacteriostatic activity against four standard spp. And multi‐drug resistant strain of Pseudomonas aeruginosa. These NPs are also cytotoxic to cancer cell lines MCF‐7, U87MG and T293.Inspec keywords: silver compounds, nanoparticles, nanomedicine, nanofabrication, particle size, biomedical materials, microorganisms, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, proteins, macromolecules, antibacterial activity, tumours, cancer, cellular biophysics, toxicologyOther keywords: citrate salts, spherical Ag chloride, particle size, Ag citrate solution, Fourier transform infrared analysis, protein, carbohydrates, capping agents, antitumour properties, bacteriostatic activity, Pseudomonas aeruginosa, multidrug resistant strain, cancer cell lines MCF‐7,U87MG, size 35 nm to 40 nm, temperature 293 K to 298 K, AgCl, ultraviolet‐visible spectrum, colour change, room temperature, Ag nitrate final concentration, soil, bacterial species, temperature effect, pH, Ag salt concentration, biofactories, microorganisms, environmentally harmful agents, chemical methods, physical methods, antibacterial properties, electrical properties, mechanical properties, silver nanoparticles, multidrug resistant bacteria, antibiofilm effects, antibacterial effects, cytotoxic activity, Bacillus sp. 1/11, biosynthesised AgCl NPs  相似文献   

17.
Owing to the numerous biological applications, cost effectiveness and low cytotoxicity of the biomimetic nanoparticles (NPs), the authors optimised the production of silver NPs (AgNPs) using aqueous extract of Teucrium stocksianum Boiss. The NPs were characterised by ultraviolet‐visible (UV‐vis) spectroscopy, X‐ray diffraction (XRD), scanning electron microscopy (SEM), dynamic light scattering (DLS) and Fourier transform‐infrared spectroscopy (FTIR). The UV‐vis spectroscopy revealed a surface plasmon resonance (410‐440 nm) at an incubation temperature of 90°C when 1 mM Ag nitrate combined to 5 mg/ml extract concentration in the ratio of 1:10. DLS results show an average zeta size of ∼44.61 nm and zeta potential of −15.3 mV. SEM and XRD confirmed the high crystallinity and cubical symmetry with an average size below 100 nm. FTIR measurement shows the presence of various functional groups, responsible for the capping and reduction of Ag metal. The 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide cell viability assay shows that AgNPs are less cytotoxic to J774 and L929 cells as compared with enhanced anticancer activity with low IC50 concentrations (68.24 µg/ml) against Michigan Cancer Foundation‐7 (MCF‐7) cells. The ethidium bromide/acridine orange assay shows that the AgNPs kill the cell by apoptosis. Overall, the results show that AgNPs possesses potent anticancer activities.Inspec keywords: cellular biophysics, cancer, nanobiotechnology, nanomedicine, ultraviolet spectra, X‐ray diffraction, scanning electron microscopes, light scattering, patient treatmentOther keywords: anticancer assessment, in vitro cytotoxic assessment, aqueous extract‐mediated AgNPs, Teucrium stocksianum Boiss, nanoparticles, biological applications, biosynthesis, silver NPs, X‐ray diffraction, scanning electron microscopy, dynamic light scattering, Fourier transform‐infrared spectroscopy, UV‐vis spectroscopy, surface plasmon resonance, extract concentration, zeta potential, high crystallinity, FTIR measurement, amide molecules, viability assay, enhanced anticancer activity, potent anticancer activities  相似文献   

18.
In this study, chlorhexidine (CHX)–silver (Ag) hybrid nanoparticles (NPs) coated gauze was developed, and their bactericidal effect and in vivo wound healing capacities were tested. A new method was developed to synthesise the NPs, wherein Ag nitrate mixed with sodium (Na) metaphosphate and reduced using Na borohydride. Finally, CHX digluconate was added to form the hybrid NPs. To study the antibacterial efficacy of particles, the minimal inhibition concentration and biofilm degradation capacity against Gram‐positive and Gram‐negative bacteria was studied using Escherichia coli and Staphylococcus aureus. The results indicated that the NP inhibited biofilm formation and was bactericidal as well. The gauze was doped with NPs, and its wound healing property was evaluated using mice model. Results indicated that the wound healing process was fastened by using the NPs gauze doped with NPs without the administration of antibiotics.Inspec keywords: nanomedicine, nanoparticles, wounds, silver, cellular biophysics, biomedical materials, nanofabrication, microorganisms, antibacterial activityOther keywords: NPs gauze, antimicrobial wound healing applications, hybrid NPs, chlorhexidine–silver hybrid nanoparticles, CHX, coated gauze, bactericidal effect, minimal inhibition concentration, biofilm degradation capacity, Gram‐negative bacteria, wound healing property, wound healing process, in vivo wound healing capacities, Staphylococcus aureus, Escherichia coli, antibiotics administration, Na borohydride, Ag nitrate mixing, sodium metaphosphate, CHX digluconate, NP inhibited biofilm formation, Ag  相似文献   

19.
In this study, the extract of two strains of cyanobacteria was used for the synthesis of silver nanoparticles (NPs). UV–vis spectroscopy, X‐ray diffraction, dynamic light scattering and field emission scanning electron microscopy (FESEM) analyses were carried out to characterise the NPs. The antioxidant activity and heavy metal detection properties were investigated; moreover, their minimum inhibitory concentration and minimum bactericidal concentration against the multi‐drug resistant bacteria were determined. The most abundant materials in these extracts were carbohydrates, so the biosynthesis of NPs using exopolysaccharide (EPS) was also investigated. The surface plasmon resonance of NPs had a peak at 435 nm and EPS NPs at 350–450 nm. The NPs produced by Nostoc sp. IBRC‐M5064 extract revealed the face‐centred cubic (fcc) structure of AgCl, while NPs of N. pruniforme showed the fcc crystalline structure of Ag3 PO4 and AgCl. The FESEM showed the spherical shape of these NPs. The AgCl/Ag3 PO4 colloid, in comparison with AgCl, showed better antioxidant activity and antibacterial effect. The heavy metal detection analysis of NPs revealed that the NPs of both stains involved in Hg (NO3)2 detection.Inspec keywords: drugs, light scattering, silver, biochemistry, surface plasmon resonance, X‐ray diffraction, silver compounds, antibacterial activity, ultraviolet spectra, nanoparticles, visible spectra, colloids, microorganisms, nanofabrication, field emission scanning electron microscopy, chemical sensors, nanosensorsOther keywords: cyanobacteria, antibacterial detection, colorimetric detection, dynamic light scattering, antioxidant activity, heavy metal detection analysis, silver nanoparticle synthesis, field emission scanning electron microscopy analysis, UV‐visible spectroscopy analysis, X‐ray diffraction analysis, inhibitory concentration, exopolysaccharide, surface plasmon resonance, Nostoc sp. IBRC‐M5064 extract, face‐centred cubic crystalline structure, FESEM, spherical shape, antibacterial effect, multidrug resistant bacteria, wavelength 350.0 nm to 450.0 nm, AgCl‐Ag3 PO4 , Ag  相似文献   

20.
The present study reports a simple and low cost synthesis of zero‐valent silver nanoparticles (ZVSNPs) from silver nitrate using the leaf extract of Spondias dulcis. The ZVSNPs showed a unique peak at 420 nm in UV–vis spectrum. The SEM image portrayed cuboidal shaped particles. The EDX spectrum designated the elemental silver peak at 3 keV. In XRD, a sharp peak at 32.47° denoted the existence of (1 0 1) lattice plane and the average crystallite size was calculated as 48.61 nm. The lattice parameter was determined as 0.39 nm. The FTIR spectra of the leaf extract and ZVSNPs showed shifts in the specific functional group bands which ascertained the involvement of phytoconstituents in the formation and capping of nanoparticles. The average hydrodynamic size was measured as 59.66 nm by DLS method. A low PDI, 0.187 witnessed the monodispersity. A negative zeta potential value of −15.7 mV indicated the negative surface charges of the nanoparticles. The bactericidal action of ZVSNPs was demonstrated against two pathogens S.typhimurium and E.coli during which a dosage dependent zone of inhibition results was observed. Additionally, the catalytic potential of ZVSNPs was examined for the degradation of methylene blue dye in which an accelerated degradation of the dye was observed.Inspec keywords: antibacterial activity, crystallites, electrokinetic effects, scanning electron microscopy, nanoparticles, particle size, ultraviolet spectra, X‐ray chemical analysis, microorganisms, light scattering, nanofabrication, materials preparation, X‐ray diffraction, visible spectra, silver, dyes, Fourier transform infrared spectraOther keywords: wavelength 420.0 nm, Ag, voltage ‐15.7 mV, size 59.66 nm, size 0.39 nm, size 48.61 nm, electron volt energy 3.0 keV, Fourier transform infrared spectra, methylene blue dye, bactericidal action, dynamic light scattering, lattice parameter, Escherichia coli, Salmonella typhimurium, Spondias dulcis, negative zeta potential, polydispersity index, crystallite size, leaf extract, X‐ray diffraction, energy dispersive X‐ray spectrum, cuboidal‐shaped particles, scanning electron microscopy image, ultraviolet–visible spectrum, silver nitrate, zero‐valent silver nanoparticles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号