首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cell (MC) degranulation is an important step in the healing process. In this study, silver‐nanoparticles‐based surface‐enhanced Raman spectroscopy (SERS) was used to investigate the spectral characteristics of degranulation of MCs activated by low‐intensity laser. The significant spectral changes, such as Raman peak intensities, suggested the concentration variation of some degranulated substances. The Raman intensity ratio of 799–554 cm 1 could be used as a potential internal indicator for the degranulation degree of MCs. Principal component analysis (PCA) was employed to reduce the high dimension of spectra into a few principal components (PCs) while retaining the most diagnostically significant information for sample differentiation. Using the diagnostically significant PC scores (P  < 0.05), linear discriminate analysis (LDA) was applied to identify different cell degranulation groups with high sensitivity, specificity and accuracy. This exploratory work demonstrates that SERS technique combined with a PCA‐LDA algorithm possesses great potential for developing a label‐free, comprehensive, non‐invasive and accurate method for measuring MC degranulation.Inspec keywords: Raman spectra, silver, surface enhanced Raman scattering, Raman spectroscopy, nanoparticles, cellular biophysics, biological techniques, principal component analysisOther keywords: MCs, principal component analysis, diagnostically significant information, diagnostically significant PC scores, linear discriminate analysis, different cell degranulation groups, PCA‐LDA algorithm possesses great potential, MC degranulation, surface‐enhanced Raman spectroscopy analysis, mast cell degranulation, low‐intensity laser, healing process, silver‐nanoparticles‐based surface‐enhanced Raman spectroscopy, significant spectral changes, Raman peak intensities, concentration variation, degranulated substances, Raman intensity ratio, potential internal indicator, degranulation degree  相似文献   

2.
Breast cancer is the second cause of death in the world. Ionising radiation is a potent mutagen that can cause DNA damage, chromosomes breakage, and cell death. In the present study, radiotherapy and nanoparticle‐antibodies (ABs) have been combined to enhance the efficacy of cancer cell treatment. Silver nanoparticles (SNP) were synthesised, coated with anti‐HER2, and then characterised with different techniques such as X‐ray diffraction, dynamic light scattering, transmission electron microscopy, Fourier transform infrared, and UV–Vis spectroscopy. SKBR3 cells were irradiated with cobalt‐60 in the presence of nanoparticle‐AB as the drug. Cell viability was measured using the diphenyltetrazolium bromide assay, and the cellular status was assessed by Raman spectroscopy. Irradiation considerably decreased cell viability proportionate to the dose increase and post‐irradiation time. The surface‐enhanced Raman spectroscopy increased the signal in the presence of SNP. Increasing the dose to 2 Gy increased the irradiation resistance, and higher dose increases (4 and 6 Gy) enhanced the irradiation sensitivity. Moreover, the cellular changes induced by irradiation in the presence of the drug were stable after 48 h. The authors results introduced the combination of the drug with radiation as an effective treatment for cancer and Raman spectroscopy as a suitable tool to diagnose effective irradiation doses.Inspec keywords: ultraviolet spectra, X‐ray diffraction, tumours, nanofabrication, silver, cellular biophysics, nanomedicine, cancer, drugs, DNA, light scattering, toxicology, biomagnetism, radiation therapy, Raman spectra, transmission electron microscopy, infrared spectra, nanoparticles, gynaecologyOther keywords: higher dose increases, irradiation sensitivity, drug, effective treatment, effective irradiation doses, silver nanoparticles, irradiation efficiency, SKBR3 breast cancer cells, ionising radiation, potent mutagen, DNA damage, cell death, nanoparticle‐antibodies, cancer cell treatment, SNP, different techniques, X‐ray diffraction, dynamic light scattering, transmission electron microscopy, UV–Vis spectroscopy, SKBR3 cells, nanoparticle‐AB, diphenyltetrazolium bromide assay, cell viability proportionate, dose increase, post‐irradiation time, surface‐enhanced Raman spectroscopy, irradiation resistance, time 48.0 hour, size 60.0 inch, Ag  相似文献   

3.
Nasopharyngeal carcinoma (NPC), a kind of squamous cell carcinoma, occurs in the top and the side wall of nasopharyngeal, which harms human health and life. In this study, a novel blood test (SERS) was carried out for 30 NPC patients and 30 normal ones. Using multi‐variate statistical analysis for spectral data, the diagnostic sensitivities of 89.3% (50/56) and 85.7% (48/56) can be achieved for 633 and 785 nm exciting wavelength, respectively. Also corresponding specificities are 71.4% (41/56) and 78.6% (44/56), respectively. These results demonstrated that the two kinds of excitation wavelength all have the feasibility of obtaining high‐quality SERS spectra to differentiate cancer from normal samples. Furthermore, the performance of the SERS test with 785 nm wavelength excitation is nearly equal to the SERS experimental effect under 633 nm wavelength excitation for NPC detection.Inspec keywords: statistical analysis, blood, cancer, patient diagnosis, tumours, surface enhanced Raman scatteringOther keywords: human blood test, surface‐enhanced Raman spectroscopy technology, nasopharyngeal cancer detection, nasopharyngeal carcinoma, squamous cell carcinoma, human health, multivariate statistical analysis, spectral data, diagnostic sensitivities, excitation wavelength, high‐quality SERS spectra, normal samples, SERS test, SERS experimental effect, NPC detection, excitation light, NPC patients, wavelength excitation, wavelength 633.0 nm, wavelength 785.0 nm  相似文献   

4.
A green facile method has been successfully used for the synthesis of graphene oxide sheets decorated with silver nanoparticles (rGO/AgNPs), employing graphite oxide as a precursor of graphene oxide (GO), AgNO3 as a precursor of Ag nanoparticles (AgNPs), and geranium (Pelargonium graveolens) extract as reducing agent. Synthesis was accomplished using the weight ratios 1:1 and 1:3 GO/Ag, respectively. The synthesised nanocomposites were characterised by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, UV‐visible spectroscopy, Raman spectroscopy, energy dispersive X‐ray spectroscopy and thermogravimetric analysis. The results show a more uniform and homogeneous distribution of AgNPs on the surface of the GO sheets with the weight ratio 1:1 in comparison with the ratio 1:3. This eco‐friendly method provides a rGO/AgNPs nanocomposite with promising applications, such as surface enhanced Raman scattering, catalysis, biomedical material and antibacterial agent.Inspec keywords: silver, nanoparticles, graphene, nanocomposites, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, ultraviolet spectra, visible spectra, X‐ray chemical analysis, surface enhanced Raman scattering, catalysis, nanofabricationOther keywords: antibacterial agent, biomedical material, catalysis, surface enhanced Raman scattering, rGO‐AgNP nanocomposite, eco‐friendly method, homogeneous distribution, thermogravimetric analysis, energy dispersive X‐ray spectroscopy, Raman spectroscopy, UV‐visible spectroscopy, X‐ray diffraction, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, nanocomposites, reducing agent, geranium, graphene oxide sheets, graphite oxide, silver nanoparticles, green facile method  相似文献   

5.
Silver nanoparticles (AgNPs) are toxic to various microbes, but the mechanism of action is not fully understood. The present report explores Azadirachta indica leaf extract as a reducing agent for the rapid biosynthesis of AgNPs. The effects of AgNPs on the growth, glutathione‐S‐transferase (GST) activity, and total protein concentration in Staphylococcus aureus were investigated, as was its antibacterial activity against seven other bacterial strains. Nanoparticle synthesis was confirmed by the UV‐Vis spectrum and colour change of the solution. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential analysis, and infrared spectroscopy were used to characterise the synthesised nanoparticles. The UV‐Visible spectrograph showed an absorbance peak at 420 nm. DLS analysis showed an average AgNP size of 159 nm and a Polydispersity Index of 0.373. SEM analysis showed spherical particle shapes, while TEM established an average AgNP size of 7.5 nm. The element analysis profile showed small peaks for calcium, potassium, zinc, chlorine, with the presence of oxygen and silver. AgNPs markedly affected the growth curves and GST activity in treated bacteria, and produced moderate antibacterial activity. Thus AgNPs synthesised from A. indica leaves can interrupt the growth curve and total protein concentration in bacterial cells.Inspec keywords: ultraviolet spectra, microorganisms, nanomedicine, visible spectra, nanoparticles, electrokinetic effects, antibacterial activity, scanning electron microscopy, infrared spectra, transmission electron microscopy, light scattering, nanofabrication, particle size, silver, enzymes, biochemistry, molecular biophysics, cellular biophysicsOther keywords: silver nanoparticles, glutathione‐S‐transferase activity, green leaves, rapid biosynthesis, total protein concentration, nanoparticle synthesis, colour change, zeta potential analysis, UV‐Visible spectrograph, DLS analysis, SEM analysis, element analysis profile, growth curve, GST activity, bacterial strains, antibacterial activity, staphylococcus aureus growth, microbes, Azadirachta azadirachta indica leaf, reducing agent, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, infrared spectroscopy, absorbance peak, polydispersity index, spherical particle shapes, TEM, bacterial cells, Ag  相似文献   

6.
Chronic hepatitis B (CHB) is the most common cause of hepatocellular carcinoma (HCC) and liver cirrhosis worldwide. In spite of the numerous advances in the treatment of CHB, drugs and vaccines have failed because of many factors like complexity, resistance, toxicity, and heavy cost. New RNA interference (RNAi)‐based technologies have developed innovative strategies to target Achilles'' heel of the several hazardous diseases involving cancer, some genetic disease, autoimmune illnesses, and viral disorders particularly hepatitis B virus (HBV) infections. Naked siRNA delivery has serious challenges including failure to cross the cell membrane, susceptibility to the enzymatic digestion, and excretion by renal filtration, which ideally can be addressed by nanoparticle‐mediated delivery systems. cccDNA formation is a significant problem in obtaining HBV infections complete cure because of strength, durability, and lack of proper immune response. Nano‐siRNA drugs have a great potential to address this problem by silencing specific genes which are involved in cccDNA formation. In this article, the authors describe siRNA nanocarrier‐mediated delivery systems as a promising new strategy for HBV infections therapy. Simultaneously, the authors completely represent the clinical trials which use these strategies for treatment of the HBV infections.Inspec keywords: tumours, drugs, genetics, cellular biophysics, RNA, nanomedicine, diseases, molecular biophysics, microorganisms, cancer, liver, nanoparticles, patient treatmentOther keywords: siRNA nanotherapeutics, anti‐HBV therapy, chronic hepatitis B, CHB, HCC, hazardous diseases, cancer, genetic disease, autoimmune illnesses, viral disorders, hepatitis B virus infections, naked siRNA delivery, cell membrane, enzymatic digestion, renal filtration, nanoparticle‐mediated delivery systems, cccDNA formation, HBV infections complete cure, nanosiRNA drugs, siRNA nanocarrier‐mediated delivery systems, HBV infections therapy, liver cirrhosis, RNA interference, immune response, hepatocellular carcinoma  相似文献   

7.
Several materials such as silver are used to enhance graphene oxide (GO) sheets antimicrobial activity. However, these toxic materials decrease its biocompatibility and hinder its usage in many biological applications. Therefore, there is an urgent need to develop nanocomposites that can preserve both the antimicrobial activity and biocompatibility simultaneously. This work highlights the importance of functionalisation of GO sheets using Polyvinylpyrrolidone (PVP) and decorating them with silver nanoparticles (AgNPs) in order to enhance their antimicrobial activity and biocompatibility at the same time. The structural and morphological characterisations were performed by UV‐Visible, Fourier transform infrared (FTIR), and Raman spectroscopic techniques, X‐ray diffraction (XRD), and high‐resolution transmission electron microscopy (HR‐TEM). The antimicrobial activities of the prepared samples against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans were studied. The cytotoxicity of prepared materials was tested against BJ1 normal skin fibroblasts. The results indicated that the decoration with AgNPs showed a significant increase in the antimicrobial activity of GO and FGO sheets, and functionalisation of GO sheets and GO‐Ag nanocomposite with PVP improved the cell viability about 40 and 35%, respectively.Inspec keywords: biomedical materials, nanocomposites, visible spectra, ultraviolet spectra, X‐ray diffraction, cellular biophysics, nanoparticles, Raman spectra, filled polymers, transmission electron microscopy, silver, microorganisms, antibacterial activity, nanomedicine, nanofabrication, graphene compounds, toxicology, Fourier transform infrared spectraOther keywords: graphene oxide‐silver nanocomposite, polyvinylpyrrolidone, toxic materials, biocompatibility, antimicrobial activity, morphological characterisations, structural characterisations, UV‐visible spectra, Fourier transform infrared spectra, Raman spectra, X‐ray diffraction, high‐resolution transmission electron microscopy, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, cytotoxicity, BJ1 normal skin fibroblasts, cell viability, CO‐Ag  相似文献   

8.
The present study aimed to develop a surface‐modified biocompatible nanostructured lipid carrier (NLCs) system using polyoxyethylene (40) stearate (POE‐40‐S) to improve the oral bioavailability of poorly water‐soluble Biopharmaceutics Classification System class‐II drug like tamoxifen (TMX). Also aimed to screen the most influential factors affecting the particle size (PS) using Taguchi (L12 (211)) orthogonal array design (TgL12 OA). Then, to optimize the TMX loaded POE‐40‐S (P) surface‐modified NLCs (TMX‐loaded‐PEG‐40‐S coated NLC (PNLCs) or PNLCs) by central composite design (CCD) using a four‐factor, five‐level model. The most influential factors affecting the PS was screened and optimized. The in‐vitro study showed that increased drug‐loading (DL) and encapsulation efficiency (EE), decreased PS and charge, sustained drug release for the prolonged period of the time with good stability and suppressed protein adsorption. The Ex‐vivo study showed that decreased mucous binding with five‐fold enhanced permeability of PNLC formulation after surface modification with POE‐40‐S. The in‐vitro cytotoxicity study showed that the blank carrier is biocompatible and cytotoxicity of the formulation was dependent on the concentration of the drug. Finally, it can be concluded that the surface‐modified PNLCs formulation was an effective, biocompatible, stable formulation in the enhancement of dissolution rate, solubility, stability with reduced mucus adhesion and increased permeability thereby which indicates its enhanced oral bioavailability.Inspec keywords: nanoparticles, cellular biophysics, solubility, drug delivery systems, toxicology, adsorption, adhesion, dissolving, biomedical materials, encapsulation, polymers, proteins, nanomedicine, permeability, particle size, electrokinetic effectsOther keywords: water‐soluble BCS class‐II, TgL12 OA, TMX‐loaded POE‐40‐S surface‐modified NLC, surface‐modified PNLC formulation, lipid‐based NLC system, oral bioavailability, stable formulation, biocompatible formulation, blank carrier, in vitro cytotoxicity, surface modification, PNLC formulation, drug release, central composite design, orthogonal array design, encapsulation efficiency, steric stabilisation effect, particle size, dissolution rate, polyoxyethylene stearate, surface‐modified biocompatible carrier system, systemic toxicity, water‐soluble drug, tamoxifen‐loaded surface‐modified nanostructured lipid carrier  相似文献   

9.
Silver nanoparticles (Ag NPs) were synthesised using the crude ethyl acetate extracts of Ulva lactuca and evaluated their bioefficacy against two crop‐damaging pathogens. The sets of lattice planes in the XRD spectrum for the Ag NPs were indexed to the 111, 200, 220 and 311 orientations and support the crystalline nature of the Ag NPs. The 3414 and 2968 cm−1 peaks were observed in crude algal thallus extract and they were characteristic of terpenoids. Further, a peak at 1389 cm−1 was observed as fatty acids. The marine macroalgae terpenoids and palmitic acid acted as reducing agent and stabiliser, respectively. The size (3 and 50 nm) and shape (spherical) of Ag NPs were recorded. The energy‐dispersive X‐ray spectroscopy analysis exemplified the presence of silver in its elemental nature. Moreover, U. lactuca Ag NPs were effective against two cotton phytopathogens namely Fusarium oxysporum f.sp. vasinfectum (FOV) and Xanthomonas campestris pv. malvacearum (XAM). The minimum inhibitory concentration was found to be 80.0 and 43.33 μg ml−1 against FOV and XAM, respectively. Results confirmed the anti‐microbial activity of green nanoparticles against select pathogens and suggest their possible usage in developing antifungal agents for controlling destructive pathogens in a cotton agroecosystem.Inspec keywords: nanoparticles, biotechnology, antibacterial activity, silver, microorganisms, X‐ray chemical analysis, crops, X‐ray diffraction, cottonOther keywords: crude ethyl acetate extracts, crop‐damaging pathogens, lattice planes, XRD spectrum, crystalline nature, crude algal thallus, fatty acids, marine macroalgae terpenoids, palmitic acid, energy‐dispersive X‐ray spectroscopy analysis, elemental nature, cotton phytopathogens, green nanoparticles, destructive pathogens, cotton agroecosystem, green preparation, seaweed‐based silver nanoliquid, cotton pathogenic fungi management, silver nanoparticles, Ag NP, Ag  相似文献   

10.
Cellulose is the natural biopolymer normally used as supporting agent with enhanced applicability and properties. In present study, cellulose isolated from citrus waste is used for silver nanoparticles (Ag‐NPs) impregnation by a simple and reproducible method. The Ag‐NPs fabricated cellulose (Ag‐Cel) was characterised by powder X‐rays diffraction, Fortier transform infrared spectroscopy and scanning electron microscopy. The thermal stability was studied by thermo‐gravimetric analysis. The antibacterial activity performed by disc diffusion assay reveals good zone of inhibition against Staphylococcus aureus and Escherichia coli by Ag‐Cel as compared Ag‐NPs. The discs also displayed more than 90% reduction of S. aureus culture in broth within 150 min. The Ag‐Cel discs also demonstrated minor 2,2‐diphenyl 1‐picryl‐hydrazyl radical scavenging activity and total reducing power ability while moderate total antioxidant potential was observed. Ag‐Cel effectively degrades methylene‐blue dye up to 63.16% under sunlight irradiation in limited exposure time of 60 min. The Ag‐NPs impregnated cellulose can be effectively used in wound dressing to prevent bacterial attack and scavenger of free radicals at wound site, and also as filters for bioremediation and wastewater purification.Inspec keywords: silver, nanoparticles, particle reinforced composites, nanocomposites, filled polymers, wounds, nanomedicine, biomedical materials, photochemistry, catalysis, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, thermal stability, thermal analysis, antibacterial activity, dyes, wastewater treatment, contaminated site remediation, nanofabricationOther keywords: silver nanoparticles, impregnated cellulose composite, wound healing, photocatalysis, natural biopolymer, citrus waste, powder X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, thermal stability, thermo‐gravimetric analysis, antibacterial activity, disc diffusion assay, Staphylococcus aureus, Escherichia coli, inhibition zone, broth, 2,2‐diphenyl 1‐picryl‐hydrazyl radical scavenging activity, total reducing power ability, total antioxidant potential, methylene‐blue dye, sunlight irradiation, wound dressing, bacterial attack, free radical scavenger, wastewater purification, bioremediation filters, wound site, time 60 min, Ag  相似文献   

11.
In this examination, we researched the advantages of DNA fragmentation and metallic nanoparticles well‐appointed with biomolecules. A novel interpretation of DNA damage by Silver Nano‐Clusters (AgNCs) which were developed by the utilization of green synthesis method was demonstrated. The green synthesis of AgNCs was accomplished by utilizing the leaf extract of Salacia mulbarica (SM). The preparation of SM‐AgNCs was developed by estimating surface plasmon resonance peak around 449 nm by using a UV–Visible spectrophotometer. The effect of phytochemicals in SM leaf extract on the development of stable SM‐AgNCs was confirmed by FTIR spectroscopy. The size of the fabricated SM‐AgNCs was estimated by dynamic light scattering and zeta‐sizer analysis and the morphology of the SM‐AgNCs was examined by transmission electron microscopy. The presence of clusters of Ag particles in the prepared SM‐AgNCs was recognized by energy dispersion X‐ray analysis. The results show that saponins, phytosterols, and phenolic compounds present in plant extract may play a great part in developing the SM‐AgNCs in their specialized particles. The succeeded SM‐AgNCs shows incredible anti‐bacterial action towards Escherichia coli and Bacillus subtilis. In‐light of the antibacterial study, these SM‐AgNCs were analyzed with calf thymus‐DNA and found significant damage to the strand of thymus‐DNA.Inspec keywords: visible spectra, surface plasmon resonance, transmission electron microscopy, DNA, nanofabrication, particle size, X‐ray chemical analysis, ultraviolet spectra, molecular biophysics, nanomedicine, microorganisms, nanoparticles, silver, X‐ray diffraction, antibacterial activity, Fourier transform infrared spectra, biomedical materialsOther keywords: stable SM‐AgNCs, silver nanoparticles, ct‐DNA damage, metallic nanoparticles, silver nanoclusters, Salacia mulbarica leaf extract, reactive oxygen species, DNA fragmentation, surface plasmon resonance, UV‐Visible spectrophotometer, Fourier transform infrared spectroscopy, dynamic light scattering, Zeta‐sizer analysis, transmission electron microscopy, energy dispersive X‐ray analysis, saponins, phytosterols, phenolic compounds, plant extract, Escherichia coli, Bacillus subtilis, Ag  相似文献   

12.
The study was focused on the phytochemicals‐mediated biosynthesis of silver nanoparticles using leaf extracts and infusions from Cynara scolymus. To identify the antioxidant activity and total phenolic content, the 1,1‐diphenyl‐1‐picrylhydrazyl and Folin–Ciocalteau methods were applied, respectively. The formation and stability of the reduced silver ions were monitored by UV–vis spectrophotometer. The particle sizes of the silver nanoparticles were characterised using the dynamic light scattering technique and scanning electron microscope. The phase composition of the obtained silver nanoparticles was characterised by X‐ray diffraction. The silver nanoparticles suspension, artichoke infusion, and silver ions were separately tested towards potential cytotoxicity and pro‐inflammatory effect using mouse fibroblasts and human monocytes cell line, respectively. The total phenolic content and antioxidant activity of ethanol extract and infusion were found significantly higher as compared to aqueous extract and infusion. The UV–visible spectrophotometric analysis revealed the presence of the characteristic absorption band of the Ag nanoparticles. Moreover, it was found that with the increasing volume of plant extract, the average size of particles was increased. Biocompatibility results evidently showed that silver nanoparticles do not induce monocyte activation, however in order to avoid their cytotoxicity suspension at a concentration <2 ppm should be applied.Inspec keywords: pharmaceuticals, health and safety, renewable materials, toxicology, organic compounds, antibacterial activity, X‐ray diffraction, nanomedicine, nanoparticles, nanofabrication, suspensions, ultraviolet spectra, visible spectra, scanning electron microscopy, silver, particle sizeOther keywords: phytochemicals‐mediated biosynthesis, antioxidant activity, total phenolic content, dynamic light scattering technique, silver nanoparticles suspension, scanning electron microscopy, Cynara scolymus, 1,1 diphenyl‐1‐picrylhydrazyl method, cytotoxicity, immune compatibility, leaf extracts, UV‐vis spectrophotometry, particle size, Folin‐Ciocalteau methods, phase composition, X‐ray diffraction, artichoke infusion, pro‐inflammatory effect, mouse fibroblasts, human monocytes cell line, Ag  相似文献   

13.
This is the first study to report the green synthesis of Lobelia trigona Roxb‐ mediated silver nanoparticles (LTAgNPs). The optical and structural properties of the synthesised LTAgNPs were analysed using ultraviolet–visible spectroscopy, scanning electron microscopy, Fourier transform infrared, dynamic light scattering and energy dispersive X‐ray. LTAgNps were evaluated for their anti‐bacterial and anti‐fungal properties against 18 pathogens and exhibited significant inhibition against all the strains tested. LTAgNPs had potential scavenging effects on the DPPH, OH, O2 •− free radical scavenging assays and reducing power assay. LTAgNps possess strong anti‐cancer activity against five human cancer cell lines (A549, MCF‐7, MDA‐MB‐231, HeLa and KB) in a dose‐dependent manner. The antiproliferative, anti‐inflammatory and genotoxicity effects of LTAgNPs were further confirmed by the lactate dehydrogenase release assay, nitric oxide inhibitory assay and comet assay. Furthermore, the incision, excision and burn wound‐healing activity of formulated LTAgNPs ointment was assessed in rats. All the wounds had significant healing in groups treated with LTAgNPs ointment compared to the groups treated with the commonly prescribed ointment (SilverexTM). This study shows and suggests that the previously unreported LTAgNPs could be used as a nanomedicine with significant biological applications.Inspec keywords: molecular biophysics, biomedical materials, scanning electron microscopy, biochemistry, cancer, microorganisms, silver, cellular biophysics, nanofabrication, wounds, nanomedicine, ultraviolet spectra, toxicology, antibacterial activity, light scattering, nanoparticles, enzymes, visible spectra, Fourier transform infrared spectraOther keywords: Lobelia trigona Roxb‐based nanomedicine, biological applications, Lobelia trigona Roxb‐mediated silver nanoparticles, optical properties, structural properties, ultraviolet‐visible spectroscopy, dynamic light scattering, antibacterial properties, antifungal properties, scavenging effects, free radical scavenging, power assay, anticancer activity, antiinflammatory effects, genotoxicity effects, lactate dehydrogenase release assay, nitric oxide inhibitory assay, excision, burn wound‐healing activity, formulated LTAgNPs ointment, in vivo approach, in vitro approach, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, pathogens, strains, A549 human cancer cell lines, MCF‐7 human cancer cell lines, MDA‐MB‐231 human cancer cell lines, HeLa human cancer cell lines, antiproliferative effects, comet assay, Ag  相似文献   

14.
The emergence of the huge number of multi‐drug resistant (MDR) bacteria requires an alternative to the drugs. Silver nanoparticles (AgNPs) are a strong candidate for this due to their bactericidal properties, which can be better concluded by understanding their morphology and chemistry. The study hypothesised that AgNPs synthesised using leaves of Syzygium cumini can be used to treat locally emerging MDRs forming biofilms on indwelling medical devices. Synthesised particles were characterised by methods like UV–visible spectroscopy, X‐ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and Zetasizer. Fourier transform infrared spectroscopy, and high‐performance liquid chromatography were used to predict phytochemicals present in the leaves. The shape of particles is revealed to be relatively spherical, with average size to be around 10–100 nm. Phenolic compounds are attributed to the formation of nanoparticles, stability analysis shows particles to be stable, and zeta potential determined the surface charge to be −20.1 mV. Biosynthesised particles are found to possess efficient antibacterial activity MDR bacteria developing biofilms in medical devices; hence, it is concluded that S. cumini based NPs can be used to develop a layer on implant‐related medical devices. Toxicity evaluation against A594 cancer cells portrays AgNPs to be potential tumour reduction agents in a concentration‐dependent manner.Inspec keywords: silver, visible spectra, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, chromatography, electrokinetic effects, cancer, biomedical materials, reduction (chemical), cellular biophysics, nanofabrication, nanoparticles, antibacterial activity, particle size, drugs, toxicology, nanomedicine, ultraviolet spectra, microorganisms, tumours, Fourier transform infrared spectraOther keywords: Syzygium cumini, biofilms, indwelling medical devices, UV‐visible spectroscopy, X‐ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, high‐performance liquid chromatography, biosynthesised particles, implant‐related medical devices, biosynthesised silver nanoparticles, multidrug resistant biofilm‐forming pathogens, multidrug resistant bacteria, MDR, bactericidal properties, morphology, scanning electron microscopy, s. cumini based NP, A594 cancer cells, tumour reduction, Ag  相似文献   

15.
The plant‐based biological molecules possess exceptionally controlled assembling properties to make them suitable in the synthesis of metal nanoparticles. In the present study, an efficient simple one‐pot method was employed for the synthesis of silver nanoparticles (SNPs) from the Rangoon creeper (RC) aqueous leaf extract. Biomolecules present in the leaf extract play a significant role as reducing agent as well as capping agent in the formation of RC‐SNPs. The formation of RC‐SNPs was confirmed by using several analytical techniques such as Fourier‐transform infrared spectroscopy and ultraviolet–visible spectrophotometer studies. The presence of a sharp surface plasmon resonance peak at 449 nm showed the formation of RC‐SNPs. X‐ray diffraction analysis showed the crystalline nature of the RC‐SNPs with a face‐centred cubic structure. Elemental analysis of RC‐SNPs was done by using energy‐dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy. The morphology of RC‐SNPs was examined by transmission electron microscopy (TEM) in the nano range 12 nm, and thermogravimetric‐differential thermal analysis demonstrated the mechanical strength of RC‐SNPs at various temperatures. The authors’ newly synthesised RC‐SNPs exhibited significant anti‐bacterial activity against Staphylococcus aureus and Escherichia coli. Inspec keywords: silver, nanoparticles, X‐ray photoelectron spectra, antibacterial activity, ultraviolet spectra, microorganisms, X‐ray chemical analysis, differential thermal analysis, X‐ray diffraction, transmission electron microscopy, visible spectra, nanofabrication, surface plasmon resonance, Fourier transform infrared spectra, mechanical strengthOther keywords: silver nanoparticles, ultraviolet–visible spectrophotometry, antibacterial activity, sustainable green synthesis, plant‐based biological molecules, assembling properties, reducing agent, capping agent, Fourier‐transform infrared spectroscopy, surface plasmon resonance, Rangoon creeper aqueous leaf extract, X‐ray diffraction, face‐centred cubic structure, elemental analysis, energy‐dispersive X‐ray spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, TEM, thermogravimetric‐differential thermal analysis, mechanical strength, Staphylococcus aureus, Escherichia coli, Ag  相似文献   

16.
Bio‐ synthesis of silver nanoparticles (AgNPs) was made by using the aqueous leaf extract of Ardisia solanacea. Rapid formation of AgNPs was observed from silver nitrate upon treatment with the aqueous extract of A. solanacea leaf. The formation and stability of the AgNPs in the colloidal solution were monitored by UV–visible spectrophotometer. The mean particle diameter of AgNPs was calculated from the DLS with an average size ∼4 nm and ∼65 nm. ATR‐FTIR spectroscopy confirmed the presence of alcohols, aldehydes, flavonoids, phenols and nitro compounds in the leaf which act as the stabilizing agent. Antimicrobial activity of the synthesized AgNPs was performed using agar well diffusion and broth dilution method against the Gram‐positive and Gram‐negative bacteria. Further, robust anti‐oxidative potential was evaluated by DPPH assay. The highest antimicrobial activity of synthesized AgNPs was found against Pseudomonas aeruginosa (28.2 ± 0.52 mm) whereas moderate activity was found against Bacillus subtilis (16.1 ± 0.76), Candida kruseii (13.0 ± 1.0), and Trichophyton mentagrophytes (12.6 ± 1.52). Moreover, the potential wound healing activity was observed against the BJ‐5Ta normal fibroblast cell line. Current research revealed that A. solanacea was found to be a suitable source for the green synthesis of silver nanoparticles.Inspec keywords: antibacterial activity, nanoparticles, silver, nanomedicine, wounds, microorganisms, X‐ray diffraction, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, transmission electron microscopyOther keywords: phyto‐assisted synthesis, biofunctionalised silver nanoparticles, antioxidant antimicrobial wound healing activities, silver nanoparticle biosynthesis, aqueous leaf extract, Ardisia solanacea, silver nitrate, UV–visible spectroscopy, dynamic light scattering, Fourier transform infra‐red spectroscopy, X‐ray diffraction, electron microscopy, attenuated total reflection Fourier transform infra‐red spectroscopy, dilution method, Gram‐positive bacteria, Gram‐negative bacteria, radical scavenging method, Pseudomonas aeruginosa, Trichophyton mentagrophytes, Bacillus subtilis, Candida kruseii, BJ‐5Ta normal fibroblast cell line, SEM, alcohols, aldehydes, flavonoids, phenols, nitro compounds, Ag  相似文献   

17.
The binding reaction of reduced graphene oxide–silver nanocomposites (rGO–AgNCs) with calf thymus single‐stranded DNA (ssDNA) was studied by ultraviolet–visible absorption, fluorescence spectroscopy and circular dichroism (CD), using berberine hemisulphate (BR) dye as a fluorescence probe. The absorbance of ssDNA increases, but the fluorescence intensity is quenched with the addition of rGO–AgNCs. The binding of rGO–AgNCs with ssDNA was able to increase the quenching effects of BR and ssDNA, and induce the changes in CD spectra. All of the evidence indicated that there was a relatively strong interaction between ssDNA and rGO–AgNCs. The data obtained from fluorescence experiments revealed that the quenching process of ssDNA caused by rGO–AgNCs is primarily due to complex formation, i.e. static quenching. The increasing trend of the binding equilibrium constant (K a) with rising temperature indicated that the binding process was an endothermic reaction. The calculated thermodynamic parameters showed that the binding process was thermodynamically spontaneous, and hydrophobic association played predominant roles in the binding of ssDNA to the surface of rGO–AgNCs.Inspec keywords: DNA, fluorescence spectroscopy, circular dichroism, nanofabrication, nanobiotechnology, silver, hydrophobicity, molecular biophysics, radiation quenching, biochemistry, nanocomposites, visible spectra, ultraviolet spectra, dyes, fluorescence, association, graphene compoundsOther keywords: ssDNA increases, fluorescence intensity, fluorescence experiments, binding equilibrium constant, binding process, reduced graphene oxide‐silver nanocomposites, binding reaction, calf thymus single‐stranded DNA, fluorescence spectroscopy, fluorescence probe, complex formation, static quenching, calculated thermodynamic parameters, rGO‐AgNCs binding, ultraviolet‐visible absorption, berberine hemisulphate dye, circular dichroism, CO‐Ag  相似文献   

18.
In this report, the site‐specific co‐delivery of green tea/aluminium magnesium silicate (AMS) was reported and the specific target delivery was achieved orally. The new co‐precipitation process was developed to synthesis the green tea/AMS hybrid complex and using energy‐dispersive X‐ray spectroscopy, Fourier‐transform infrared spectroscopy and Raman confirmed its successful synthesis. The blood biocompatibility of the green tea/AMS was tested using chicken blood, and the compound is safe up to 500 mg/ml. After mixed with hydroxypropyl methylcellulose phthalate, the oral beads were synthesised using a linking agent. The oral beads underwent different pH‐based dissolution studies and the results indicated that the beads specifically dissolved in gastric pH (6.5). The pharmaco kinetic studies were performed to estimate the delivery kinetics. The results revealed that the beads underwent as per the Higuchi model. The anticoccidial effects of the beads were tested using chicken. The animal studies were performed in two different modes such as prophylactic treatment and active treatment after Eimeria species challenge. The results indicated that the prophylactic treatment with beads 100% protected the chicken and the active treatment with beads after the Eimeria challenge significantly protected against the intestinal damage and it also enhanced the anticoccidial effect.Inspec keywords: X‐ray chemical analysis, drug delivery systems, pH, drugs, biomedical materials, blood, dissolving, Fourier transform infrared spectra, Raman spectra, aluminium compounds, magnesium compounds, precipitation (physical chemistry), materials preparationOther keywords: prophylactic treatment, active treatment, anticoccidial effect, green tea coated aluminium magnesium silicate beads, chicken coccidiosis, target delivery, Fourier‐transform infrared spectroscopy, blood biocompatibility, chicken blood, hydroxypropyl methylcellulose phthalate, oral beads, pharmacokinetic studies, delivery kinetics, animal studies, site‐specific codelivery, pH‐based dissolution, coprecipitation process, green tea‐AMS hybrid complex, energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, linking agent, gastric pH, Al2 Mg3 O18 Si6 , intestinal damage, Eimeria species, anticoccidial effects, Higuchi model  相似文献   

19.
Gold nanoparticles (AuNPs) are commonly used in biosensors of various kinds. However, its application to extract DNA from cancer tissues has not been extensively studied. The purification of DNA from cancer tissues is an important step in diagnostic and therapeutic development. Almost, all cervical cancer cases are associated with high‐risk human papillomavirus (HR‐HPV) infection. Accurate viral diagnosis has so far relied on the extraction of adequate amounts of DNA from formalin‐fixed, paraffin‐embedded (FFPE) tissue samples. Till now, no specific and sensitive DNA purification method has been introduced for the extraction of HR‐HPV from FFPE tissue. Since the commercially available purification kits are not sensitive and specific enough for HR‐HPV DNA targets, in this study, a DNA purification method was designed based on AuNPs to purify sufficient amounts of HR‐HPV DNA from cervical cancer tissue samples. AuNPs were coated with a series of oligonucleotide probes to hybridize to specific DNA sequences of HR‐HPV genotypes. Results showed that 733 out of 800 copies of type‐specific HPV DNA were recovered with complete specificity, compared to 36 copies with a standard commercial kit (Qiagen FFPE). The high yield of DNA (91.6%) is the main advantage of the AuNPs‐probe purification method.Inspec keywords: cancer, biological tissues, microorganisms, gold, DNA, lab‐on‐a‐chip, gynaecology, purification, biochemistry, molecular biophysics, nanoparticles, nanomedicine, cellular biophysicsOther keywords: specific extraction method, cervical cancer tissue samples, high‐risk human papillomavirus infection, paraffin‐embedded tissue samples, specific DNA purification method, sensitive DNA purification method, FFPE tissue, HR‐HPV DNA targets, specific DNA sequences, HR‐HPV genotypes, type‐specific HPV DNA, AuNP‐probe purification method, gold nanoparticle‐based DNA isolation method, oligonucleotide, human papillomaviruse genotypes, clinical samples, Au  相似文献   

20.
Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO3) by aqueous root extract of Decalepis hamiltonii. The biosynthesis of SNPs was monitored by UV–vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450–483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X‐ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X‐ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, particle size, microorganisms, ultraviolet spectra, visible spectra, fluorescence, scanning electron microscopy, atomic force microscopy, light scattering, X‐ray diffraction, X‐ray chemical analysis, Fourier transform infrared spectra, molecular biophysics, electrokinetic effectsOther keywords: phenols, zeta potential analysis, therapeutic forum, antioxidant activity, antimicrobial activity, Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Ag, polyols, biomolecules, Fourier transform infrared spectroscopy, powder X‐ray diffraction, crystal size, face centred cubic structure, energy dispersive X‐ray analysis, metallic silver, particle size, dynamic light scattering analysis, spherical shape, atomic force microscopy, scanning electron microscopy, surface characteristics, excitation wavelengths, fluorescence emission spectra, UV‐visible analysis, biosynthesis, silver nitrate bioreduction, nanomedicine, Decalepis hamiltonii aqueous root extract, bioactivity, plant‐mediated silver nanoparticles, green synthesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号