首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The present study focuses on the biosynthesis of gold nanoparticles (AuNPs) using Streptomyces coelicoflavus (S. coelicoflavus) SRBVIT13 isolated from marine salt pan soils collected from Ongole, Andhra Pradesh, India. The biosynthesised AuNPs are characterised by UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy and energy‐dispersive X‐ray analysis. Transmission electron microscopy study suggests that the biosynthesised AuNPs are spherical in shape within a size range of 12–20 nm (mean diameter as 14 nm). The anti‐type II diabetes activity of AuNPs is carried out by testing it in vitro α ‐glucosidase and α ‐amylase enzyme inhibition activity and in vivo postprandial anti‐hyperglycemic activity in sucrose and glucose‐loaded streptozotocin induced diabetic albino Wister rats. AuNPs has shown a significant inhibitory activity of 84.70 and 87.82% with IC50 values of 67.65 and 65.59 μg/mL to α ‐glucosidase and α ‐amylase enzymes, while the diabetic rats have shown significant reduction in the post postprandial blood glucose level by 57.80 and 88.09%, respectively compared with control group after AuNPs treatment at the concentration of 300 and 600 mg/kg body weight. Hence, this biosynthesised AuNPs might be useful in combating type II diabetes mellitus for the betterment of human life.Inspec keywords: gold, nanoparticles, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, diseases, enzymes, nanomedicine, biochemistry, spectrochemical analysisOther keywords: gold nanoparticles, Streptomyces coelicoflavus SRBVIT13, biosynthesis, UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy, energy‐dispersive X‐ray analysis, antitype II diabetes activity, in vitro enzyme inhibition activity, in vivo postprandial antihyperglycemic activity, streptozotocin induced diabetic albino Wister rats, type II diabetes mellitus, Au  相似文献   

2.
The present work is emphasised on the bio‐fabrication of silver and gold nanoparticles in a single step by a microwave‐assisted method using the leaf extract of Synedrella nodiflora as both reducing and stabilising agent. The synthesised nanoparticles are highly stable and show surface plasmon resonance peak at 413 and 535 nm, respectively, for silver and gold nanoparticles in UV–Vis spectrum. The functional group responsible for the reduction of metal ions were obtained from Fourier transform infrared spectroscopy. The crystalline nature of nanoparticles with face‐centred cubic geometry was confirmed by the X‐ray diffraction and selected area electron diffraction patterns. The morphology and sizes of the silver and gold nanoparticles were obtained from transmission electron microscopy images. The nanoparticles exhibit effective antimicrobial activities against various pathogenic strains. These antimicrobial properties were analysed by employing agar well diffusion method. The nanoparticles show significant antioxidant properties, and it was determined using 2, 2‐diphenyl‐1‐picrylhydrazyl assay. The nanoparticles also show potent catalytic activity in the degradation of anthropogenic pollutant dyes Congo red and eosin Y by excess NaBH4. Thus, the current study demonstrates the potential use of S. nodiflora as a reducing and stabilising agent for the synthesis of silver and gold nanoparticles and their relevance in the field of biomedicine and catalysis.Inspec keywords: transmission electron microscopy, visible spectra, surface plasmon resonance, nanofabrication, ultraviolet spectra, field emission electron microscopy, reduction (chemical), nanocomposites, microorganisms, nanoparticles, dyes, silver, X‐ray diffraction, nanomedicine, gold, antibacterial activity, electron diffraction, infrared spectra, particle size, Fourier transform spectra, scanning electron microscopy, catalysis, crystal growth from solutionOther keywords: synthesised nanoparticles, gold nanoparticles, catalytic activities, electron diffraction patterns, antimicrobial activities, antioxidant activities, transmission electron microscopy images, X‐ray diffraction, 2,2‐diphenyl‐1‐picrylhydrazyl assay, Synedrella nodiflora, UV–Vis spectrum, silver nanoparticles, biofabrication, surface plasmon resonance, Fourier transform infrared spectroscopy, face‐centred cubic geometry, area electron diffraction patterns, pathogenic strains, agar well diffusion method, anthropogenic pollutant dyes, Congo red, eosin Y, wavelength 413.0 nm, wavelength 535.0 nm, Au, Ag  相似文献   

3.
Microbial mediated biological synthesis of metallic nanoparticles was carried out ecofriendly in the present study. Silver nanoparticles (AgNPs) were extracellularly biosynthesised from Streptomyces griseorubens AU2 and extensively characterised by ultraviolet–visible (UV–vis) and Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy, scanning electron microscopy and X‐ray diffraction analysis. Elemental analysis of nanoparticles was also carried out using energy dispersive X‐ray spectroscopy. The biosynthesised AgNPs showed the characteristic absorption spectra in UV–vis at 422 nm which confirmed the presence of metallic AgNPs. According to the further characterisation analysis, the biosynthesised AgNPs were found to be spherical and crystalline particles with 5–20 nm average size. Antioxidant properties of the biosynthesised AgNPs were determined by 2,2‐diphenyl‐1‐picrylhydrazyl free radical scavenging assay and was found to increase in a dose‐dependent matter. The identification of the strain was determined by molecular characterisation method using 16s rDNA sequencing. The present study is the first report on the microbial biosynthesis of AgNPs using S. griseorubens isolated from soil and provides that the active biological components found in the cell‐free culture supernatant of S. griseorubens AU2 enable the synthesis of AgNPs.Inspec keywords: silver, microorganisms, nanoparticles, nanofabrication, DNA, molecular biophysics, ultraviolet spectra, visible spectra, scanning electron microscopy, Fourier transform infrared spectra, transmission electron microscopy, X‐ray diffraction, X‐ray chemical analysis, absorption coefficients, cellular biophysicsOther keywords: silver nanoparticles, Streptomyces griseorubens AU2, soil, antioxidant activity, microbial mediated biological synthesis, ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectroscopy, high‐resolution transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, elemental analysis, energy dispersive X‐ray spectroscopy, absorption spectra, spherical particles, crystalline particles, 2,2‐diphenyl‐1‐picrylhydrazyl free radical scavenging assay, strain identification, molecular characterisation method, rDNA sequencing, active biological components, cell‐free culture supernatant, wavelength 422 nm, size 5 nm to 20 nm, Ag  相似文献   

4.
Facile green synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Carissa carandas (C. carandas) leaves was studied. Fabrication of AgNPs was confirmed by the UV–visible spectroscopy which gives absorption maxima at 420 nm. C. carandas leaves are the rich source of the bioactive molecules, acts as a reducing and stabilising agent in AgNPs, confirmed by Fourier transforms infrared spectroscopy. The field emission scanning electron microscope revealed the spherical shape of biosynthesised AgNPs. A distinctive peak of silver at 3 keV was determined by energy dispersive X‐ray spectroscopy. X‐ray diffraction showed the facecentred cubic structure of biosynthesised AgNPs and thermal stability was confirmed by the thermogravimetric analysis. Total flavonoid and total phenolic contents were evaluated in biosynthesised AgNPs. Biosynthesised AgNPs showed free radical scavenging activities against 2, 2‐diphenyl‐1‐picrylhydrazyl test and ferric reducing antioxidant power assay. In vitro cytotoxicity against hepatic cell lines (HUH‐7) and renal cell lines (HEK‐293) were also assessed. Finally, biosynthesised AgNPs were scrutinised for their antibacterial activity against methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii and Salmonella typhimurium. This study demonstrated the biofabrication of AgNPs by using C. carandas leaves extract and a potential in vitro biological application as antioxidant, anticancer and antibacterial agents.Inspec keywords: antibacterial activity, biomedical materials, cancer, tumours, nanomedicine, silver, nanoparticles, reduction (chemical), nanofabrication, ultraviolet spectra, visible spectra, field emission scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, X‐ray diffraction, thermal stability, thermal analysis, free radical reactions, toxicology, cellular biophysics, microorganismsOther keywords: total phenolic contents, free radical scavenging activities, 2,2‐diphenyl‐1‐picrylhydrazyl test, ferric reducing antioxidant power assay, in vitro cytotoxicity, hepatic cell lines HUH‐7, renal cell lines HEK‐293, antibacterial activity, methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii, Salmonella typhimurium, biofabrication, in vitro biological application, Ag, total flavonoid contents, thermogravimetric analysis, thermal stability, face‐centred cubic structure, X‐ray diffraction, energy dispersive X‐ray spectroscopy, distinctive peak, spherical shape, field emission scanning electron microscope, Fourier transforms infrared spectroscopy, stabilising agent, reducing agent, bioactive molecules, absorption maxima, UV‐visible spectroscopy, plant extract colour, antibacterial activities, anticancer activities, antioxidant activities, Carissa carandas, aqueous leaves extract, silver nanoparticles, structural characterisation, one‐pot green synthesis  相似文献   

5.
For the first time, through a fast, eco‐friendly and economic method, the aqueous extract of the leaf of Euphorbia corollate was used to the green synthesis of the highly stable CuO@Magnetite@Hen Bone nanocomposites (NCs) as a potent antioxidant and antibacterial agent against Pseudomonas aureus, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae pathogenic bacteria. The biosynthesised NCs were identified using the scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy, elemental mapping, X‐ray diffraction (XRD), Fourier transforms infrared spectroscopy and UV–vis analytical techniques. Also, the radical scavenging activity using (2,2‐diphenyl‐1‐picrylhydrazyl) method was used to evaluate the antioxidant activity of the NCs. The stability of nanocatalyst was monitored using the XRD and SEM analyses after 30 days from its synthesis. Furthermore, its excellent catalytic activity, recycling stability, and high substrate applicability were demonstrated to the adsorption of the polycyclic aromatic hydrocarbons of the light crude oil from Shiwashok oil fields and destruction of methylene blue and methyl orange as harmful organic dyes at ambient temperature using UV–vis spectroscopy. Moreover, the green CuO@Magnetite@Hen Bone NCs were recovered and reused several times without considerable loss of its catalytic activity.Inspec keywords: nanobiotechnology, X‐ray diffraction, infrared spectra, catalysis, crude oil, Fourier transform spectra, ultraviolet spectra, scanning electron microscopy, dyes, catalysts, photochemistry, iron compounds, X‐ray chemical analysis, antibacterial activity, adsorption, visible spectra, microorganisms, organic compounds, reduction (chemical), nanomedicine, toxicology, recycling, chemical industryOther keywords: antioxidant activity, XRD, SEM analyses, recycling stability, polycyclic aromatic hydrocarbons, harmful organic dyes, UV–vis spectroscopy, green CuO@Magnetite@Hen Bone NCs, reusable CuO@Magnetite@Hen Bone NCs, recyclable CuO@Magnetite@Hen Bone NCs, antioxidant activities, antibacterial activities, highly stable magnetically nanocatalyst, eco‐friendly method, economic method, euphorbia corollate, green synthesis, CuO@Magnetite@Hen Bone nanocomposites, antibacterial agent, pseudomonas aureus, staphylococcus aureus, escherichia coli, klebsiella pneumoniae pathogenic bacteria, biosynthesised NCs, X‐ray spectroscopy, X‐ray diffraction, radical scavenging activity, antioxidant agent, 2,2‐diphenyl‐1‐picrylhydrazyl, catalytic activity, organic dye reduction, light crude oil, CuO  相似文献   

6.
The study was focused on the phytochemicals‐mediated biosynthesis of silver nanoparticles using leaf extracts and infusions from Cynara scolymus. To identify the antioxidant activity and total phenolic content, the 1,1‐diphenyl‐1‐picrylhydrazyl and Folin–Ciocalteau methods were applied, respectively. The formation and stability of the reduced silver ions were monitored by UV–vis spectrophotometer. The particle sizes of the silver nanoparticles were characterised using the dynamic light scattering technique and scanning electron microscope. The phase composition of the obtained silver nanoparticles was characterised by X‐ray diffraction. The silver nanoparticles suspension, artichoke infusion, and silver ions were separately tested towards potential cytotoxicity and pro‐inflammatory effect using mouse fibroblasts and human monocytes cell line, respectively. The total phenolic content and antioxidant activity of ethanol extract and infusion were found significantly higher as compared to aqueous extract and infusion. The UV–visible spectrophotometric analysis revealed the presence of the characteristic absorption band of the Ag nanoparticles. Moreover, it was found that with the increasing volume of plant extract, the average size of particles was increased. Biocompatibility results evidently showed that silver nanoparticles do not induce monocyte activation, however in order to avoid their cytotoxicity suspension at a concentration <2 ppm should be applied.Inspec keywords: pharmaceuticals, health and safety, renewable materials, toxicology, organic compounds, antibacterial activity, X‐ray diffraction, nanomedicine, nanoparticles, nanofabrication, suspensions, ultraviolet spectra, visible spectra, scanning electron microscopy, silver, particle sizeOther keywords: phytochemicals‐mediated biosynthesis, antioxidant activity, total phenolic content, dynamic light scattering technique, silver nanoparticles suspension, scanning electron microscopy, Cynara scolymus, 1,1 diphenyl‐1‐picrylhydrazyl method, cytotoxicity, immune compatibility, leaf extracts, UV‐vis spectrophotometry, particle size, Folin‐Ciocalteau methods, phase composition, X‐ray diffraction, artichoke infusion, pro‐inflammatory effect, mouse fibroblasts, human monocytes cell line, Ag  相似文献   

7.
In the present study, a phyto‐mediated synthesis of gold nanoparticles (AuNPs) using an isoflavone, Dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone) isolated from the alcoholic extract of roots of Dalbergia coromandeliana is reported. It is observed that Dalspinosin itself acts both as a reducing and a capping agent in the synthesis of the nanoparticles (NPs). An ultraviolet–visible (UV–Vis) spectral study showed a surface plasmon resonance band at 526 nm confirming the formation of AuNPs. The NPs formed were characterised by UV–Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM) with energy‐dispersive x‐ray spectroscopy (EDX) and dynamic light scattering. HR‐TEM analysis showed the synthesised AuNPs were spherical in shape with a size of 7.5 nm. The AuNPs were found to be stable for seven months when tested by in vitro methods showed good antioxidant and anti‐inflammatory activities. They also showed moderate anti‐microbial activities when tested against Gram positive (Staphylococcus aureus and Streptococcus sp), Gram negative bacterial strains (Klebsiella pneumonia and Klebsiella terrigena) and fungal strain (Candida glabrata). The biosynthesised AuNPs showed significant catalytic activity in the reduction of methylene blue with NaBH4 to leucomethylene blue.Inspec keywords: biomedical materials, catalysis, Fourier transform infrared spectra, gold, light scattering, microorganisms, nanomedicine, nanoparticles, spectrochemical analysis, surface plasmon resonance, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, X‐ray diffractionOther keywords: phyto‐mediated synthesis, biological activity studies, catalytic activity studies, dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone), alcoholic extract, roots, Dalbergia coromandeliana, ultraviolet‐visible spectral study, surface plasmon resonance band, UV‐Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy, EDX analysis, dynamic light scattering, HR‐TEM analysis, antioxidant activities, antiinflammatory activities, antimicrobial activities, Gram positive bacterial strains, Staphylococcus aureus, Streptococcus sp, Gram negative bacterial strains, wavelength 526 nm, size 7.5 nm, time 7 month, Au  相似文献   

8.
The peel of Citrus maxima (C. maxima) is the primary byproducts during the process of fruit or juice in food industries, and it was always considered as biomass waste for further treatments. In this study, the authors reported a simple and eco‐friendly method to synthesise gold nanoparticles (AuNPs) using C. maxima peel extract as reducing and capping agents. The synthesised AuNPs were characterised by UV–visible spectrum, X‐ray diffraction (XRD), transmission electron microscope (TEM) and Fourier‐transform infrared spectroscopy (FTIR). The UV–visible spectrum of the AuNPs colloid showed a characteristic peak at 540 nm. The peaks of XRD analysis at (2θ) 38.30°, 44.28°, 64.62°, 77.57° and 81.75° were assigned to (111), (200), (220), (311) and (222) planes of the face‐centered cubic (fcc) lattice of gold. The TEM images showed that AuNPs were nearly spherical in shape with the size of 8–25 nm. The FTIR spectrum revealed that some bioactive compounds capped the surface of synthesised AuNPs. The biosynthesised AuNPs performed strong catalytic activity in degradation of 4‐nitrophenol to 4‐aminophenol and good antibacterial activity against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacterium. The synthesis procedure was proved simple, cost effective and environment friendly.Inspec keywords: gold, nanoparticles, nanofabrication, X‐ray diffraction, ultraviolet spectra, visible spectra, transmission electron microscopy, Fourier transform infrared spectra, crystal structure, catalysis, antibacterial activity, nanobiotechnologyOther keywords: gold nanoparticles, Citrus maxima peel extract, UV–visible spectrum, X‐ray diffraction, transmission electron microscope, Fourier‐transform infrared spectroscopy, XRD analysis, faced centre cubic lattice, TEM images, catalytic activity, 4‐nitrophenol, 4‐aminophenol, antibacterial activity, gram negative bacterium, gram positive bacterium, Au  相似文献   

9.
This paper investigated the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of silky hairs of corn (Zea mays L.) which is a waste material of the crop, as both a reducing and stabilising/capping agent. The AgNPs were characterised by UV‐visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X‐ray analysis (EDX), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT‐IR). The average size of AgNPs was found to be 249.12 nm. The AgNPs displayed strong antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between (9.23 − 12.81 mm). It also exhibited potent synergistic antibacterial activity together with standard antibiotics, kanamycin (10.6 − 13.65 mm inhibition zones) and rifampicin (10.02 − 12.86 mm inhibition zones) and anticandidal activity with amphotericin b (10.57 − 13.63 mm inhibition zones). The AgNPs exhibited strong antioxidant activity in terms of nitric oxide scavenging (IC50 91.56 µg/mL), ABTS (2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) radical scavenging (IC50 115.75 µg/mL), DPPH (1,1‐diphenyl‐2‐picrylhydrazyl) radical scavenging (IC50 385.87 µg/mL), and reducing power (IC0.5 23.14 µg/mL). This study demonstrated the synthesis of spherical AgNPs with strong antibacterial, anticandidal and antioxidant properties that could potentially be utilised in the biomedical, cosmetic, food and pharmaceutical industries.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, botany, ultraviolet spectra, visible spectra, scanning electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, crystallitesOther keywords: biomedical industry, cosmetic industry, food industry, pharmaceutical industry, Ag, crystallite size, 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging, 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) radical scavenging, nitric oxide scavenging, amphotericin b, anticandidal activity, rifampicin, kanamycin, standard antibiotics, inhibition zones, foodborne pathogenic bacteria, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, energy‐dispersive X‐ray analysis, scanning electron microscopy, ultraviolet‐visible spectroscopy, Zea mays L, antioxidant potential, anticandidal synergistic activity, antibacterial synergistic activity, corn, silky hair aqueous extract, silver nanoparticles biosynthesis  相似文献   

10.
Bio‐fabrication of gold nanoparticles (AuNPs) has several advantages like biocompatibility, less toxicity, and eco‐friendly in nature over their chemical and physical methods. Currently, the authors fabricated AuNPs using aqueous root extract of Momordica dioica (M. dioica) and explored their anticancer application with mechanistic approaches. Different biophysical techniques such as UV–visible spectroscopy, Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, selected area electron diffraction, and dynamic light scattering were employed for AuNPs characterisation. The synthesised AuNPs were mono‐dispersed, crystalline in nature, anionic surface (−23.9 mV), and spherical particle of an average diameter of 9.4 nm. In addition, the AuNPs were stable in buffers solutions and also biocompatible towards normal human cells (human vascular endothelial cells and human lung cells). The AuNPs were exhibited anticancer activity against different cancer cell lines such as human breast cancer cells, human cervical cancer cells (HeLa) and human lung cancer cells. Further, the pro‐apoptotic genes such as Bcl2 were down‐regulated and BAX, Caspase‐3, −8, and −9 were up‐regulated in HeLa cells as compared to untreated cells. Annexin‐V‐FITC assay results showed that the AuNPs were induced apoptosis by accumulation of intracellular reactive oxygen species. To their knowledge, this is the first report on the synthesis of bioactive metal nanoparticles from M. dioica and it may open up new avenues in therapeutic applications.Inspec keywords: nanomedicine, tumours, lung, visible spectra, drug delivery systems, cancer, transmission electron microscopy, biomedical materials, molecular biophysics, light scattering, toxicology, electron diffraction, X‐ray diffraction, ultraviolet spectra, biomembranes, drugs, gold, biochemistry, particle size, cellular biophysics, nanoparticles, nanofabrication, Fourier transform infrared spectraOther keywords: extrinsic apoptosis, intrinsic apoptosis, mediated gold nanoparticles, biofabrication, physical methods, biophysical techniques, UV‐visible spectroscopy, X‐ray diffraction, transmission electron microscopy, selected area electron diffraction, AuNPs characterisation, normal human cells, human vascular endothelial cells, cancer cell lines, human breast cancer cells, human cervical cancer cells, human lung cancer cells, HeLa cells, untreated cells, bioactive metal nanoparticles, Momordica dioica mediated gold nanoparticles, Fourier transform infrared spectra, proapoptotic genes, Bcl2 , BAX, Caspase‐3, Caspase‐9, Caspase‐8, Annexin‐V‐FITC assay, intracellular reactive oxygen species, therapeutic applications, voltage ‐23.9 mV, size 9.4 nm, Au  相似文献   

11.
In the present study, silver nanoparticles (AgNPs) were synthesised by adding 1 mM Ag nitrate solution to different concentrations (1%, 2.5%, 5%) of branch extracts of Eurycoma longifolia, a well known medicinal plant in South–East Asian countries. Characterisation of AgNPs was carried out using techniques such as ultraviolet–visible spectrophotometry, X‐ray diffractrometry, Fourier transform infrared–attenuated total reflection spectroscopy (FTIR–ATR), scanning electron microscopy. XRD analysis revealed face centre cubic structure of AgNPs and FTIR–ATR showed that primary and secondary amide groups in combination with the protein molecules present in the branch extract were responsible for the reduction and stabilisation of AgNPs. Furthermore, antioxidant [2,2‐diphenyl‐1‐picrylhydrazyl and 2,2′‐Azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid)], antimicrobial and anticancer activities of AgNPs were investigated. The highest bactericidal activity of these biogenic AgNPs was found against Escherichia coli with zone inhibition of 11 mm. AgNPs exhibited significant anticancer activity against human glioma cells (DBTRG and U87) and human breast adenocarcinoma cells (MCF‐7 and MDA‐MB‐231) with IC50 values of 33, 42, 60 and 38 µg/ml.Inspec keywords: biomimetics, cancer, antibacterial activity, nanoparticles, silver, microorganisms, cellular biophysics, biomedical materials, nanomedicine, nanofabrication, X‐ray diffraction, Fourier transform infrared spectra, attenuated total reflection, ultraviolet spectra, visible spectra, proteins, molecular biophysics, biochemistryOther keywords: Biomimetic synthesis, anticancer activity, Eurycoma longifolia branch extract‐mediated silver nanoparticles, nitrate solution, medicinal plant, ultraviolet‐visible spectrophotometry, X‐ray diffractometry, Fourier transform infrared‐attenuated total reflection spectroscopy, FTIR‐ATR spectroscopy, scanning electron microscopy, XRD, face centre cubic structure, primary amide groups, secondary amide groups, protein molecules, antioxidant, 2,2‐diphenyl‐1‐picrylhydrazyl, 2,2′‐azino‐bis(3‐ethylbenzthiazoline‐6‐sulphonic acid), antimicrobial activity, bactericidal activity, biogenic silver nanoparticles, Escherichia coli, zone inhibition, DBTRG human glioma cells, U87 human glioma cells, MCF‐7 human breast adenocarcinoma cells, MDA‐MB‐231 human breast adenocarcinoma cells, Ag  相似文献   

12.
Currently, the use of ‘green’ synthesised nanoparticles with environmentally friendly properties is considered a novel therapeutic approach in medicine. Here, the authors evaluated gold nanoparticles (AuNPs) conjugated with Tragopogon dubius leaf extract and their antibacterial activity in vitro and in vivo. Colour changes from yellow to dark brown and a peak at 560 nm on ultraviolet–visible spectroscopy confirmed the formation of nanoparticles. Additionally, transmission electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy analyses were performed to determine particle sizes and functional groups involved in gold reduction. Moreover, using standard micro‐dilution and disc‐diffusion assays against Klebsiella pneumoniae, Bacillus cereus, Escherichia coli, and Staphylococcus aureus, the antimicrobial properties of synthesised AuNPs were investigated. To confirm antibacterial activity, synthesised AuNPs were applied in a rat model on burn wounds infected with S. aureus, and the nanoparticles were as effective as tetracycline in bacterial reduction and wound healing. In conclusion, the synthesis of AuNPs with aqueous T. dubius extract was rapid, simple, and inexpensive, and the synthesised nanoparticles had significant antibacterial activity in vitro and in vivo.Inspec keywords: transmission electron microscopy, wounds, nanoparticles, ultraviolet spectra, reduction (chemical), particle size, nanofabrication, gold, X‐ray diffraction, antibacterial activity, microorganisms, visible spectra, nanomedicine, biomedical materials, Fourier transform infrared spectraOther keywords: biological activity, gold nanoparticles, antibacterial agent, therapeutic approach, colour changes, ultraviolet–visible spectroscopy, transmission electron microscopy, gold reduction, antimicrobial properties, Fourier transform infrared spectroscopy analyses, disc‐diffusion assay, green synthesis, Tragopogon dubius leaf, in vitro antibacterial activity, in vivo antibacterial activity, X‐ray diffraction, particle sizes, functional groups, standard microdilution assay, burn wounds, S. aureus, tetracycline, bacterial reduction, wound healing, wavelength 560.0 nm  相似文献   

13.
In the present study, silver nanoparticles (SNPs) were synthesised for the first time using Pseudomonas geniculata H10 as reducing and stabilising agents. The synthesis of SNPs was the maximum when the culture supernatant was treated with 2.5 mM AgNO3 at pH 7 and 40°C for 10 h. The SNPs were characterised by field emission scanning electron microscopy‐energy‐dispersive spectroscopy, transmission electron microscopy, dynamic light scattering, X‐ray diffraction and UV–vis spectroscopy. Fourier transform infrared spectroscopy indicated the presence of proteins, suggesting they may have been responsible for the reduction and acted as capping agents. The SNPs displayed 1,1‐diphenyl‐2‐picrylhydrazyl (IC50  = 28.301 μg/ml) and 2,2′‐azinobis‐3‐ethylbenzothiazoline‐6‐sulphonate (IC50  = 27.076 μg/ml) radical scavenging activities. The SNPs exhibited a broad antimicrobial spectrum against several human pathogenic Gram‐positive and Gram‐negative bacteria and Candida albicans. The antimicrobial action of SNPs was due to cell deformation resulting in cytoplasmic leakage and subsequent lysis. The authors’ results indicate P. geniculata H10 could be used to produce antimicrobial SNPs in a facile, non‐toxic, cost‐effective manner, and that these SNPs can be used as effective growth inhibitors in various microorganisms, making them applicable to various biomedical and environmental systems. As far as the authors are aware, this study is the first to describe the potential biomedical applications of SNPs synthesised using P. geniculata.Inspec keywords: X‐ray diffraction, proteins, scanning electron microscopy, enzymes, reduction (chemical), transmission electron microscopy, Fourier transform spectra, field emission electron microscopy, microorganisms, antibacterial activity, pharmaceutical technology, biotechnology, silver compoundsOther keywords: silver nanoparticles, Pseudomonas geniculata H10, field emission scanning electron microscopy‐energy‐dispersive spectroscopy, transmission electron microscopy, 1‐diphenyl‐2‐picrylhydrazyl, antimicrobial SNPs, Fourier transform infrared spectroscopy, Candida albicans, cytoplasmic leakage, microorganisms, biomedical applications, temperature 40.0 degC, time 10.0 hour, AgNO3   相似文献   

14.
Through this study an eco‐friendly, simple, efficient, cheap and biocompatible approach to the biosynthesis and stabilisation of CuO nanoparticles (NPs) using the Euphorbia Chamaesyce leaf extract is presented. The CuO NPs were monitored and characterised by field emission scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscope and UV‐visible spectroscopy. The biosynthesised CuO NPs showed good catalytic activity for the reduction of 4‐nitrophenol (4‐NP) in water during 180 s and reused 4 times without considerable loss of activity.Inspec keywords: copper compounds, nanoparticles, nanofabrication, catalysis, reduction (chemical), field emission electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: biosynthesis, CuO nanoparticles, Euphorbia Chamaesyce leaf extract, catalytic activity, 4‐nitrophenol reduction, nanoparticle stabilisation, field emission scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscope, UV‐visible spectroscopy, CuO  相似文献   

15.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

16.
In this study, the authors synthesised gold nanoparticles (Au NPs) by a green approach using an aqueous extract of empty cotton boll peels (ECBPs) which was rapid, simple and inexpensive eco‐friendly method compared to chemical and physical methods. The ECBP aqueous extract played a vital role in the reduction of Au+3 ions into Au NPs which was further confirmed by analytical characterisation. The phase purity and crystallinity of Au NPs were confirmed by X‐ray diffraction analysis. The characteristic functional groups of synthesised Au NPs were identified by Fourier transform infrared analysis. The surface morphology and topography of Au NPs were studied by scanning electron microscopy and transmission electron microscopy analysis. Size with dispersion stability of Au NPs was determined by dynamic light scattering and zeta potential studies. In this study, the authors performed a catalytic activity of Au NPs using different pollutant organic dyes such as methylene blue and methyl orange. It also showed good antioxidant activity compared to standard ascorbic acid by using the standard 1,1‐diphenyl‐2‐picryl‐hydrazil method. Hence, this study concluded that ECBP mediated Au NPs could act as a promising material for degradation of dyes and antioxidant activity.Inspec keywords: gold, dyes, nanoparticles, nanofabrication, X‐ray diffraction, Fourier transform infrared spectra, surface morphology, surface topography, scanning electron microscopy, transmission electron microscopy, electrokinetic effectsOther keywords: gold nanoparticles, cotton peels aqueous extract, catalytic efficiency, antioxidant activity, green approach, empty cotton boll peels, analytical characterisation, phase purity, crystallinity, X‐ray diffraction, functional groups, Fourier transform infrared analysis, surface morphology, surface topography, scanning electron microscopy, transmission electron microscopy, dispersion stability, dynamic light scattering, zeta potential, pollutant organic dyes, methylene blue, methyl orange, Au  相似文献   

17.
Biogenic synthesis of gold (Au), silver (Ag) and bimetallic alloy Au–Ag nanoparticles (NPs) from aqueous solutions using Cannabis sativa as reducing and stabilising agent has been presented in this report. Formation of NPs was monitored using UV–visible spectroscopy. Morphology of the synthesised metallic and bimetallic NPs was investigated using X‐ray diffraction and scanning electron microscopy. Elemental composition and the surface chemical state of NPs were confirmed by energy dispersive X‐ray spectroscopy analysis. Fourier transform‐infrared spectroscopy was utilised to identify the possible biomolecules responsible for the reduction and stabilisation of the NPs. Biological applicability of biosynthesised NPs was tested against five bacterial strains namely Klebsiella pneumonia, Bacillus subtilis (B. subtilis), Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (P. aeruginosa) and Leishmania major promastigotes. The results showed considerable antibacterial and anti‐leishmanial activity. The Au–Ag bimetallic NPs showed improved antibacterial activity against B. subtilis and P. aeruginosa as compared to Au and Ag alone, while maximum anti‐leishmanial activity was observed at 250 μg ml−1 NP concentration. These results suggest that biosynthesised NPs can be used as potent antibiotic and anti‐leishmanial agents.Inspec keywords: silver, silver alloys, gold, gold alloys, nanoparticles, nanofabrication, reduction (chemical), ultraviolet spectra, visible spectra, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, microorganisms, antibacterial activityOther keywords: biogenic synthesis, Cannabis sativa leaf extract, bimetallic alloy Au–Ag nanoparticles, aqueous solutions, reducing agent, stabilising agent, UV–visible spectroscopy, X‐ray diffraction, scanning electron microscopy, elemental composition, surface chemical state, energy dispersive X‐ray spectroscopy analysis, Fourier transform‐infrared spectroscopy, biomolecules, bacterial strains, Klebsiella pneumonia, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Leishmania major promastigotes, antibacterial activity, anti‐leishmanial activity, Ag, Au, AuAg  相似文献   

18.
The present study investigated the synthesis of gold nanoparticles (AuNPs) using mangrove plant extract from Avicennia marina as bioreductant for eco‐friendly bioremediation of 4‐nitrophenol (4‐NP). The AuNPs synthesised were confirmed by UV spectrum, transmission electron microscopy (TEM), X‐ray diffraction, Fourier transmission infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential. The AuNPs were found to be spherical in shape with size ranging from 4 to 13 nm, as evident by TEM and DLS. Further, the AuNPs were encapsulated with sodium alginate in the form of gold nano beads and used as heterogeneous catalyst and degrading agent to reduce 4‐NP. This reduction in 4‐NP into 4‐aminophenol was confirmed by UV and FTIR. The aqueous solution of 4‐NP peaked its absorbance at 320 nm, and shifted to 400 nm, with an intense yellow colour, appeared due to formation of 4‐nitrophenolate ion. After the addition of AuNps, the 4‐NP solution became colourless and peaked at 400 nm and reduced to 290 nm corresponding to the formation of 4‐aminophenol. Hence, the present work suggested the AuNPs as the potent, eco‐friendly bionanocomposite catalyst for bioremediation of 4‐NP.Inspec keywords: gold, nanoparticles, nanobiotechnology, nanofabrication, ultraviolet spectra, transmission electron microscopy, X‐ray diffraction, Fourier transform spectra, infrared spectra, electrokinetic effects, catalysts, nanocomposites, biochemistryOther keywords: biogenic gold nanoparticles, 4‐nitrophenol, 4‐aminophenol, eco‐friendly bioremediation, mangrove plant extract, Avicennia marina, bioreductant, UV spectrum, transmission electron microscopy, TEM, X‐ray diffraction, Fourier transmission infrared spectroscopy, FTIR, dynamic light scattering, DLS, zeta potential, degrading agent, 4‐nitrophenolate, bionanocomposite catalyst, size 4 nm to 13 nm, wavelength 400 nm, wavelength 290 nm, Au  相似文献   

19.
Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO3) by aqueous root extract of Decalepis hamiltonii. The biosynthesis of SNPs was monitored by UV–vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450–483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X‐ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X‐ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, particle size, microorganisms, ultraviolet spectra, visible spectra, fluorescence, scanning electron microscopy, atomic force microscopy, light scattering, X‐ray diffraction, X‐ray chemical analysis, Fourier transform infrared spectra, molecular biophysics, electrokinetic effectsOther keywords: phenols, zeta potential analysis, therapeutic forum, antioxidant activity, antimicrobial activity, Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Ag, polyols, biomolecules, Fourier transform infrared spectroscopy, powder X‐ray diffraction, crystal size, face centred cubic structure, energy dispersive X‐ray analysis, metallic silver, particle size, dynamic light scattering analysis, spherical shape, atomic force microscopy, scanning electron microscopy, surface characteristics, excitation wavelengths, fluorescence emission spectra, UV‐visible analysis, biosynthesis, silver nitrate bioreduction, nanomedicine, Decalepis hamiltonii aqueous root extract, bioactivity, plant‐mediated silver nanoparticles, green synthesis  相似文献   

20.
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号