首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ursolic acid (UA), a pentacyclic triterpenoid extracted from various plants, inhibits cell growth, metastasis, and tumorigenesis in various cancers. Chemotherapy resistance and the side effects of paclitaxel (PTX), a traditional chemotherapy reagent, have limited the curative effect of PTX in esophageal cancer. In this study, we investigate whether UA promotes the anti-tumor effect of PTX and explore the underlying mechanism of their combined effect in esophageal squamous cell carcinoma (ESCC). Combination treatment with UA and PTX inhibited cell proliferation and cell growth more effectively than either treatment alone by inducing more significant apoptosis, as indicated by increased sub-G1 phase distribution and protein levels of cleaved-PARP and cleaved caspase-9. Similar to the cell growth suppressive effect, the combination of UA and PTX significantly inhibited cell migration by targeting uPA, MMP-9, and E-cadherin in ESCC cells. In addition, combination treatment with UA and PTX significantly activated p-GSK-3β and suppressed the activation of Akt and FOXM1 in ESCC cells. Those effects were enhanced by the Akt inhibitor LY2940002 and inverted by the Akt agonist SC79. In an in vivo evaluation of a murine xenograft model of esophageal cancer, combination treatment with UA and PTX suppressed tumor growth significantly better than UA or PTX treatment alone. Thus, UA effectively potentiates the anti-tumor efficacy of PTX by targeting the Akt/FOXM1 cascade since combination treatment shows significantly more anti-tumor potential than PTX alone both in vitro and in vivo. Combination treatment with UA and PTX could be a new strategy for curing esophageal cancer patients.  相似文献   

2.
3.
4.
Cisplatin and paclitaxel are commonly used to treat oral cancer, but their use is often limited because of acquired drug resistance. Here, we tested the effects of combined cisplatin and paclitaxel on three parental (YD-8, YD-9, and YD-38) and three cisplatin-resistant (YD-8/CIS, YD-9/CIS, and YD-38/CIS) oral squamous cell carcinoma (OSCC) cell lines using cell proliferation assays and combination index analysis. We detected forkhead box protein M1 (FOXM1) mRNA and protein expression via real-time qPCR and Western blot assays. Cell death of the cisplatin-resistant cell lines in response to these drugs with or without a FOXM1 inhibitor (forkhead domain inhibitory compound 6) was then measured by propidium iodide staining and TdT dUTP nick end labeling (TUNEL) assays. In all six OSCC cell lines, cell growth was more inhibited by paclitaxel alone than combination therapy. Cisplatin-induced overexpression of FOXM1 showed the same trend only in cisplatin-resistant cell lines, indicating that it was associated with inhibition of paclitaxel-related apoptosis. In summary, these results suggest that, in three cisplatin-resistant cell lines, the combination of cisplatin and paclitaxel had an antagonistic effect, likely because cisplatin blocks paclitaxel-induced apoptosis. Cisplatin-induced FOXM1 overexpression may explain the failure of this combination.  相似文献   

5.
Bufalin is a class of toxic steroids which could induce the differentiation and apoptosis of leukemia cells, and induce the apoptosis of gastric, colon and breast cancer cells. However, the anti-tumor effects of bufalin have not been demonstrated in lung cancer. In this study we used A549 human lung adenocarcinoma epithelial cell line as the experimental model to evaluate the potential of bufalin in lung cancer chemotherapy. A549 cells were treated with bufalin, then the proliferation was detected by MTT assay and apoptosis was detected by flow cytometry analysis and Giemsa staining. In addition, A549 cells were treated by Akt inhibitor LY294002 in combination with bufalin and the activation of Akt and Caspase-3 as well as the expression levels of Bax, Bcl-2 and livin were examined by Western blot analysis. The results showed that Bufalin inhibited the proliferation of A549 cells and induced the apoptosis of A549 cells in a dose and time dependent manner. Mechanistically, we found that bufalin inhibited the activation of Akt. Moreover, bufalin synergized with Akt inhibitor to induce the apoptosis of A549 cells and this was associated with the upregulation of Bax expression, the downregulation of Bcl-2 and livin expression, and the activation of Caspase-3. In conclusion, our findings demonstrate that bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt pathway and suggest that bufalin is a potential regimen for combined chemotherapy to overcome the resistance of lung cancer cells to chemotherapeutics induced apoptosis.  相似文献   

6.
Kynurenic acid was included in the three compounds (caffeic acid, chlorogenic acid, and kynurenic acid) that showed high antioxidant and anti-inflammatory potential among the phenolic compounds contained in Gynura procumbens. In this study, the mechanism of cancer cell death induced by kynurenic acid (KYNA), which has the highest molecular binding affinity, in the gastric cancer cell line AGS was confirmed in molecular docking analysis. KYNA showed the most cancer cell death effect on AGS cells among several gastric cancer cell lines (MKN, AGS, and SNU). AGS cells were used for later experiments, and KYNA concentrations of 0, 150, 200, and 250 µM were used. KYNA inhibited cell migration and proliferation in AGS cells in a concentration-dependent manner. G2/M phase cell cycle arrest and reduction of related proteins (Cdc25C, CDK1 and CyclinB1) were confirmed in KYNA-treated AGS cells. Apoptosis of KYNA-treated AGS cells was confirmed by Annexin V/propidium iodide (PI) staining flow cytometry analysis. As a result of morphological chromatin condensation through DAPI (4′,6-diamidino-2-phenylindole), intense blue fluorescence was confirmed. The mechanism of apoptosis induction of KYNA-treated AGS cells was confirmed by western blotting. In the extrinsic pathway, apoptosis induction markers FasL, Fas, and Caspase-3 and -8 were increased in a concentration-dependent manner upon KYNA treatment. In the intrinsic pathway, the expression of anti-apoptotic factors PI3K, AKT, and Bcl-xL was down-regulated, and the expression of apoptosis-inducing factors BAD, Bak, Bax, Cytochrom C, and Caspase-9 was up-regulated. Therefore, in the present study, we strongly imply that KYNA induces apoptosis in AGS gastric cancer cells. This suggests that KYNA, a natural compound, could be the basis for drug for the treatment of gastric cancer.  相似文献   

7.
Ovarian cancer (OC) is one of the most common gynecologic neoplasia and has the highest mortality rate, which is mainly due to late-stage diagnosis and chemotherapy resistance. There is an urgent need to explore new and better therapeutic strategies. We have previously described a family of Microtubule Destabilizing Sulfonamides (MDS) that does not trigger multidrug-mediated resistance in OC cell lines. MDS bind to the colchicine site of tubulin, disrupting the microtubule network and causing antiproliferative and cytotoxic effects. In this work, a novel microtubule-destabilizing agent (PILA9) was synthetized and characterized. This compound also inhibited OC cell proliferation and induced G2/M cell cycle arrest and apoptosis. Interestingly, PILA9 was significantly more cytotoxic than MDS. Here, we also analyzed the effect of these microtubule-destabilizing agents (MDA) in combination with Panobinostat, a pan-histone deacetylase inhibitor. We found that Panobinostat synergistically enhanced MDA-cytotoxicity. Mechanistically, we observed that Panobinostat and MDA induced α-tubulin acetylation and that the combination of both agents enhanced this effect, which could be related to the observed synergy. Altogether, our results suggest that MDA/Panobinostat combinations could represent new therapeutic strategies against OC.  相似文献   

8.
The FOXM1 protein controls the expression of essential genes related to cancer cell cycle progression, metastasis, and chemoresistance. We hypothesize that FOXM1 inhibitors could represent a novel approach to develop 18F-based radiotracers for Positron Emission Tomography (PET). Therefore, in this report we describe the first attempt to use 18F-labeled FOXM1 inhibitors to detect triple-negative breast cancer (TNBC). Briefly, we replaced the original amide group in the parent drug FDI-6 for a ketone group in the novel AF-FDI molecule, to carry out an aromatic nucleophilic (18F)-fluorination. AF-FDI dissociated the FOXM1-DNA complex, decreased FOXM1 levels, and inhibited cell proliferation in a TNBC cell line (MDA-MB-231). [18F]AF-FDI was internalized in MDA-MB-231 cells. Cell uptake inhibition experiments showed that AF-FDI and FDI-6 significantly decreased the maximum uptake of [18F]AF-FDI, suggesting specificity towards FOXM1. [18F]AF-FDI reached a tumor uptake of SUV=0.31 in MDA-MB-231 tumor-bearing mice and was metabolically stable 60 min post-injection. These results provide preliminary evidence supporting the potential role of FOXM1 to develop PET radiotracers.  相似文献   

9.
Caffeic acid phenethyl ester (CAPE) is a bioactive component extracted from honeybee hive propolis. Our observations indicated that CAPE treatment suppressed cell proliferation and colony formation of TW2.6 human oral squamous cell carcinoma (OSCC) cells dose-dependently. CAPE treatment decreased G1 phase cell population, increased G2/M phase cell population, and induced apoptosis in TW2.6 cells. Treatment with CAPE decreased protein abundance of Akt, Akt1, Akt2, Akt3, phospho-Akt Ser473, phospho-Akt Thr 308, GSK3β, FOXO1, FOXO3a, phospho-FOXO1 Thr24, phospho-FoxO3a Thr32, NF-κB, phospho-NF-κB Ser536, Rb, phospho-Rb Ser807/811, Skp2, and cyclin D1, but increased cell cycle inhibitor p27Kip. Overexpression of Akt1 or Akt2 in TW2.6 cells rescued growth inhibition caused by CAPE treatment. Co-treating TW2.6 cells with CAPE and 5-fluorouracil, a commonly used chemotherapeutic drug for oral cancers, exhibited additive cell proliferation inhibition. Our study suggested that administration of CAPE is a potential adjuvant therapy for patients with OSCC oral cancer.  相似文献   

10.
The purpose of this study was to evaluate the effect of hot water extracts of a fish, seaweed, and mushroom mixture (FSM extract) on the antioxidant and anticancer activities for use as health and functional food resources. DPPH radical scavenging activity increased from 13.4 to 93.5% when the FSM extract concentration ranged from 0.5 to 25 mg/mL. The reducing power increased from 0.04 to 1.06 OD 700 nm when the FSM extract concentration increased from 0.25 to 10 mg/mL. Nitrite scavenging activity increased from 10.3 to 96.9% when the FSM extract concentration increased from 1 to 25 mg/mL. The activities of alcohol dehydrogenase and acetaldehyde dehydrogenase in the FSM extractfed group were 2.45 and 6.12 units/min, respectively. The activities of CAT, SOD, and GSH-Px in the FSM extractfed group were 19.7 units/mg protein, 11.5 units/mg protein, and 16.9 units/mg protein/min, respectively. Cell viabilities of SNU213, SNU324, and SNU354 were 7.5, 9.4, and 8.9%, respectively. Cell viabilities of SNU719, SNU1, and SNU5 ranged from 14.6 to 16.8%. However, for SNU216, SNU484, SNU601, SNU638, SNU668, SNU16, and SNU520, they were below10%. These results demonstrate that the FSM extract can be used in the functional food, pharmaceutical, and cosmetic industries.  相似文献   

11.
Here, we report a natural chemical Matrine, which exhibits anti-melanoma potential with its PTEN activation mechanism. Matrine effectively inhibited proliferation of several carcinoma cell lines, including melanoma V600EBRAF harboring M21 cells. Flow cytometry analysis showed Matrine induced G0/G1 cell cycle arrest in M21 cells dose-dependently. Apoptosis in M21 cells induced by Matrine was identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis and Annexin-V/FITC staining. Molecular mechanistic study suggested that Matrine upregulated both mRNA level and protein expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN), leading to inhibition of the PI3K/Akt pathway. Downregulation of phosphor-Aktser473 by Matrine activated p21 and Bax, which contributed to G0/G1 cell cycle and apoptosis. Besides, Matrine enhanced the PI3K/Akt inhibition effects to inhibit the cell proliferation with PI3K inhibitor, LY2940002. In summary, our findings suggest Matrine is a promising antitumor drug candidate with its possible PTEN activation mechanisms for treating cancer diseases, such as melanomas.  相似文献   

12.
Resistance to anticancer therapeutics occurs in virtually every type of cancer and becomes a major difficulty in cancer treatment. Although 5-fluorouracil (5FU) is the first-line choice of anticancer therapy for gastric cancer, its effectiveness is limited owing to drug resistance. Recently, altered cancer metabolism, including the Warburg effect, a preference for glycolysis rather than oxidative phosphorylation for energy production, has been accepted as a pivotal mechanism regulating resistance to chemotherapy. Thus, we investigated the detailed mechanism and possible usefulness of antiglycolytic agents in ameliorating 5FU resistance using established gastric cancer cell lines, SNU620 and SNU620/5FU. SNU620/5FU, a gastric cancer cell harboring resistance to 5FU, showed much higher lactate production and expression of glycolysis-related enzymes, such as lactate dehydrogenase A (LDHA), than those of the parent SNU620 cells. To limit glycolysis, we examined catechin and its derivatives, which are known anti-inflammatory and anticancer natural products because epigallocatechin gallate has been previously reported as a suppressor of LDHA expression. Catechin, the simplest compound among them, had the highest inhibitory effect on lactate production and LDHA activity. In addition, the combination of 5FU and catechin showed additional cytotoxicity and induced reactive oxygen species (ROS)-mediated apoptosis in SNU620/5FU cells. Thus, based on these results, we suggest catechin as a candidate for the development of a novel adjuvant drug that reduces chemoresistance to 5FU by restricting LDHA.  相似文献   

13.
Mitofusin-2 (Mfn2) is a mitochondrial outer membrane protein involved in mitochondrial fusion. Its mutation can cause Charcot-Marie-Tooth disease. Recent studies of Mfn2 in cancer research have not included gastric cancer. We confirmed that Mfn2 expression was lower in tumor tissue than in normal gastric mucosal tissue and that it was negatively correlated with tumor size, indicating an anti-tumor role for Mfn2. In vitro experiments showed that Mfn2 overexpression suppressed gastric cancer cell proliferation and colony formation, weakened the invasion and migratory ability of cancer cells by downregulating MMP-2 and MMP-9, halted the cell cycle and induced apoptosis. Western blotting indicated the likely involvement of P21 and PI3K/Akt signaling. Therefore, Mfn2 is a potential anti-tumor gene and a potential therapeutic target for treating gastric cancer. The progress of gastric cancer may be delayed by controlling Mfn2 expression.  相似文献   

14.
15.
Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.  相似文献   

16.
17.
Nasopharyngeal carcinoma (NPC) has a higher incidence in Taiwan than worldwide. Although it is a radiosensitive malignancy, cancer recurrence is still high in the advanced stages because of its ability to induce lymph node metastasis. Picrasidine I from Picrasma quassioides has been reported as a potential drug for targeting multiple signaling pathways. The present study aimed to explore the role of picrasidine I in the apoptosis of NPC cells. Our results show that picrasidine I induced cytotoxic effects in NPC cells and caused cell cycle arrest in the sub-G1, S, and G2/M phases. Western blot analysis further demonstrated that the modulation of apoptosis through the extrinsic and intrinsic pathways was involved in picrasidine I-induced cell death. Downregulation of the ERK1/2 and Akt signaling pathways was also found in picrasidine I-induced apoptosis. Additionally, the apoptosis array showed that picrasidine I significantly increased heme oxygenase-1 (HO-1) expression, which could act as a critical molecule in picrasidine I-induced apoptosis in NPC cells. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets also revealed that the HMOX1 mRNA level (HO-1) is lower in patients with head and neck squamous carcinoma (HNSCC) and NPC than in patients without cancer. Our study indicated that picrasidine I exerts anticancer effects in NPC by modulating HO-1 via the ERK and Akt signaling pathways.  相似文献   

18.
5-Fluorouracil (5-FU) is an essential component of anticancer chemotherapy against gastric cancer. However, the response rate of single drug is still limited. The ubiquitin ligase Cbl-b is a negative regulator of growth factor receptor signaling and is involved in the suppression of cancer cell proliferation. However, whether Cbl-b could affect 5-FU sensitivity remains unclear. The present study showed that Cbl-b knockdown caused higher proliferation concomitant with the decrease of apoptosis induced by 5-FU treatment in gastric cancer cell. Further mechanism investigation demonstrated that Cbl-b knockdown caused significant increase of phosphorylation of EGFR, ERK and Akt, decrease of mitochondrial membrane potential, and increase of expression ratio of Bcl-2/Bax. These results suggest that Cbl-b enhances sensitivity to 5-FU via EGFR- and mitochondria-mediated pathways in gastric cancer cells.  相似文献   

19.
Tropomyosin receptor kinase (TRK) and receptor tyrosine kinase (RTK class VII) expression are important in many human diseases, especially cancers, including colorectal, lung, and gastric cancer. Using RNA sequencing analysis, we evaluated the mRNA expression and mutation profiles of gastric cancer patients with neurotropic tropomyosin receptor kinase (NTRK) 1-3 overexpression (defined as a ≥2.0-fold change). Furthermore, we screened eight TRK inhibitors in NCI-N87, SNU16, MKN28, MKN7, and AGS cells. Among these inhibitors, entrectinib showed the highest inhibitory activity; therefore, this drug was selected for analysis of its therapeutic mechanisms in gastric cancer. Entrectinib treatment induced apoptosis in NTRK1-3-expressing and VEGFR2-expressing NCI-N87 and AGS cells, but it had no effect on NTRK1-3-, VEGFR2-, TGFBR1-, and CD274-expressing MKN7 cells. SNU16 and MKN28 cells with low NTRK1-3 expression were not affected by entrectinib. Therefore, a mechanistic study was conducted in NCI-N87 (high expression of NTRK1-3 but mutation of NTRK3), AGS (high expression of NTRK1-3) and MKN28 (low expression of NTRK1-3) gastric cancer cell lines. Entrectinib treatment significantly reduced expression levels of phosphorylated NFκB, AKT, ERK, and β-catenin in NCI-N87 and AGS cells, whereas it upregulated the expression levels of ECAD in NCI-N87 cells. Together, these results suggest that entrectinib has anti-cancer activity not only in GC cells overexpressing pan NTRK but also in VEGFR2 GC cells via the inhibition of the pan NTRK and VEGFR signaling pathways.  相似文献   

20.
Phosphatidylethanolamine binding protein 4 (PEBP4) is an understudied multifunctional small protein. Previous studies have shown that the expression of PEBP4 is increased in many cancer specimens, which correlates to cancer progression. The present study explored the mechanism by which PEBP4 regulates the growth and progression of hepatocellular carcinoma cells. Thus, we showed that knockdown of PEBP4 in MHCC97H cells, where its expression was relatively high, diminished activities of serine/threonine protein kinase B (PKB, also known as Akt), mammalian target of rapamycin complex 1(mTORC1), and mTORC2, events that were not restored by insulin-like growth factor 1 (IGF-1). Conversely, overexpression of PEBP4 in MHCC97L cells with the low endogenous level yielded opposite effects. Furthermore, physical association of PEBP4 with Akt, mTORC1, and mTORC2 was observed. Interestingly, introduction of AktS473D mutant, bypassing phosphorylation by mTORC2, rescued mTORC1 activity, but without effects on mTORC2 signaling. In contrast, the effect of PEBP4 overexpression on the activity of mTORC1 but not that of mTORC2 was suppressed by MK2206, a specific inhibitor of Akt. In conjunction, PEBP4 knockdown-engendered reduction of cell proliferation, migration and invasion was partially rescued by Akt S473D while increases in these parameters induced by overexpression of PEBP4 were completely abolished by MK2206, although the expression of epithelial mesenchymal transition (EMT) markers appeared to be fully regulated by the active mutant of Akt. Finally, knockdown of PEBP4 diminished the growth of tumor and metastasis, whereas they were enhanced by overexpression of PEBP4. Altogether, our study suggests that increased expression of PEBP4 exacerbates malignant behaviors of hepatocellular cancer cells through cooperative participation of mTORC1 and mTORC2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号