共查询到20条相似文献,搜索用时 0 毫秒
1.
研究了CCUS技术和CO2驱油技术的机理,并对两者的关系进行了梳理和认识,为油气行业提高产能的同时寻求绿色减排、节能提效提供技术参考。 相似文献
2.
在油田三次开采和碳捕集、利用与封存(CCUS)技术发展的背景下,将CO2注入地层可以有效提高原油采收率,同时减少碳排放,缓解温室效应。CO2输送是CCUS工程建设的重要环节之一,其中管道输送以输送量大、距离远、经济性好等优点一直备受关注。根据纯CO2相态图,阐明了不同相态下CO2温度压力范围,对4种相态下管道输送工艺流程进行分析,得出对于短距离CO2管道,选择气相和液相输送较为合理;对于长距离CO2管道,选择密相和超临界相输送较为合理。从管道输送工艺和经济性评价2个方面,探讨了国内外CO2管道输送技术研究进展,并结合国内外已建CO2管道案例,对国内CO2管道输送技术研究提出建议。 相似文献
3.
“碳达峰、碳中和”是我国统筹国内外局势做出的重大战略决策,是着力解决资源环境约束突出问题、构建人类命运共同体的庄严承诺。碳捕集与封存技术(CCS)作为传统的CO2治理方法存在潜在的泄漏风险且会造成巨大的经济负担。近年来,碳捕集、利用与封存技术(CCUS)由于可将捕集的CO2转化为附加值产品以实现资源化利用,被认为是CCS的有效替代和补充方案。发展高效的CO2资源化技术是CCUS的关键。酶催化技术作为典型的绿色生物制造技术在CO2资源化利用领域受到广泛关注。构建以酶催化为基础的耦合催化系统为CO2到高值化学品或燃料的资源化转化创造了丰富的路径网络。综述了近年来基于生物酶介导的“酶+X”耦合催化CO2资源化转化系统,包括“酶+酶”耦合催化系统、“酶+化学”耦合催化系统、“酶+光”耦合催化系统和“酶+电”耦合催化系统。对不同耦合催化系统的结构进行解析,明确了系统特点及催化反应过程。在结构解析的基础上讨论了系统模块设计与性能强化的关键。阐述了“酶+X”耦合催化系统... 相似文献
4.
5.
针对山西省资源禀赋、地理特征、能源消费结构和污染状况,结合CO2捕集与封存技术(CCS)发展现状,分析了山西省CO2排放源及封存区状况,指出在山西省实施CO2捕集与封存技术潜力巨大,应用前景广阔,对于碳减排和应对气候变化具有重要意义,提出通过政策及法律法规建设、资金及人才储备、合作机制建设、示范项目建设等来进一步推动山西实施CO2捕集与封存技术。 相似文献
6.
双碳背景下,碳捕集利用与封存技术(CCUS)是实现碳中和的关键技术之一。本文综述了CCUS各环节的技术路线和发展趋势,并对CCUS进行了展望,总结了我国碳减排面临的问题并提出相关建议。近年来,我国CCUS技术取得了较大进展,然而在捕集、运输、封存和利用等环节的技术水平仍处于研发示范阶段。仍面临技术不成熟、运行成本高、环境影响不明确、政策法规不完善等问题,需要从技术研发、政策法规支持等方面推动CCUS发展。未来我国仍需进一步加大对CCUS技术的研发、推广和示范,为早日实现碳中和提供技术支撑。 相似文献
7.
随着社会经济的迅速发展,人类对于化石燃料的需求量越来越大,燃料燃烧后排放的有害物质也越来越多,全球环境污染问题严峻,温室效应尤为严重。CO2是主要温室气体,CO2总排放量的75%是由石化燃料燃烧产生的,我国CO2排放总量的一半来自电力工业[1]。中国作为负责任的国家,到2020年,中国要实现单位国内生产总值CO2排放量比2005年下降40%~45%这一目标。因此,火电厂CO2减排任务重大,采用CO2捕集与封存技术能减少电厂80%~95%排放量,理论上具有巨大的减排潜力,是当今世界公认的CO2减排的重要途径。目前电厂捕集技术大体上分作三种:燃烧前捕集、燃烧后捕集和富氧燃烧捕集。 相似文献
8.
2020年全球二氧化碳排放量约为320亿吨,大气中CO2含量正在以每年1 ppm的速度上升,CO2的捕集利用技术正受到越来越多的关注。本文全面介绍了CO2捕集和利用技术,重点对燃烧后捕集技术进行了详细综述和客观评价。认为膜吸收CO2捕集方法具有装填密度高、气液接触面积大,操作弹性大,运行成本低优势,具有良好的发展前景;CO2的生物转化利用因具有反应条件温和、过程碳排放极小等优点,使其在CO2资源化利用方面表现出优异的应用前景。 相似文献
9.
简要阐述全球和我国的化石能源及CO2排放现状,针对燃烧后捕集化石燃料电厂烟道气中的CO2气体,以溶液吸收、吸附、膜分离、生物固定4种捕集方法为线索,讨论了各类CO2燃烧后捕集材料的最新进展。 相似文献
10.
11.
二氧化碳捕集技术及应用分析 总被引:1,自引:0,他引:1
分析了CO2捕集技术及现状。CO2捕集是CCS的关键技术单元之一,针对不同的CO2气源,国内外研究开发了多种技术。许多CO2捕集技术已经工业化,其中燃烧后烟气中CO2的捕集技术主要是以一乙醇胺(MEA)为基础的胺法;燃烧前的CO2捕集技术主要应用于IGCC电厂,一般需要对煤气中CO进行部分变换,变换后脱碳可采用成熟技术,如Selexol(NHD)等。富氧燃烧则是在中试成功的基础上,进行更大规模的工业示范。国内外大型煤制油化工项目主要采用低温甲醇洗脱除CO2,如果设置CO2产品塔,则可以获得体积分数98%以上的CO2。天然气脱碳主要采用MDEA技术。另外还有低温法、PSA、膜分离等CO2捕集技术及化学链燃烧等一些正在研发的技术。 相似文献
12.
本文系统梳理分析了水泥不同种类和各工序的CO2排放特征,其中,工艺、燃料直接CO2排放占比达90%,与物料中碳酸盐的含量正相关,与燃料发热量和利用率负相关,电力间接CO2排放占比约10%,特种水泥由于减少了碳酸盐分解造成的碳排放,总体碳排放量较低。新型干法水泥生产过程可分为生料制备、熟料煅烧和水泥粉磨三个阶段,工艺和燃料CO2排放主要发生在熟料煅烧阶段,其尾气中CO2浓度一般在11%~29%。研究分析了碳替代/碳捕集等控碳技术、CO2资源化利用技术。水泥厂碳替代主要是原料替代、熟料或水泥替代、燃料替代等,可分别实现减碳10%、25%~50%和30%以上;碳捕集主要有富氧燃烧和烟气CO2捕集,水泥窑富氧燃烧技术有全氧燃烧和分解炉全氧燃烧技术两种。捕集技术主要采用化学吸收法、固体吸附法;在CO2综合利用方面,针对水泥厂的特殊应用场景,矿化具有较好的应用效果,如采用混凝土养护技术,制备高附加值的微纳米碳酸钙等。 相似文献
13.
随着经济和社会的快速发展,世界各国对于温室气体排放所引起的全球变暖问题越来越重视。我国作为全球最大的CO2排放国,短期内以煤炭及煤电为主的基本能源结构模式很难有根本转变,面临十分严峻的减排形势。CO2的减排问题已成为制约该地区能源化工产业发展的最大瓶颈之一,为了满足经济社会可持续发展的迫切需要,我们必须采取措施来控制CO2的大量排放。CO2地质封存已成为一种日益成熟的技术方法,并已成为了目前全球公认的进行CO2大规模减排的最有效途径之一。页岩储层CO2地质封存联合页岩气增采技术(CO2-ESGR)是一种新型的CO2地质封存及页岩气开发技术。该技术以超临界或液相CO2代替水力压裂页岩,利用CO2吸附页岩能力比CH4强的特点,置换CH4,从而提高页岩气产量和生产速率并实现CO2地质封存,减少温室气体排放。主要... 相似文献
14.
二氧化碳(CO2)是主要的人为产生的温室气体之一,其排放量的不断增加,引起了社会各界的广泛关注。近年来,科学家不断尝试从源头上减少CO2的排放,但没有取得明显的效果。实际上, CO2既是温室气体的主要来源,也是有用的碳源。因此,如何捕集和有效利用CO2也是近年来许多学者一直在探索的研究方向。本文综述了吸收法、吸附法、膜分离法等主要的CO2捕集方法;从CO2的利用、H2的来源、CO2加氢合成甲醇工艺等方面介绍了CO2加氢合成甲醇的研究进展,为缓解CO2排放提供参考思路。 相似文献
15.
碳达峰和碳中和目标的提出为我国碳减排发展明确了方向,也对碳捕集技术未来发展提出了新要求。空气中直接捕集CO2作为新兴负碳排放技术是实现双碳目标的重要技术保障。专利作为技术信息的有效载体,是分析技术发展的重要工具,具有信息丰富完备、覆盖时间长、真实可靠等特征,更是学术期刊资源的重要补充。以直接空气捕集相关关键词进行检索,并基于国内外专利文献分析了空气中直接捕集CO2技术的发展历程,分析了空气直接捕集技术的专利申请数量,介绍了主要技术形式与改进措施。着重介绍了主要研究创新主体的关键专利技术,包括低成本高效吸附剂的改进,降低空气流通装置阻力的方法以及空气直接捕集系统与其他化学系统的耦合等。随着技术发展带来的降本增效以及碳交易市场与碳关税的建立形成,具有负碳潜力的空气直接捕集CO2技术将会得到更广泛关注。最后对我国空气直接捕集CO2技术未来发展方向进行展望。 相似文献
16.
详细介绍了工业排放CO2捕集的关键技术,着重综述了CO2化学转化、生物转化、能源开发及矿化利用等资源化利用和地质封存技术,初步探讨了碳中和目标下CO2资源化利用的发展方向,最后提出了从国家、企业、教育等多方面入手,相辅相成,稳步实现我国低碳转型战略目标的建设性意见。 相似文献
17.
18.
通过介绍全球及中国近年来CO2的排放状况以及小规模回收技术的缺陷,首先指出了CO2规模化回收的迫切性及资源化利用的优势,并以CCS(碳捕集与封存)和CCU(碳捕集与利用)为例,分别介绍了诸如地质封存、海洋封存、化学转化和生物转化等规模化回收利用技术,阐述了这些技术的回收原理、工艺路线、安全环保性、技术优势和工业化案例;通过分析CCS各技术的封存能力、封存效果、技术瓶颈及工业化推广的进度和潜力,指出CCS技术的全球化应用目前还存在一定的风险和制约;通过对比CCU各技术研究重点、转化瓶颈以及工业化进度等,指出化学转化法是目前最有效的CO2规模化回收利用技术。最后还介绍了其他几种具有规模化潜力的CO2利用新技术。 相似文献
19.
20.
随着人类社会工业化进程的加快,温室气体排放量随之增加,导致温室效应加剧。在所有温室气体中,CO2占比最多、贡献最大,被认为是引起全球变暖的主要因素。人为排放的CO2主要来自工业生产过程中化石燃料的燃烧,为实现碳中和目标,除了推广清洁能源、提高能源利用效率和增加植物碳汇等措施外,对工业排放的CO2进行捕集封存必不可少。目前限制CO2捕集和分离工艺应用的主要因素是成本过高,为解决该问题,开发第2代低能耗固体CO2吸附材料对推动工业源CO2减排具有重要意义。Li4SiO4凭借较高的吸附容量、较低的再生能耗和成本在高温CO2捕集领域具有良好的应用前景。为推进Li4SiO4材料在碳捕集、利用和封存(CCUS)工艺中的应用,综述了Li4SiO4基吸附材料的研究进展,介绍了不同合成方法及合成条件对Li4 相似文献