首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Facile green synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Carissa carandas (C. carandas) leaves was studied. Fabrication of AgNPs was confirmed by the UV–visible spectroscopy which gives absorption maxima at 420 nm. C. carandas leaves are the rich source of the bioactive molecules, acts as a reducing and stabilising agent in AgNPs, confirmed by Fourier transforms infrared spectroscopy. The field emission scanning electron microscope revealed the spherical shape of biosynthesised AgNPs. A distinctive peak of silver at 3 keV was determined by energy dispersive X‐ray spectroscopy. X‐ray diffraction showed the facecentred cubic structure of biosynthesised AgNPs and thermal stability was confirmed by the thermogravimetric analysis. Total flavonoid and total phenolic contents were evaluated in biosynthesised AgNPs. Biosynthesised AgNPs showed free radical scavenging activities against 2, 2‐diphenyl‐1‐picrylhydrazyl test and ferric reducing antioxidant power assay. In vitro cytotoxicity against hepatic cell lines (HUH‐7) and renal cell lines (HEK‐293) were also assessed. Finally, biosynthesised AgNPs were scrutinised for their antibacterial activity against methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii and Salmonella typhimurium. This study demonstrated the biofabrication of AgNPs by using C. carandas leaves extract and a potential in vitro biological application as antioxidant, anticancer and antibacterial agents.Inspec keywords: antibacterial activity, biomedical materials, cancer, tumours, nanomedicine, silver, nanoparticles, reduction (chemical), nanofabrication, ultraviolet spectra, visible spectra, field emission scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, X‐ray diffraction, thermal stability, thermal analysis, free radical reactions, toxicology, cellular biophysics, microorganismsOther keywords: total phenolic contents, free radical scavenging activities, 2,2‐diphenyl‐1‐picrylhydrazyl test, ferric reducing antioxidant power assay, in vitro cytotoxicity, hepatic cell lines HUH‐7, renal cell lines HEK‐293, antibacterial activity, methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii, Salmonella typhimurium, biofabrication, in vitro biological application, Ag, total flavonoid contents, thermogravimetric analysis, thermal stability, face‐centred cubic structure, X‐ray diffraction, energy dispersive X‐ray spectroscopy, distinctive peak, spherical shape, field emission scanning electron microscope, Fourier transforms infrared spectroscopy, stabilising agent, reducing agent, bioactive molecules, absorption maxima, UV‐visible spectroscopy, plant extract colour, antibacterial activities, anticancer activities, antioxidant activities, Carissa carandas, aqueous leaves extract, silver nanoparticles, structural characterisation, one‐pot green synthesis  相似文献   

2.
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag  相似文献   

3.
A simple and eco‐friendly method for efficient synthesis of stable colloidal silver nanoparticles (AgNPs) using Mentha pulegium extracts is described. A series of reactions was conducted using different types and concentrations of plant extract as well as metal ions to optimize the reaction conditions. AgNPs were characterized by using UV–vis spectroscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, zetasizer, energy‐dispersive X‐ray spectroscopy (EDAX) and Fourier transform infrared spectroscopy (FTIR). At the optimized conditions, plate shaped AgNPs with zeta potential value of ‐15.7 and plasmon absorption maximum at 450 nm were obtained using high concentration of aqueous extract. Efficient adsorption of organic compounds on the nanoparticles was confirmed by FTIR and EDAX. The biogenic AgNPs displayed promising antibacterial activity on Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. The highest antibacterial activity of 25 µg mL‐1 was obtained for all the strains using aqueous extract synthesized AgNPs. The aqueous extract synthesised AgNPs also showed considerable antifungal activity against fluconazole resistant Candida albicans. The cytotoxicity assay revealed considerable anticancer activity of AgNPs on HeLa and MCF‐7 cancer cells. Overall results indicated high potential of M. pulegium extract to synthesis high quality AgNPs for biomedical applications.Inspec keywords: silver, nanoparticles, nanofabrication, botany, antibacterial activity, biomedical materials, nanomedicine, ultraviolet spectra, visible spectra, transmission electron microscopy, atomic force microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, electrokinetic effects, microorganisms, cellular biophysics, cancerOther keywords: antibacterial activity, antifungal activity, anticancer activity, stable colloidal silver nanoparticle, Mentha pulegium, plant extract, UV‐visible spectroscopy, transmission electron microscopy, atomic force microscopy, DLS, zetasizer, energy‐dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, methanolic extract, aqueous extract, plate‐shaped silver nanoparticle, zeta potential, plasmon absorption maximum, organic compounds adsorption, biogenic silver nanoparticle, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, fluconazole‐resistant Candida albicans, MTT assay, HeLa cancer cell, MCF‐7 cancer cell, Ag  相似文献   

4.
In this study, the authors report a simple and eco‐friendly method for the synthesis of silver nanoparticles (AgNPs) using Trigonella foenum‐graecum (TFG) seed extract. They explored several parameters dictating the biosynthesis of TFG‐AgNPs such as reaction time, temperature, concentration of AgNO3, and TFG extract amount. Physicochemical characterisation of TFG‐AgNPs was done on dynamic light scattering (DLS), field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction and Fourier transform infrared spectroscopy. The size determination studies using DLS revealed of TFG‐AgNPs size between 95 and 110 nm. The antibacterial activity was studied against Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa and Staphylococcus aureus. The biosynthesised TFG‐AgNPs showed remarkable anticancer efficacy against skin cancer cell line, A431 and also exhibited significant antioxidant efficacy.Inspec keywords: antibacterial activity, cancer, biomedical materials, silver, nanofabrication, nanomedicine, nanoparticles, microorganisms, skin, cellular biophysics, biochemistry, light scattering, X‐ray chemical analysis, X‐ray diffraction, Fourier transform infrared spectra, particle sizeOther keywords: antibacterial potential, anticancer potential, antioxidant potential, silver nanoparticles, Trigonella foenum‐graecum seed extract, eco‐friendly method, biosynthesis, reaction time, AgNO3 concentration, TFG extract amount, physicochemical characterisation, dynamic light scattering, field emission electron microscopy, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, size determination, TFG‐AgNPs size, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, skin cancer cell line A431, Ag  相似文献   

5.
The silver nanoparticles (AgNPs) with their unique chemical and physical properties are proving as a new therapeutical agent. In the present study, the AgNPs synthesised from an aqueous extract of a macrofungus, Earliella scabrosa, were characterised by field emission scanning electron microscopy (FESEM), energy dispersive X‐ray analysis (EDX), high‐resolution transmission electron microscopy, X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and further evaluate for its in vitro antibacterial and wound healing efficacy. The mycosynthesised AgNPs exhibited the surface plasmon resonance peak at 410 nm with good stability over a period of a month. The FESEM and EDX analyses revealed the spherical‐shaped AgNPs of an average size of 20 nm and the presence of elemental Ag, respectively. The XRD pattern showed the crystalline nature of AgNPs. The FTIR spectra confirmed the conversion of Ag+ ions to AgNPs due to reduction by biomolecules of macrofungus extract. The mycosynthesised AgNPs showed effective antibacterial activity against two Gram‐positive bacteria, namely Bacillus subtilis and Staphylococcus aureus, and two Gram‐negative bacteria Escherichia coli and Pseudomonas aeruginosa. The pathogens were highly sensitive to AgNPs, whereas less sensitive to AgNO3. The mycosynthesised AgNPs showed significant wound healing potential with 68.58% of wound closure.Inspec keywords: surface plasmon resonance, wounds, X‐ray diffraction, nanoparticles, molecular biophysics, nanomedicine, antibacterial activity, biomedical materials, reduction (chemical), silver, microorganisms, X‐ray chemical analysis, nanofabrication, transmission electron microscopy, particle size, field emission scanning electron microscopy, Fourier transform infrared spectraOther keywords: high‐resolution transmission electron microscopy, healing efficacy, mycosynthesised AgNPs, spherical‐shaped AgNPs, wound healing agent, in vitro antibacterial efficacy, Earliella scabrosa, silver nanoparticles, physical properties, chemical properties, therapeutical agent, aqueous extract, macrofungus, field emission scanning electron microscopy, FESEM, energy dispersive X‐ray analysis, EDX, X‐ray diffraction, XRD, Fourier transform infrared spectroscopy, FTIR spectroscopy, surface plasmon resonance peak, crystalline nature, biomolecules, Gram‐positive bacteria, Bacillus subtilis, Staphylococcus aureus, Gram‐negative bacteria, Escherichia coli, Pseudomonas aeruginosa, pathogens, wound closure, Ag  相似文献   

6.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

7.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

8.
Silver nanoparticles (AgNPs) have been extensively used as antibacterial agents, owing to their ease of preparation. In the present study, leaves extract of Canarium ovatum have been employed for the biosynthesis of silver nanoparticles (CO‐AgNPs). CO‐AgNPs were synthesised under very mild, eco‐friendly manner where the plant extract acted both as reducing and capping agent. These AgNPs were synthesised by taking into account several parameters, that included, time of reaction, concentration of AgNO3, amount of extract and temperature of reaction. The optimisation studies suggested efficient synthesis of CO‐AgNPs at 25°C when 1.5 mM AgNO3 was reduced with 1:20 ratio of plant extract for 40 min. Size determination studies done on dynamic light scattering and scanning electron microscope suggested of spherical shape nanoparticles of size 119.7 ± 7 nm and 50–80 nm, respectively. Further, characterisations were done by Fourier transform infrared and energy‐dispersive X‐ray spectroscopy to evaluate the functional groups and the purity of CO‐AgNPs. The antibacterial efficacy of CO‐AgNPs was determined against the bacterial strain Pseudomonas aeruginosa. As evident from disc diffusion method studies, CO‐AgNPs remarkably inhibited the growth of the tested microorganism. This study suggested that C. ovatum extract efficiently synthesises CO‐AgNPs with significant antibacterial properties and can be good candidates for therapeutics.Inspec keywords: antibacterial activity, nanoparticles, silver, nanofabrication, particle size, light scattering, scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, microorganisms, biomedical materials, nanomedicineOther keywords: antibacterial potential, silver nanoparticles, biosynthesis, Canarium ovatum leave extract, plant extract, reducing agent, capping agent, antibacterial agents, reaction time, reaction temperature, dynamic light scattering, scanning electron microscopy, spherical shape nanoparticles, Fourier transform infrared spectroscopy, functional groups, bacterial strain Pseudomonas aeruginosa, disc diffusion method, microorganism, energy‐dispersive X‐ray spectroscopy, temperature 25 degC, time 40 min, Ag  相似文献   

9.
Green synthesis of nanoparticles is considered an efficient method when compared with chemical and physical methods because of its bulk production, eco‐friendliness and low cost norms. The present study reports, for the first time, green synthesis of silver nanoparticles (AgNPs) at room temperature using Solanum viarum fruit extract. The visual appearance of brownish colour with an absorption band at 450 nm, as detected by ultraviolet‐visible spectrophotometer analysis, confirmed the formation of AgNPs. X‐ray diffraction confirmed the AgNPs to be crystalline with a face‐centred lattice. The transmission electron microscopy‐energy dispersive X‐ray spectroscopy image showed the AgNPs are poly‐dispersed and are mostly spherical and oval in shape with particle size ranging from 2 to 40 nm. Furthermore, Fourier transform‐infrared spectra of the synthesised AgNPs confirmed the presence of phytoconstituents as a capping agent. The antimicrobial activity study showed that the AgNPs exhibited high microbial activity against Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus susp. aureus, Aspergillus niger, and Candida albicans. The highest antimicrobial activity of AgNPs synthesised by S. viarum fruit extract was observed in P. aeruginosa, S. aureus susp. aureus and C. albicans with zone of inhibition, 26.67 mm.Inspec keywords: nanomedicine, antibacterial activity, X‐ray chemical analysis, nanoparticles, transmission electron microscopy, particle size, infrared spectra, microorganisms, X‐ray diffraction, Fourier transform spectra, ultraviolet spectra, scanning electron microscopy, visible spectra, nanofabricationOther keywords: green biosynthesis, antimicrobial activities, silver nanoparticles, green synthesis, physical methods, study reports, solanum viarum fruit, ultraviolet‐visible spectrophotometer analysis, high microbial activity, highest antimicrobial activity, s. viarum fruit, transmission electron microscopy, energy dispersive X‐ray spectroscopy image  相似文献   

10.
Biological synthesis of nanomaterials is a growing innovative approach and it was broadly utilised in the field of nanotechnology and nanomedicine. This study illustrates that biosynthesis of silver nanoparticles (AgNPs) using fucoidan extracted from seaweed Padina tetrastromatica. The functional groups of extracted fucoidan were characterised by Fourier transform infrared spectroscopy (FTIR) and used to NPs synthesis. Synthesised AgNPs were characterised by ultraviolet–visible spectra, scanning electron microscope, energy dispersive X‐ray, transmission electron microscope, selected area electron diffraction and FTIR. In this study, their main focus is enhancement antibacterial activity of AgNPs coated antibiotics against antibiotic resistant bacteria. Among the microorganisms, Serratia nematodiphila was resistant to novobiocin and penicillin, but it was sensitive to AgNPs impregnated antibiotic discs. The zone of inhibition was 12 and 15 mm. The synergistic effect of combined antibiotics and AgNPs resulted in increased fold area which was greater than the sum of their separate effects. It reveals that AgNPs are highly sought in the medicinal field due to their broad spectrum of antibacterial activity and relatively cheaper. This enhanced synergistic effect potentially superior to control the growth of bacteria and it is the budding process for the development of new remedial agents for severe diseases.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, drug delivery systems, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, scanning electron microscopy, X‐ray chemical analysis, transmission electron microscopy, electron diffraction, microorganisms, diseases, nanofabrication, drugs, cellular biophysicsOther keywords: phytochemical constituents, enhanced antibacterial activity, nanotechnology, nanomedicine, drug delivery, silver nanoparticles, biosynthesis, fucoidan extraction, marine brown seaweed Padina tetrastromatica, functional groups, Fourier transform infrared spectroscopy, FTIR spectroscopy, ultraviolet‐visible spectra, scanning electron microscopy, energy dispersive X‐ray analysis, transmission electron microscopy, selected area electron diffraction, AgNP coated antibiotics, antibiotic resistant bacteria, Serratia nematodiphila, novobiocin, penicillin, AgNP impregnated antibiotic discs, medicinal field, broad spectrum, enhanced synergistic effect, diseases, Ag  相似文献   

11.
The focus of this study is on a rapid and cost‐effective approach for the synthesis of silver nanoparticles (AgNPs) using Artemisia quttensis Podlech aerial parts extract and assessment of their antioxidant, antibacterial and anticancer activities. The prepared AgNPs were determined by ultraviolet–visible spectroscopy, X‐ray diffraction, Fourier transform infra‐red spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, and dynamic light scattering and zeta‐potential analysis. The AgNPs and A. quttensis extract were evaluated for their antiradical scavenging activity by 2, 2‐diphenyl, 1‐picryl hydrazyl assay and anticancer activity against colon cancer (human colorectal adenocarcinoma cell line 29) compared with normal human embryonic kidney (HEK293) cells. Also, the prepared AgNPs were studied for its antibacterial activity. The AgNPs revealed a higher antioxidant activity compared with A. quttensis extract alone. The phyto‐synthesised AgNPs and A. quttensis extract showed a dose–response cytotoxicity effect against HT29 and HEK293 cells. As evidenced by Annexin V/propidium iodide staining, the number of apoptotic HT29 cells was significantly enhanced, following treatment with AgNPs as compared with untreated cells. Besides, the antibacterial property of the AgNPs indicated a significant effect against the selected pathogenic bacteria. These present obtained results show the potential applications of phyto‐synthesised AgNPs using A. quttensis aerial parts extract.Inspec keywords: nanoparticles, silver, nanomedicine, cancer, transmission electron microscopy, ultraviolet spectroscopy, visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, electrokinetic effects, kidney, cellular biophysics, antibacterial activity, toxicology, patient treatmentOther keywords: anticancer properties, antibacterial properties, antioxidant properties, phytosynthesised Artemisia quttensis Podlech extract mediated AgNP, ultraviolet‐visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive spectroscopy, dynamic light scattering, zeta‐potential analysis, antiradical scavenging activity, 2,2‐diphenyl, 1‐picryl hydrazyl assay, anticancer activity, HT29 colon cancer, human embryonic kidney cells, HEK293 cells, A. quttensis extract, dose‐response cytotoxicity effect, Annexin V staining, apoptotic HT29 cells, pathogenic bacteria, propidium iodide staining, Ag  相似文献   

12.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

13.
To eliminate the elaborate processes employed in other non‐biological‐based protocols and low cost production of silver nanoparticles (AgNPs), this study reports biogenic synthesis of AgNPs using silver salt precursor with aqueous extract of Aspergillus fumigates MA. Influence of silver precursor concentrations, concentration ratio of fungal extract and silver nitrate, contact time, reaction temperature and pH are evaluated to find their effects on AgNPs synthesis. Ultraviolet–visible spectra gave surface plasmon resonance at 420 nm for AgNPs. Fourier transform infrared spectroscopy and X‐ray diffraction techniques further confirmed the synthesis and crystalline nature of AgNPs, respectively. Transmission electron microscopy observed spherical shapes of synthesised AgNPs within the range of 3–20 nm. The AgNPs showed potent antimicrobial efficacy against various bacterial strains. Thus, the results of the current study indicate that optimisation process plays a pivotal role in the AgNPs synthesis and biogenic synthesised AgNPs might be used against bacterial pathogens; however, it necessitates clinical studies to find out their potential as antibacterial agents.Inspec keywords: nanoparticles, microorganisms, cellular biophysics, silver, antibacterial activity, pH, surface plasmon resonance, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, optimisation, nanomedicine, nanofabricationOther keywords: biogenic synthesis, optimisation, antibacterial efficacy, extracellular silver nanoparticles, fungal isolate Aspergillus fumigatus MA, nonbiological‐based protocols, silver salt precursor, fungal extract, silver nitrate, pH, ultraviolet‐visible spectra, surface plasmon resonance, Fourier transform infrared spectroscopy, X‐ray diffraction, crystalline nature, transmission electron microscopy, spherical shapes, potent antimicrobial efficacy, bacterial strains, optimisation process, bacterial pathogens, antibacterial agents, wavelength 420 nm, size 3 nm to 20 nm, Ag  相似文献   

14.
The emergence of the huge number of multi‐drug resistant (MDR) bacteria requires an alternative to the drugs. Silver nanoparticles (AgNPs) are a strong candidate for this due to their bactericidal properties, which can be better concluded by understanding their morphology and chemistry. The study hypothesised that AgNPs synthesised using leaves of Syzygium cumini can be used to treat locally emerging MDRs forming biofilms on indwelling medical devices. Synthesised particles were characterised by methods like UV–visible spectroscopy, X‐ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and Zetasizer. Fourier transform infrared spectroscopy, and high‐performance liquid chromatography were used to predict phytochemicals present in the leaves. The shape of particles is revealed to be relatively spherical, with average size to be around 10–100 nm. Phenolic compounds are attributed to the formation of nanoparticles, stability analysis shows particles to be stable, and zeta potential determined the surface charge to be −20.1 mV. Biosynthesised particles are found to possess efficient antibacterial activity MDR bacteria developing biofilms in medical devices; hence, it is concluded that S. cumini based NPs can be used to develop a layer on implant‐related medical devices. Toxicity evaluation against A594 cancer cells portrays AgNPs to be potential tumour reduction agents in a concentration‐dependent manner.Inspec keywords: silver, visible spectra, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, chromatography, electrokinetic effects, cancer, biomedical materials, reduction (chemical), cellular biophysics, nanofabrication, nanoparticles, antibacterial activity, particle size, drugs, toxicology, nanomedicine, ultraviolet spectra, microorganisms, tumours, Fourier transform infrared spectraOther keywords: Syzygium cumini, biofilms, indwelling medical devices, UV‐visible spectroscopy, X‐ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, high‐performance liquid chromatography, biosynthesised particles, implant‐related medical devices, biosynthesised silver nanoparticles, multidrug resistant biofilm‐forming pathogens, multidrug resistant bacteria, MDR, bactericidal properties, morphology, scanning electron microscopy, s. cumini based NP, A594 cancer cells, tumour reduction, Ag  相似文献   

15.
Green synthesis of nanoparticles has gained importance due to its eco‐friendly, low toxicity and cost effective nature. This study deals with the biosynthesis of silver nanoparticles (AgNPs) from the bark extract of Amentotaxus assamica. The AgNPs have been synthesised by reducing the silver ions into stable AgNPs using the bark extract of Amentotaxus assamica under the influence of sunlight irradiation. The characterisation of the biosynthesised AgNPs was carried out by UV–vis spectroscopy, X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and energy dispersive X‐ray analysis. The UV–vis spectrum showed a broad peak at 472 nm. Also, the XRD confirmed the crystalline structure of the AgNPs. Moreover, the SEM analysis revealed that the biosynthesised AgNPs were spherical in shape. Also, dynamic light scattering techniques were used to evaluate the size distribution profile of the biosynthesised AgNPs. Furthermore, the biosynthesised AgNPs showed a prominent inhibitory effect against both Escherichia coli (MTCC 111) and Staphylococcus aureus (MTCC 97). Thus the biosynthesis of AgNPs from the bark extract of Amentotaxus assamica is found to eco‐friendly way of producing AgNPs compared to chemical method.Inspec keywords: X‐ray chemical analysis, microorganisms, transmission electron microscopy, nanoparticles, toxicology, scanning electron microscopy, ultraviolet spectra, particle size, Fourier transform spectra, X‐ray diffraction, antibacterial activity, visible spectra, infrared spectra, nanomedicine, silverOther keywords: stable AgNP, biosynthesised AgNP, SEM analysis, sunlight irradiation, silver ions, silver nanoparticle, amentotaxus assamica, biosynthesis, escherichia coli  相似文献   

16.
In this present study, a hybrid Chi‐Fe3 O4 was prepared, characterised and evaluated for its antibacterial and antibiofilm potential against Staphylococcus aureus and Staphylococcus marcescens bacterial pathogens. Intense peak around 260 nm in the ultraviolet–visible spectrum specify the formation of magnetite nanoparticles. Spherical‐shaped particles with less agglomeration and particle size distribution of 3.78–46.40 nm were observed using transmission electron microscopy analysis and strong interaction of chitosan with the surface of magnetite nanoparticles was studied using field emission scanning microscopy (FESEM). X‐ray diffraction analysis exhibited the polycrystalline and spinel structure configuration of the nanocomposite. Presence of Fe and O, C and Cl elements were confirmed using energy dispersive X‐ray microanalysis. Fourier transform infrared spectroscopic analysis showed the reduction and formation of Chi‐Fe3 O4 nanocomposite. The antibacterial activity by deformation of the bacterial cell walls on treatment with Chi‐Fe3 O4 nanocomposite and its interaction was visualised using FESEM and the antibiofilm activity was determined using antibiofilm assay. In conclusion, this present study shows the green synthesis of Chi‐Fe3 O4 nanocomposite and evaluation of its antibacterial and antibiofilm potential, proving its significance in medical and biological applicationsInspec keywords: visible spectra, particle size, magnetic particles, nanocomposites, nanoparticles, X‐ray diffraction, nanofabrication, transmission electron microscopy, X‐ray chemical analysis, nanomagnetics, microorganisms, antibacterial activity, iron compounds, ultraviolet spectra, biomedical materials, field emission scanning electron microscopy, Fourier transform infrared spectra, filled polymers, crystal growth from solution, polymer structureOther keywords: potential antibacterial material, antibiofilm potential, magnetite nanoparticles, solvothermal‐assisted green synthesis, hybrid Chi‐Fe3 O4 nanocomposites, staphylococcus aureus, staphylococcus marcescens, bacterial pathogens, ultraviolet–visible spectrum, spherical‐shaped particles, particle size, transmission electron microscopy, FESEM, field emission scanning electron microscopy, X‐ray diffraction, spinel structure, polycrystalline structure, energy dispersive X‐ray microanalysis, Fourier transform infrared spectroscopic analysis, deformation, bacterial cell walls, Fe3 O4   相似文献   

17.
Microbial mediated biological synthesis of metallic nanoparticles was carried out ecofriendly in the present study. Silver nanoparticles (AgNPs) were extracellularly biosynthesised from Streptomyces griseorubens AU2 and extensively characterised by ultraviolet–visible (UV–vis) and Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy, scanning electron microscopy and X‐ray diffraction analysis. Elemental analysis of nanoparticles was also carried out using energy dispersive X‐ray spectroscopy. The biosynthesised AgNPs showed the characteristic absorption spectra in UV–vis at 422 nm which confirmed the presence of metallic AgNPs. According to the further characterisation analysis, the biosynthesised AgNPs were found to be spherical and crystalline particles with 5–20 nm average size. Antioxidant properties of the biosynthesised AgNPs were determined by 2,2‐diphenyl‐1‐picrylhydrazyl free radical scavenging assay and was found to increase in a dose‐dependent matter. The identification of the strain was determined by molecular characterisation method using 16s rDNA sequencing. The present study is the first report on the microbial biosynthesis of AgNPs using S. griseorubens isolated from soil and provides that the active biological components found in the cell‐free culture supernatant of S. griseorubens AU2 enable the synthesis of AgNPs.Inspec keywords: silver, microorganisms, nanoparticles, nanofabrication, DNA, molecular biophysics, ultraviolet spectra, visible spectra, scanning electron microscopy, Fourier transform infrared spectra, transmission electron microscopy, X‐ray diffraction, X‐ray chemical analysis, absorption coefficients, cellular biophysicsOther keywords: silver nanoparticles, Streptomyces griseorubens AU2, soil, antioxidant activity, microbial mediated biological synthesis, ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy, UV‐vis spectroscopy, high‐resolution transmission electron microscopy, scanning electron microscopy, X‐ray diffraction, elemental analysis, energy dispersive X‐ray spectroscopy, absorption spectra, spherical particles, crystalline particles, 2,2‐diphenyl‐1‐picrylhydrazyl free radical scavenging assay, strain identification, molecular characterisation method, rDNA sequencing, active biological components, cell‐free culture supernatant, wavelength 422 nm, size 5 nm to 20 nm, Ag  相似文献   

18.
The metal nanoparticles, due to interesting features such as electrical, optical, chemical and magnetic properties, have been investigated repeatedly. Also, the mentioned nanoparticles have specific uses in terms of their antibacterial activity. The biosynthesis method is more appropriate than the chemical method for producing the nanoparticles because it does not need any special facilities; it is also economically affordable. In the current study, the silver nanoparticles (AgNPs) were obtained by using a very simple and low‐cost method via Glaucium corniculatum (L.) Curtis plant extract. The characteristics of the AgNPs were investigated using techniques including: X‐ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The SEM and TEM images showed that the nanoparticles had a spherical shape, and the mean diameter of them was 53.7 and 45 nm, respectively. The results of the disc diffusion test used for measuring the anti‐bacterial activity of the synthesised nanoparticles indicated that the formed nanoparticles possessed a suitable anti‐bacterial activity.Inspec keywords: silver, nanoparticles, antibacterial activity, nanomedicine, nanofabrication, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectraOther keywords: green synthesis, silver nanoparticles, Glaucium corniculatum Curtis extract, antibacterial activity, metal nanoparticles, biosynthesis method, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, SEM, TEM, spherical shape, disc diffusion test, Ag  相似文献   

19.
CuO nanoparticles (NPs) were prepared by Convolvulus percicus leaves extract as a reducing and stabilising agent. The green synthesised copper oxide NPs was characterised by transmission electron microscope, energy dispersive X‐Ray spectroscopy, X‐ray diffraction, Fourier transform infrared and ultraviolet‐visible analysis. The activities of the CuO NPs as catalyst were tested in the formation of C‐N and C‐O bonds. The N ‐arylated and O ‐arylated products of amides, N‐H heterocycles and phenols were obtained in excellent yields. Furthermore, the separation and recovery of copper oxide NPs was very simple, effective and economical. The recovered catalyst can be reused several times without significant loss of its catalytic activity. Moreover, the antibacterial activity of these NPs was tested against two human pathogenic microbes and showed significant antimicrobial activity against these pathogenic bacteria.Inspec keywords: copper compounds, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, microorganisms, catalysts, transmission electron microscopy, X‐ray chemical analysis, X‐ray diffraction, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, catalysisOther keywords: green synthesis, copper oxide nanoparticles, Convolvulus percicus L. aqueous extract, reusable catalysts, cross‐coupling reactions, antibacterial activity, reducing agent, stabilising agent, transmission electron microscope, energy dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectra, ultraviolet‐visible spectra, C‐N bonds, C‐O bonds, N‐arylated products, O‐arylated products, amides, N‐H heterocycles, phenols, catalytic activity, human pathogenic microbes, antimicrobial activity, CuO  相似文献   

20.
The biosynthesis of silver nanoparticles (AgNPs) is substantial for its application in lots of fields. Tomato and grape fruit juices were used as a reducing and capping agents for the biosynthesis of AgNPs. Ultraviolet spectroscopic analysis offered peaks in the range of 396‒420 nm that indicate the production of AgNPs. Fourier transform infrared spectroscopy analysis revealed attachment of different functional groups with Ag ion in both tomato and grape fruit extracts NPs. The X‒ray diffraction analysis confirmed that the synthesised AgNPs have a face centred cubic confirmation. Scanning electron microscopy confirms the size of NPs that varies from 10 to 30 nm. The DPPH free radical scavenging assay, total antioxidant capacity, reducing power assay, total flavonoid contents and total phenolic contents determination confirmed that synthesised AgNPs are potent antioxidant agents; can be used as an effective scavenger of free radicals. Biosynthesised AgNPs also showed good antibacterial activity against Pseudomonas septica, Staphylococcus aureus, Micrococcus luteus, Enterobacter aerogenes, Bacillus subtilis and Salmonella typhi. Protein kinase inhibition activity showed a clear zone which indicates anticancerous potential of biosynthesised AgNPs. The efficacious bioactivities indicate that the tomato and grape derived AgNPs can be used efficiently in pharmaceutical and medical industries.Inspec keywords: silver, nanoparticles, nanomedicine, biomedical materials, nanofabrication, Fourier transform infrared spectra, X‐ray diffraction, scanning electron microscopy, microorganisms, antibacterial activity, enzymes, cancer, ultraviolet spectraOther keywords: silver nanoparticle green synthesis, grape juice, tomato juice, biological activity evaluation, ultraviolet spectroscopic analysis, silver nanoparticle production, Fourier transform infrared spectroscopy analysis, silver ion, X‐ray diffraction analysis, scanning electron microscopy, DPPH free radical scavenging assay, antioxidant capacity, flavonoid content, phenolic content determination, antioxidant agent, antibacterial activity, Pseudomonas septica, Staphylococcus aureus, Micrococcus luteus, Enterobacter aerogenes, Bacillus subtilis, Salmonella typhi, protein kinase, size 10 nm to 30 nm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号