首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is planned to synthesise new biocompatible, nano antimicrobial formulation against biofilm producing strains. Aqueous root extract of Arctium lappa l. was used to synthesise ceria nanoparticles (CeO2 ‐NPs). The synthesised nanoparticles were encapsulated with nano‐chitosan by sol–gel method and characterised using standard techniques. Gas chromatography‐mass spectrometer of Arctium lappa l. revealed the presence of ethanol, acetone, 1‐ propanol, 2‐methylethane, 1,1‐di‐ethoxy, 1‐Butanol, and oleic acid acted as reducing and surface stabilising agents for tailoring morphology of CeO2 ‐NPs. Erythrocyte integrity after treatment with synthesised nanomaterials was evaluated by spectrophotometer measurement of haemoglobin release having biocompatibility. Scanning electron microscopy revealed the formation of mono dispersed beads shaped particles with mean particle size of 26.2 nm. X‐ray diffractometry revealed cubic crystalline structure having size of 28.0 nm. After encapsulation by nano‐chitosan, the size of CeO2 ‐NPs enhances to 48.8 nm making average coverage of about 22.6 nm. The synthesised nanomaterials were found effective to disrupt biofilm of S. aureus and P. aeruginosa. Interestingly, encapsulated CeO2 ‐NPs revealed powerful antibacterial and biofilm disruption activity examined by fluorescent live/dead staining using confocal laser scanning microscopy. The superior antibacterial activities exposed by encapsulated CeO2 ‐NPs lead to the conclusion that they could be useful for controlling biofilm producing multidrug resistance pathogens.Inspec keywords: particle size, microorganisms, organic compounds, nanomedicine, sol‐gel processing, cellular biophysics, scanning electron microscopy, optical microscopy, nanoparticles, antibacterial activity, fluorescence, biomedical materials, nanofabrication, X‐ray diffraction, chromatography, filled polymers, cerium compoundsOther keywords: microbial biofilms, aqueous root extract, sol–gel method, gas chromatography‐mass spectrometer, 1‐di‐ethoxy, 1‐Butanol, nanomaterial synthesis, mean particle size, antibacterial activities, ethanol, acetone, 1‐ propanol, biocompatible ceria‐nanoparticle encapsulation, nano‐chitosan, Arctium lappa l., oleic acid, erythrocyte integrity, spectrophotometer measurement, haemoglobin release, mono dispersed beads shaped particle formation, X‐ray diffractometry, cubic crystalline structure, fluorescent live/dead staining, confocal laser scanning microscopy, multidrug resistance pathogens, size 26.2 nm, size 28.0 nm, size 48.8 nm, size 22.6 nm, CeO2   相似文献   

2.
The potential of Mentha piperita in the iron nanoparticles (FeNPs) production was evaluated for the first time. The influences of the variables such as incubation time, temperature, and volume ratio of the extract to metal ions on the nanoparticle size were investigated using central composite design. The appearance of SPR bands at 284 nm in UV–Vis spectra of the mixtures verified the nanoparticle formation. Incubating the aqueous extract and metal precursor with 1.5 volume ratio at 50°C for 30 min leads to the formation of the smallest nanoparticles with the narrowest size distribution. At the optimal condition, the nanoparticles were found to be within the range of 35–50 nm. Experimental measurements of the average nanoparticle size were fitted well to the polynomial model satisfactory with R 2 of 0.9078. Among all model terms, the linear term of temperature, the quadratic terms of temperature, and mixing volume ratio have the significant effects on the nanoparticle average size. FeNPs produced at the optimal condition were characterised by transmission electron microscopy, thermogravimetry analysis (TGA), and Fourier‐transform infrared spectroscopy. The observed weight loss in the TGA curve confirms the encapsulation of FeNPs by the biomolecules of the extract which were dissociated by heat.Inspec keywords: thermal analysis, iron, X‐ray chemical analysis, particle size, nanoparticles, X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, nanofabrication, ultraviolet spectra, mixtures, Fourier transform infrared spectraOther keywords: incubation time, metal ions, central composite design, SPR bands, UV–Vis spectra, nanoparticle formation, metal precursor, narrowest size distribution, optimal condition, average nanoparticle size, particle size, mixing volume ratio, green synthesis, zero‐valent iron nanoparticles, mentha piperita, transmission electron microscopy, thermogravimetry analysis, Fourier‐transform infrared spectroscopy, TGA curve, biomolecules, temperature 50.0 degC, time 30.0 min, size 35.0 nm to 50.0 nm, Fe  相似文献   

3.
Nanomaterials play a vital role in textile industries due to their unique properties and applications. There is an increase in the use of nanoscale phyto products in textiles to control the bacterial infection in fabrics. Here, natural herbal nanoparticles of different sizes were prepared from shade‐dried Aloe vera plant leaves using ball milling technique without any additives. The amorphous herbal A. vera nanoparticles possess an average particle size of 40 ± 2 nm and UV‐absorption maximum at 269 nm. A. vera nanopowders–chitosan nanocomposites were prepared and coated on cotton fabrics using pad‐dry cure method. The evaluation of antibacterial activity against Escherichia coli (22.05 ± 0.06 mm) and Staphylococcus aureus (27.17 ± 0.02 mm), UV‐protection properties (UV‐protection factor = 57.2 ± 0.1), and superhydrophobic nature (155 ± 3°) of the prepared herbal nanoparticles and their composites were analysed by disc diffusion, UV–visible spectral analysis, and contact angle analysis. Understanding the functional properties of herbal nanoparticles, coated particles on fabrics highlights their potential applications in protective clothing with better antimicrobial properties, hydrophobicity, and UV‐protection properties. This study of using A. vera herbal nanoparticles in textiles significantly enhances the fabric performance to develop protective textile fabrics in defence and biomedical fields.Inspec keywords: nanoparticles, particle size, nanofabrication, nanomedicine, antibacterial activity, biomedical materials, hydrophobicity, ultraviolet spectra, visible spectra, radiation protection, textile fibres, cotton fabrics, ball milling, X‐ray diffraction, light scattering, scanning electron microscopy, X‐ray fluorescence analysis, fluorescence, amorphous state, nanocomposites, filled polymers, protective coatings, curing, microorganisms, biodiffusion, contact angle, surface morphology, protective clothingOther keywords: UV‐blocking, antimicrobial properties, disc diffusion, UV‐visible spectral analysis, contact angle analysis, morphological characteristics, protective clothing, protective textile fabrics, biomedical fields, superhydrophobic nature, UV‐protection factor, UV‐protection properties, Staphylococcus aureus, Escherichia coli, pad‐dry cure method, cotton fabrics, A. vera nanopowders‐chitosan nanocomposites, UV‐absorption maximum, average particle size, amorphous herbal A. vera nanoparticles, X‐ray fluorescence spectrometry, scanning electron microscopy, dynamic light scattering, UV‐visible spectrophotometry, X‐ray diffraction, ball milling, shade‐dried Aloe vera plant leaves, natural herbal nanoparticle size, bacterial infection, nanoscale phyto products, textile industries, nanomaterials, textile applications  相似文献   

4.
Ethnic value of many known plants are underexploited for medicinal application besides their proven traditional qualities. One such plant known for wound healing is Tridax procumbens. This plant has wound healing property and is commercially unexploited. Silver nanoparticle (Ag‐NP) were synthesized using this plant extracts using different solvents (methanol, ethyl acetate and aqueous), which exhibit resonance at 426, 424 and 418 nm, respectively. This plant‐mediated Ag‐NPs have strong anti‐bactericidal activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, Serratia marcescens and Bacillus subtilis with methanol extract. Further instance, elemental composition was confirmed by energy dispersive X‐ray analysis and particle size ranges were observed at 80–200 nm with spherical shape nanoparticles by scanning electron microscopy and transmission electron microscopy analysis. The biocompatibility of Ag‐NPs was assessed using fibroblast cell line (L929) by MTT assay with 109.35 µg IC50 value. The oxygen plasma treated and non‐treated bamboo spunlaced nonwoven fabrics were coated with the Ag‐NPs by exhaust method. Contact angle and water retention revealed significant difference in absorption ability of plasma treated fabric. Field emission scanning electron microscopy revealed the presence of Ag‐NPs in plasma coated fabrics. The fabricated cloth was studied for anti‐microbial and microbial penetration ability.Inspec keywords: solvents (industrial), organic compounds, woven composites, field emission scanning electron microscopy, plasma materials processing, contact angle, transmission electron microscopy, X‐ray diffraction, fabrics, biomedical materials, wounds, silver, nanoparticles, particle size, nanofabrication, thermal analysis, antibacterial activity, microorganisms, X‐ray chemical analysisOther keywords: biomedical application, ethnic value, medicinal application, wound healing property, silver nanoparticle synthesis, methanol, ethyl acetate, Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes, Klebsiella pneumonia, nonwoven fabrics, field emission scanning electron microscopy, plasma coated fabrics, fabricated cloth, solvents, antibactericidal activity, Staphylococcus aureus, particle size, transmission electron microscopy, oxygen plasma treatment, bamboo material, Tridax procumbens extracts, Serratia marcescens, Bacillus subtilis, elemental composition, energy dispersive X‐ray analysis, scanning electron microscopy, material biocompatibility, fibroblast cell line, exhaust method, contact angle, water retention, absorption ability, antimicrobial property, microbial penetration ability, size 424.0 nm, size 418.0 nm, size 80.0 nm to 200.0 nm, size 426.0 nm, Ag  相似文献   

5.
The authors report a controlled synthesis of biocompatible ZnO and acarbose‐capped nanohybrids, and examined the inhibition activities of these nanosystems with human salivary α ‐amylase (HSA) activity. XRD measurements reveal ZnO present in wurtzite phase with hexagonal structure. The average size of ZnO particles for the two studied nanosystems was estimated to lie between 10 to 12 nm using Scherrer equation. These particles depict the onset of absorption at about 320 nm and the band‐gap emission at about 370 nm, which are fairly blue shifted as compared with the bulk ZnO and have been understood due to the size quantisation effect. The inhibitory action of thioglycerol capped ZnO nanoparticles (SP1) and acarbose drug (used for diabetes type II) capped ZnO (SP2) for HSA was observed to 61 and72%, respectively. The inhibition activity of the SP1 alone was found to be very similar to that of acarbose and the coating of these particles with drug (SP2) demonstrated an enhancement in inhibition activity of the enzyme by about 30%. From the inhibition studies, it is confirmed that these nanosystems showed better inhibition activity at physiological temperature and pH. These nanosystems are projected to have potential applications in diabetes type II control.Inspec keywords: zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, drugs, enzymes, molecular biophysics, nanomedicine, ultraviolet spectra, nanocomposites, nanofabrication, fluorescence, visible spectra, Fourier transform infrared spectra, atomic force microscopy, scanning electron microscopy, X‐ray diffraction, absorption coefficients, diseases, coatings, field emission electron microscopyOther keywords: acarbose‐capped nanohybrids, inhibitors, biocompatible zinc oxide nanoparticles, inhibition activity, human salivary α‐amylase activity, HSA activity, advanced analytical tools, ultraviolet‐visible spectra, fluorescence, Fourier transform infrared spectrophotometer, atomic force microscopy, field‐emission scanning electron microscopy, X‐ray diffraction, wurtzite phase, hexagonal structure, average size, Scherer equation, onset absorption, band‐gap emissions, size quantisation effect, thioglycerol capped nanoparticles, acarbose drug, enzyme, diabetes type II control, size 10 nm to 12 nm, ZnO  相似文献   

6.
Cotton fibres coated with biogenically fabricated silver nanoparticles (SNPs) are most sought material because of their enhanced activity and biocompatibility. After successful synthesis of SNPs on cotton fibres using leaf extract of Vitex negundo Linn, the fibres were studied using diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X‐ray, and inductively coupled plasma atomic emission spectrometry. The characterisation revealed uniformly distributed spherical agglomerates of SNPs having individual particle size around 50 nm with the deposition load of 423 μg of silver per gram of cotton. Antimicrobial assay of cotton–SNPs fibres showed effective performance against pathogenic bacteria and fungi. The method is biogenic, environmentally benign, rapid, and cost‐effective, producing highly biocompatible antimicrobial coating required for the healthcare industry.Inspec keywords: cotton, health care, nanoparticles, coatings, silver, fibres, nanofabrication, scanning electron microscopy, X‐ray chemical analysis, atomic emission spectroscopy, plasma applications, microorganisms, biotechnologyOther keywords: biocompatible antimicrobial cotton fibre coating, healthcare industry, bioorganic‐coated silver nanoparticle synthesis, biogenically fabricated silver nanoparticle, SNP, leaf extraction, Vitex negundo Linn, diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X‐ray spectrometry, inductively coupled plasma atomic emission spectrometry, uniformly distributed spherical agglomerate, antimicrobial assay, pathogenic bacteria, fungi, Ag  相似文献   

7.
Chondroitin sulphate is a sulphated glycosaminoglycan biopolymer composed over 100 individual sugars. Chondroitin sulphate nanoparticles (NPs) loaded with catechin were prepared by an ionic gelation method using AlCl3 and optimised for polymer and cross‐linking agent concentration, curing time and stirring speed. Zeta potential, particle size, loading efficiency, and release efficiency over 24 h (RE24 %) were evaluated. The surface morphology of NPs was investigated by scanning electron microscopy and their thermal behaviour by differential scanning calorimetric. Antioxidant effect of NPs was determined by chelating activity of iron ions. The cell viability of mesenchymal stem cells was determined by 3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay and the calcification of osteoblasts was studied by Alizarin red staining. The optimised NPs showed particle size of 176 nm, zeta potential of −20.8 mV, loading efficiency of 93.3% and RE24 % of 80.6%. The chatechin loaded chondroitin sulphate NPs showed 70‐fold more antioxidant activity, 3‐fold proliferation effect and higher calcium precipitation in osteoblasts than free catechin.Inspec keywords: nanoparticles, encapsulation, biomedical materials, particle size, nanofabrication, nanomedicine, electrokinetic effects, cellular biophysics, polymer blends, molecular biophysics, molecular configurations, biochemistry, curing, surface morphology, scanning electron microscopy, differential scanning calorimetry, dyes, precipitationOther keywords: in vitro evaluation, cross‐linked chondroitin sulphate nanoparticles, aluminium ions, nanoparticles, green tea flavonoids, sulphated glycosaminoglycan biopolymer, sugars, catechin, ionic gelation method, cross‐linking agent concentration, curing time, size 176 nm, time 24 h, calcium precipitation, 3‐fold proliferation effect, antioxidant activity, chatechin loaded chondroitin sulphate NPs, Alizarin red staining, osteoblasts, calcification, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyl tetrazolium bromide assay, mesenchymal stem cells, cell viability, chelating activity, differential scanning calorimetry, thermal behaviour, scanning electron microscopy, surface morphology, release efficiency, loading efficiency, particle size, zeta potential, stirring speed  相似文献   

8.
In the present study, silver (Ag) and Ag–zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound‐healing efficacy on rat model. Ultraviolet–visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X‐ray diffraction analysis Ag–ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face‐centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag–ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi‐hexagonal NPs with distribution of particle size of 20–40 nm. Furthermore, the authors investigated the wound‐healing properties of Ag–ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.Inspec keywords: wounds, tissue engineering, biomedical materials, nanocomposites, nanofabrication, nanomedicine, silver, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, visible spectra, nanoparticles, particle size, surface plasmon resonance, spectral line shift, X‐ray diffraction, scanning electron microscopy, transmission electron microscopyOther keywords: enhanced wound healing activity, Ag‐ZnO composite nanoparticles, Wistar Albino rats, wound‐healing efficacy, ultraviolet‐visible spectroscopy, intense surface plasmon resonance absorption, aqueous Zn acetate solution, SP resonance band, blue shift, X‐ray diffraction analysis, diffraction peaks, face‐centred cubic structures, scanning electron microscope, SEM, transmission electron microscope, TEM, monodispersed hexagonal nanoparticles, quasihexagonal nanoparticles, particle size, animal model, time 10 d, size 20 nm to 40 nm, Ag‐ZnO  相似文献   

9.
Biosynthesis of nanoparticles through plant extracts is gaining attention due to the toxic free synthesis process. The environmental engineering applications of many metal oxide nanoparticles have been reported. In this study, iron oxide nanoparticles (Fe2 O3 ‐Nps) were synthesised using a simple biosynthetic method using a leaf extract of a mangrove plant Rhizophora mucronata through reduction of 0.01 M ferric chloride. Fe2 O3 ‐Np synthesis was revealed by a greenish colour formation with a surface plasmon band observed close to 368 nm. The stable Fe2 O3 ‐Np possessed excitation and emission wavelength of 368.0 and 370.5 nm, respectively. The Fourier‐transform infrared spectral analysis revealed the changes in functional groups during formation of Fe2 O3 ‐Np. Agglomerations of nanoparticles were observed during scanning electron microscopic analysis and energy‐dispersive X‐ray spectroscopic analysis confirmed the ferric oxide nature. The average particle size of Fe2 O3 ‐Np based on dynamic light scattering was 65 nm. Based on transmission electron microscopic analysis, particles were spherical in shape and the crystalline size was confirmed by selected area electron diffraction pattern analysis. The synthesised Fe2 O3 ‐Np exhibited a good photodegradation efficiency with a reduction of 83 and 95% of phenol red and crystal violet under irradiation of sunlight and florescent light, respectively. This report is a facile synthesis method for Fe2 O3 ‐Np with high photodegradation efficiency.Inspec keywords: photochemistry, dyes, nanofabrication, transmission electron microscopy, scanning electron microscopy, nanoparticles, iron compounds, X‐ray diffraction, catalysts, catalysis, particle size, X‐ray chemical analysis, electron diffraction, Fourier transform infrared spectra, surface plasmonsOther keywords: energy‐dispersive X‐ray spectroscopic analysis, ferric oxide nature, transmission electron microscopic analysis, selected area electron diffraction pattern analysis, iron oxide nanoparticles, plant extracts, toxic free synthesis process, metal oxide nanoparticles, metal nanoparticles, nanofiltration, nanobiocides, Rhizophora mucronata Lam, crystalline size, phenol red, crystal violet, sunlight irradiation, florescent light, scanning electron microscopic analysis, Fourier‐transform infrared spectral analysis, surface plasmon, ferric chloride, leaf extract, nanocatalysts, nanoadsorbents, photocatalytic degradation, synthetic dyes, mangrove plant, water remediation, wastewater pollutant, wavelength 370.5 nm, wavelength 368.0 nm, Fe2 O3   相似文献   

10.
The main emphasis herein is on the eco‐friendly synthesis and assessment of the antimicrobial potential of silver nanoparticles (AgNPs) and a cytotoxicity study. Silver nanoparticles were synthesised by an extracellular method using bacterial supernatant. Biosynthesised silver nanoparticles were characterised by UV‐vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised silver nanoparticles exhibited a characteristic peak at 420 nm. TEM analysis depicted the spherical shape and approximately 20 nm size of nanoparticles. Silver nanoparticles carry a charge of −33.75 mV, which confirms their stability. Biogenic polyvinyl pyrrolidone‐coated AgNPs exhibited significant antimicrobial effects against all opportunistic pathogens (Gram‐positive and Gram‐negative bacteria, and fungi). Silver nanoparticles equally affect the growth of both Gram‐positive and Gram‐negative bacteria, with a maximum inhibition zone observed at 22 mm and a minimum at 13 mm against Pseudomonas aeruginosa and Fusarium graminearum, respectively. The minimum inhibitory concentration (MIC) of AgNPs against P. aeruginosa and Staphylococcus aureus was recorded at between 15 and 20 μg/ml. Synthesised nanoparticles exhibited a significant synergistic effect in combination with conventional antibiotics. Cytotoxicity estimates using C2C12 skeletal muscle cell line via 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase assay were directly related to the concentration of AgNPs and length of exposure. On the basis of the MTT test, the IC50 of AgNPs for the C2C12 cell line was approximately 5.45 μg/ml concentration after 4 h exposure.  相似文献   

11.
Biosynthesis of novel therapeutic nano‐scale materials for biomedical and pharmaceutical applications has been enormously developed, since last decade. Herein, the authors report an ecological way of synthesising the platinum nanoparticles (PtNPs) using Streptomyces sp. for the first time. The produced PtNPs exhibited the face centred cubic system. The fourier transform infrared spectrum revealed the existence of amino acids in proteins which serves as an essential reductant for the formation of PtNPs. The spherical morphology of the PtNPs with an average size of 20–50 nm was observed from topographical images of atomic force microscopy and field emission scanning electron microscopy. The X‐ray fluorescence spectrum confirms the presence of PtNPs with higher purity. The PtNPs size was further confirmed with transmission electron microscopy analysis and the particles were found to exist in the same size regime. Additionally, PtNPs showed the characteristic surface plasmon resonance peak at 262 nm. Dynamic light scattering studies report that 97.2% of particles were <100 nm, with an average particle diameter of about 45 nm. Furthermore, 3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐tetrazolium assay based in vitro cytotoxicity analysis was conducted for the PtNPs, which showed the inhibitory concentration (IC50) at 31.2 µg/ml against Michigan Cancer Foundation‐7 breast cancer cells.Inspec keywords: biomedical materials, materials preparation, nanoparticles, nanomedicine, nanofabrication, cellular biophysics, microorganisms, cancer, platinum, Fourier transform infrared spectra, proteins, atomic force microscopy, scanning electron microscopy, fluorescence, transmission electron microscopy, surface plasmon resonance, light scatteringOther keywords: cytotoxic potentials, biologically fabricated platinum nanoparticles, Streptomyces sp, MCF‐7 breast cancer cells, biosynthesis, therapeutic nanoscale materials, biomedical applications, pharmaceutical applications, Fourier transform infrared spectrum, amino acids, spherical morphology, topographical images, atomic force microscopy, field emission scanning electron microscopy, X‐ray fluorescence spectrum, transmission electron microscopy analysis, surface plasmon resonance, dynamic light scattering, 3‐(4, 5‐dimethyl‐2‐thiazolyl)‐2, 5‐diphenyl‐tetrazolium assay, cytotoxicity analysis, Pt  相似文献   

12.
Silver nanoparticles (Ag NPs) were synthesised using the crude ethyl acetate extracts of Ulva lactuca and evaluated their bioefficacy against two crop‐damaging pathogens. The sets of lattice planes in the XRD spectrum for the Ag NPs were indexed to the 111, 200, 220 and 311 orientations and support the crystalline nature of the Ag NPs. The 3414 and 2968 cm−1 peaks were observed in crude algal thallus extract and they were characteristic of terpenoids. Further, a peak at 1389 cm−1 was observed as fatty acids. The marine macroalgae terpenoids and palmitic acid acted as reducing agent and stabiliser, respectively. The size (3 and 50 nm) and shape (spherical) of Ag NPs were recorded. The energy‐dispersive X‐ray spectroscopy analysis exemplified the presence of silver in its elemental nature. Moreover, U. lactuca Ag NPs were effective against two cotton phytopathogens namely Fusarium oxysporum f.sp. vasinfectum (FOV) and Xanthomonas campestris pv. malvacearum (XAM). The minimum inhibitory concentration was found to be 80.0 and 43.33 μg ml−1 against FOV and XAM, respectively. Results confirmed the anti‐microbial activity of green nanoparticles against select pathogens and suggest their possible usage in developing antifungal agents for controlling destructive pathogens in a cotton agroecosystem.Inspec keywords: nanoparticles, biotechnology, antibacterial activity, silver, microorganisms, X‐ray chemical analysis, crops, X‐ray diffraction, cottonOther keywords: crude ethyl acetate extracts, crop‐damaging pathogens, lattice planes, XRD spectrum, crystalline nature, crude algal thallus, fatty acids, marine macroalgae terpenoids, palmitic acid, energy‐dispersive X‐ray spectroscopy analysis, elemental nature, cotton phytopathogens, green nanoparticles, destructive pathogens, cotton agroecosystem, green preparation, seaweed‐based silver nanoliquid, cotton pathogenic fungi management, silver nanoparticles, Ag NP, Ag  相似文献   

13.
Solid lipid nanoparticles (SLNs) comprise non‐toxic surface‐active lipidic agents combined with appropriate ratios of drugs or essential oils. The goal of this research was to investigate the effects of the SLN synthesised using essential oils of Foeniculum vulgare on the MCF‐7 breast cancer cell line. SLNs were prepared by homogenisation and ultrasound techniques and characterised by dynamic light scattering (DLS), zeta potential assessment, and transmission electron microscopy (TEM). 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay (MTT assay), flow‐cytometry, and Acridine‐Orange assay were employed for assessing the biological activities of the SLNs. The average particle size was 55.43 nm and the net surface charge was −29.54 ± 11.67 mV. TEM showed that the mean particle size was 33.55 nm and the synthesised SLNs had a uniform round morphology. The MTT assay showed that the prepared SLNs had high toxicity against MCF‐7 cells and low toxicity against normal HUVECs cells. Flow‐cytometry revealed a noteworthy rise in the subG1 peak of the cell cycle in the cancer cells treated with SLNs compared to the controls, indicating apoptosis in cancer cells. The results also showed discolouration in SLNs‐treated cells, which further confirmed the induction of apoptosis and the toxicity of the SLNs against MCF‐7 cells.  相似文献   

14.
Applying toxic chemical to the synthesis of stable gold nanoparticles is one of the limitations of gold nanoparticles for therapeutic applications such as photothermal therapy. Plant compounds such as apigenin (API) with therapeutic potential can be applied in the synthesis of gold nanoparticles. API‐coated gold nanoparticles (Api@AuNPs) with an average size of 19.1 nm and a surface charge of −4.3 mV have been synthesized by a simple and efficient technique. The stability of Api@AuNPs in the biological environment was verified through UV‐Vis spectroscopy. Based on Raman and FTIR spectroscopy analysis, chemical binding of API on the surface of Api@AuNPs through hydroxyl and carbonyl functional groups was found to be the main reason for the stability of the Api@AuNPs in comparison with citrate‐coated gold nanoparticles (Cit@AuNPs). The synthesized Api@AuNPs do not cause major toxic effects up to 128 ppm. Api@AuNP‐mediated photothermal therapy leads to the indiscriminate eradication of almost half of both mouse fibroblastic (L929) and colorectal cancer (CT26) cells. Flow‐cytometry analysis revealed that the cell death mechanism is mainly apoptosis. In the apoptosis triggered cell death in photothermal treatment, Api@AuNPs are preferred over commonly used gold nanoparticles in photothermal treatments which mostly trigger the necrosis cell death pathway.  相似文献   

15.
In this study, nanocrystalline magnesium zinc ferrite nanoparticles were successfully prepared by a simple sol–gel method using copper nitrate and ferric nitrate as raw materials. The calcined samples were characterised by differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and X‐ray diffraction. Transmission electron microscopy revealed that the average particle size of the calcined sample was in a range of 17–41 nm with an average of 29 nm and has spherical size. A cytotoxicity test was performed on human breast cancer cells (MDA MB‐231) and (MCF‐7) at various concentrations starting from (0 µg/ml) to (800 µg/ml). The sample possessed a mild toxic effect toward MDA MB‐231 and MCF‐7 after being examined with MTT (3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5 diphenyltetrazolium bromide) assay for up to 72 h of incubation. Higher reduction of cells viability was observed as the concentration of sample was increased in MDA MB‐231 cell line than in MCF‐7. Therefore, further cytotoxicity tests were performed on MDA MB‐231 cell line.Inspec keywords: sol‐gel processing, nanoparticles, nanofabrication, magnesium compounds, zinc compounds, toxicology, biological organs, cancer, cellular biophysics, nanomedicine, calcination, differential thermal analysis, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, particle size, organic compoundsOther keywords: sol‐gel method, cytotoxic effects, breast cancer cell line, MDA MB‐231 in vitro, nanocrystalline magnesium zinc ferrite nanoparticles, copper nitrate, ferric nitrate, raw materials, calcined samples, differential thermal analysis, thermogravimetric analysis, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, average particle size, cytotoxicity testing, human breast cancer cells, mild toxic effect, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5 diphenyltetrazolium bromide) assay, cell viability, MCF‐7, MDA MB‐231 cell line, size 17 nm to 41 nm  相似文献   

16.
A facile synthesis of gold nanoparticles (GNPs) using the aqueous extracts of the aerial roots of Rhaphidophora aurea (Linden ex Andre) intertwined over Lawsonia inermis and Areca catechu was carried out under different conditions, namely room temperature, higher temperature, sonication, solar irradiation and pH variation. The surface plasmon resonance (SPR) band at 536 and 575 nm obtained in UV–visible spectrum revealed the formation of AuNP''s. The sharp SPR band of the synthesised nanogold indicates the formation of spherical‐shaped and uniform‐sized nanoparticles. The TEM analysis revealed spherical nanogold particles of size 35 and 10 nm for MM and MP extracts. The secondary metabolites present in the aqueous extract are suggested to be responsible for the reduction of metal ions to metal nanoparticles as evidenced from results of FTIR analysis. Rapid synthesis of GNPs by sunlight is the production of microscopic grains of gold due to the dissociation of gold chloride. This may induce the reaction between secondary metabolites and gold chloride solutions and results in GNPs. The cytotoxic activity of the synthesised nanogold studied against human breast cancer cells (MCF‐7) by 3‐[4,5‐dimethylthiazol‐2‐yl]2,5‐diphenyltetrazolium bromide assay showed significant activity at higher concentration.Inspec keywords: toxicology, gold, nanoparticles, nanomedicine, nanofabrication, cellular biophysics, particle size, surface plasmon resonance, ultraviolet spectra, visible spectra, transmission electron microscopy, dissociation, cancer, biological organs, Fourier transform infrared spectraOther keywords: cytotoxicity, spherical gold nanoparticles, aerial roots, Rhaphidophora aurea, Linden ex Andre, Lawsonia inermis, Areca catechu, MCF‐7 cell line, sonication, solar irradiation, pH variation, surface plasmon resonance, UV–visible spectrum, spherical‐shaped nanoparticles, uniform‐sized nanoparticles, TEM analysis, spherical nanogold particles, secondary metabolites, metal ions, FTIR analysis, microscopic grains, dissociation, gold chloride solutions, cytotoxic activity, human breast cancer cells, 3‐[4,5‐dimethylthiazol‐2‐ yl]2,5‐diphenyltetrazolium bromide assay, wavelength 536 nm, wavelength 575 nm, Au  相似文献   

17.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

18.
The authors have synthesised a core‐shell Fe3O4@TiO2 nanocomposite consisting of Fe3O4 as a magnetic core, and TiO2 as its external shell. The TiO2 shell is primarily intended for use as a biocompatible and antimicrobial carrier for drug delivery and possible other applications such as wastewater remediation purposes because of its known antibacterial and photocatalytic properties. The magnetic core enables quick and easy concentration and separation of nanoparticles. The magnetite nanoparticles were synthesized by a hydrothermal route using ferric chloride as a single‐source precursor. The magnetite nanoparticles were then coated with titanium dioxide using titanium butoxide as a precursor. The core‐shell Fe3O4@TiO2 nanostructure particles were characterized by XRD, UV spectroscopy, and FT‐IR, TEM, and VSM techniques. The saturation magnetization of Fe3O4 nanoparticles was significantly reduced from 74.2 to 13.7 emu/g after the TiO2 coating. The antibacterial studies of magnetic nanoparticles and the titania‐coated magnetic nanocomposite were carried out against gram+ve, and gram–ve bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Shigella flexneri , Escherichia coli, and Salmonella typhi) using well diffusion technique. The inhibition zone for E. coli (17 mm after 24 h) was higher than the other bacterial strains; nevertheless, both the uncoated and TiO2‐coated magnetite nanocomposites showed admirable antibacterial activity against each of the above bacterial strains.  相似文献   

19.
The present study reports a simple and low cost synthesis of zero‐valent silver nanoparticles (ZVSNPs) from silver nitrate using the leaf extract of Spondias dulcis. The ZVSNPs showed a unique peak at 420 nm in UV–vis spectrum. The SEM image portrayed cuboidal shaped particles. The EDX spectrum designated the elemental silver peak at 3 keV. In XRD, a sharp peak at 32.47° denoted the existence of (1 0 1) lattice plane and the average crystallite size was calculated as 48.61 nm. The lattice parameter was determined as 0.39 nm. The FTIR spectra of the leaf extract and ZVSNPs showed shifts in the specific functional group bands which ascertained the involvement of phytoconstituents in the formation and capping of nanoparticles. The average hydrodynamic size was measured as 59.66 nm by DLS method. A low PDI, 0.187 witnessed the monodispersity. A negative zeta potential value of −15.7 mV indicated the negative surface charges of the nanoparticles. The bactericidal action of ZVSNPs was demonstrated against two pathogens S.typhimurium and E.coli during which a dosage dependent zone of inhibition results was observed. Additionally, the catalytic potential of ZVSNPs was examined for the degradation of methylene blue dye in which an accelerated degradation of the dye was observed.Inspec keywords: antibacterial activity, crystallites, electrokinetic effects, scanning electron microscopy, nanoparticles, particle size, ultraviolet spectra, X‐ray chemical analysis, microorganisms, light scattering, nanofabrication, materials preparation, X‐ray diffraction, visible spectra, silver, dyes, Fourier transform infrared spectraOther keywords: wavelength 420.0 nm, Ag, voltage ‐15.7 mV, size 59.66 nm, size 0.39 nm, size 48.61 nm, electron volt energy 3.0 keV, Fourier transform infrared spectra, methylene blue dye, bactericidal action, dynamic light scattering, lattice parameter, Escherichia coli, Salmonella typhimurium, Spondias dulcis, negative zeta potential, polydispersity index, crystallite size, leaf extract, X‐ray diffraction, energy dispersive X‐ray spectrum, cuboidal‐shaped particles, scanning electron microscopy image, ultraviolet–visible spectrum, silver nitrate, zero‐valent silver nanoparticles  相似文献   

20.
The study describes the synthesis of silver nanoparticles using 21 different plant extracts having medicinal properties. Molecular ultraviolet‐visible spectroscopy shows that the λ max of nanoparticles synthesised by different plant extracts varied and ranged between 400 and 468 nm. The ultraviolet results revealed that although synthesis of nanoparticles occurred by all plant extracts successfully, their size varies, this was further confirmed by differential light scattering. The synthesised nanoparticles were investigated for their antimicrobial properties. The most promising silver nanoparticles Ocimum sanctum and Artemisia annua assisted were further characterised using transmission electron microscopy and energy dispersive X‐ray spectroscopy (EDX). EDX data confirms that synthesised nanoparticles are highly pure. Further these two plant assisted nanoparticles were studied for chemocatalytic and adsorptive properties. The silver nanoparticles from Ocimum sanctum can catalyse the reduction of 4‐nitrophenol (63%) within 20 min in the presence of NaBH4, whereas Artemisia annua assisted silver nanoparticles did not show significant chemocatalytic activity. Both the promising nanoparticles can efficiently adsorb textile dyes from aqueous solutions. These synthesised nanoparticles were also exploited to remove microbial and other contaminants from Yamuna River water. The nanoparticles show excellent antimicrobial properties and can be reused repeatedly.Inspec keywords: antibacterial activity, nanofabrication, silver, dyes, light scattering, visible spectra, microorganisms, X‐ray diffraction, transmission electron microscopy, X‐ray chemical analysis, catalysis, nanoparticles, ultraviolet spectra, adsorption, reduction (chemical)Other keywords: sustainable green synthesised nontoxic silver nanoparticles, silver nitrate, molecular ultraviolet–visible spectroscopy, plant assisted nanoparticles, plant extracts, Ocimum sanctum, Artemisia annua, E. coli, C. albicans, plasmon absorbance, differential light scattering, energy dispersive X‐ray spectroscopy, 4‐nitrophenol, chemocatalytic activity, Yamuna River water, antimicrobial properties, time 20.0 min, time 5.0 min to 240.0 hour, size 1.0 nm to 5.0 nm, size 5.0 nm to 20.0 nm, wavelength 400.0 nm to 468.0 nm, NaBH4 , Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号