首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过调控合成方式、改变原料比例,制备纳米棒状、纳米球状、椭球状、圆柱状及棋子状等不同形貌及硅铝比的ZSM-5分子筛,并对其催化甲缩醛气相羰基化反应性能进行详细考察。在110℃、0.6 MPa、CO与甲缩醛流速分别为100 mL·min-1和0.035 mL·min-1条件下,硅铝物质的量比为30的棋子形ZSM-5分子筛表现出最佳的催化活性,甲缩醛转化率达31.9%,目标产物甲氧基乙酸甲脂选择性为21.4%。通过XRD、SEM、XRF、Py-FTIR、NH 3-TPD以及27 Al MAS NMR等对合成的分子筛进行详细表征,发现调控分子筛形貌及硅铝物质的量比可改变ZSM-5分子筛的酸性特征,并改变分子筛骨架中活性铝物种分布。适量的中强B酸酸位及分子筛交叉孔道内较高比例的活性铝物种分布可能是硅铝物质的量比30的棋子形ZSM-5分子筛表现出较好催化活性的原因。  相似文献   

2.
脱水处理对HZSM-5分子筛甲苯择形歧化性能的影响   总被引:1,自引:0,他引:1  
通过27Al MAS NMR、NH3-TPD和FT-IR等表征手段研究了脱水处理对HZSM-5分子筛催化剂的结构和催化性能的影响。HZSM-5分子筛经过371 ℃水蒸汽处理后,分子筛的部分骨架铝脱出,形成非骨架铝物种,该非骨架铝物种对甲苯择形歧化反应具有较大影响。HZSM-5分子筛的酸性变化主要是由于非骨架铝物种SiAl(OH)的变化而引起,随着脱水温度的升高,HZSM-5分子筛酸中心的强度下降,但酸中心数量增加,当脱水温度为400 ℃时,HZSM-5分子筛的酸中心强度和数量达到最佳,甲苯转化率为28.2%。脱水过程中,甲苯的引入可以阻止HZSM-5分子筛催化剂进一步脱水,起到稳定催化剂活性中心的作用,使催化剂的性能较为稳定。  相似文献   

3.
考察了SiO2-Al2O3-TPABr-NH3·H20—H2O体系晶化时间、晶化温度和原料用量等对合成HZSM-5性能的影响。当n(SiO2):n(Al2O3)=100、n(TPABr):n(SiO2)=0.1、n(NH3):n(SiO2)=1.5、n(H2O):n(SiO2)=22和晶种添加质量分数为4%时,180℃静态晶化72h,合成收率与相对结晶度分别为10.1%和99.8%,对应理论收率为11.4%,合成收率与理论收率比为0.89。当投料n(SiO2):n(A1203)从50增加到400,合成收率与结晶度分别超过8.9%和82.8%,合成收率与理论收率比为0.76—0.89;样品酸量随着n(SiO:):n(Al2O3)的增加逐渐减小,比表面积为405m2·g-1,合成样品HZSM-5对甲醇制烯烃反应具有良好的酸催化活性。设定反应条件,采用投料n(SiO2):n(AlO3)=250的样品,甲醇转化率、丙烯选择性和C=2~C=4选择性分别为100%、39.27%和62.01%。  相似文献   

4.
不同硅铝比HZSM-5分子筛的甲醇制芳烃性能   总被引:2,自引:0,他引:2  
采用固定床反应器,以甲醇为原料,在反应温度为430℃和反应空速为2 h-1的条件下,考察了不同硅铝比HZSM-5分子筛催化剂的甲醇制芳烃反应(MTA)性能,并采用X射线衍射(XRD)、氨气程序升温脱附(NH3-TPD)、物理吸附、傅立叶红外光谱(FT-IR)等技术对催化剂进行了表征。结果表明:MTA反应是强酸主导的催化反应,随着分子筛硅铝比的降低,分子筛总酸量逐渐增加,强酸相对总量逐渐提高,其中弱酸相对总量降低。这主要是由于分子筛中Al含量逐渐上升,作为强酸位的Si-OH-Al逐渐增加所致,催化剂反应活性与之呈正向相关的关系。当HZSM-5催化剂中的强弱酸总量比由0.3增加到0.6时,苯-甲苯-二甲苯(BTX)的选择性由36%增至64%,说明催化剂的活性显著提高;当强弱酸总量比由1.1增至1.5时,BTX选择性变化仅为0.92%,催化性能提升不明显,HZSM-5分子筛的MTA反应性能与其硅铝比呈反向相关关系。  相似文献   

5.
考察SiO_2-Al_2O_3-EDA-CTAB-CO(NH2)2-H2O体系中水热法一步晶化程序合成多级孔HZSM-5分子筛时各因素对产品性能的影响。在投料n(SiO_2)∶n(Al_2O_3)=150、n[CO(NH2)2]∶n(SiO_2)=1.5和180℃一步晶化72 h时,合成多级孔HZSM-5分子筛的结晶度为99%。n(SiO_2)∶n(Al_2O_3)从50增至250,多级孔HZSM-5分子筛结晶度先增加后降低;随着n(SiO_2)∶n(Al_2O_3)增加,多级孔HZSM-5分子筛的微孔体积减小,介孔体积逐渐增大,比表面积大于400 m2·g-1。合成的多级孔HZSM-5分子筛对甲醇制烯烃反应具有良好的催化活性,不同n(SiO_2)∶n(Al_2O_3)合成的样品在反应时间80 h前,甲醇转化率均接近100%;n(SiO_2)∶n(Al_2O_3)=150的多级孔HZSM-5上丙烯选择性和乙烯选择性分别为45.11%和11.30%。  相似文献   

6.
佟玲  张谦温  张启俭 《辽宁化工》2007,36(7):443-445,447
采用固定床高压反应装置,以工业用(CuO/ZnO/Al2O3)作为甲醇合成催化剂,四种不同硅铝比(硅铝比为25、38、50和150)的HZSM-5作为甲醇脱水催化剂,二者机械混合制备出一步法合成二甲醚双功能催化剂。考察了催化剂中脱水组分(HZSM-5分子筛)的硅铝比对二甲醚合成反应的影响,并通过BET、XRD和NH,-TPD等手段对催化剂进行表征。结果表明,一步法合成二甲醚催化剂中脱水组分HZSM-5的最佳的硅铝比为50。  相似文献   

7.
考察焙烧温度对HZSM-5分子筛催化剂结构及1-丁烯齐聚性能的影响,采用XRD、SEM和NH3-TPD对催化剂进行表征。结果表明,升高焙烧温度,对HZSM-5分子筛催化剂的晶相和晶粒尺寸没有影响,催化剂中弱酸与强酸的酸强度和酸量均随焙烧温度的升高逐渐减弱。在催化剂晶粒尺寸一定条件下,催化剂酸性对催化剂的齐聚性能有较大影响,焙烧温度500℃时,C5+收率和C10+选择性最佳。  相似文献   

8.
为使HZSM-5具有较高的甲苯歧化催化活性,提高对二甲苯的选择性以及催化剂的抗积炭稳定性,采用钛酸四丁酯、正硅酸乙酯和亚磷酸二乙酯对HZSM-5催化剂进行化学气相沉积改性。分别采用红外光谱和吡啶程序升温脱附(TPD)表征了改性前后催化剂表面酸中心性质。实验结果表明,HZSM-5沸石气相化学沉积覆Ti、Si和P的氧化物后,表面酸中心类型和弱酸中心密度没有改变,强酸中心密度有所下降,其中化学气相覆P的HZSM-5酸中心强度明显增强。改性后的HZSM-5沸石用于甲苯歧化反应催化剂时,经过气相化学沉积覆Si和P的HZSM-5催化剂不仅能提高甲苯歧化催化活性,而且能够大幅度提高催化剂的抗积炭能力。  相似文献   

9.
考察不同硅铝比的HZSM-5分子筛催化剂和经过高温水蒸汽处理后的HZSM-5分子筛催化剂在甲醇制丙烯反应中的催化性能,考察温度和空速对催化反应的影响。结果表明,随着HZSM-5分子筛硅铝比的增加,产物中丙烯选择性增大,可能是分子筛的酸性降低所致;经过高温水蒸汽处理后的HZSM-5分子筛表面酸性降低,提高了催化剂的催化性能。在反应温度450 ℃和空速1.0 h-1条件下,600 ℃高温水蒸汽处理后的催化剂HT-600的丙烯选择性从改性前的26.8%提高到33.5%。  相似文献   

10.
以四丙基氢氧化铵为模板剂,碱性有机生物分子L-Lysine为添加剂,水热合成系列不同硅铝物质的量比的纳米HZSM-5分子筛,结合XRD、SEM、Py-FTIR和N2吸附-脱附技术,探讨分子筛结构形态、酸性与其在乙酸和丁醇酯化反应中的催化性能关系。结果表明,纳米HZSM-5分子筛催化剂的酸性位与比表面积、孔径和孔容等结构形态间存在协同作用,共同决定最终的催化效果;在反应温度125℃、乙酸用量0.125 mol、醇酸物质的量比2∶1、带水剂苯用量为10 m L、催化剂用量0.4 g和反应时间4.5 h条件下,乙酸转化率93.65%,乙酸丁酯选择性大于97%。催化剂重复使用6次,乙酸转化率仍大于90%,重复使用性能较好。  相似文献   

11.
以不同浓度的NaOH溶液对HZSM-5分子筛进行碱处理改性后所得多级孔ZSM-5分子筛作为活性组分制备甲醇制芳烃催化剂,采用XRD、SEM、NH3-TPD和N2吸-脱附等手段对催化剂进行了表征,分别考察了碱处理改性对分子筛催化剂骨架结构、酸性质、孔结构以及催化性能的影响.结果表明,通过合适浓度的NaOH碱溶液处理后,HZSM-5分子筛在保持微孔骨架结构的同时,可以调变其晶内介孔孔道结构分布以及酸性质.随着NaOH碱溶液浓度升高,HZSM-5分子筛的酸量、介孔孔容、介孔表面积都增加、孔容分布变宽,催化剂的活性和稳定性等催化性能得以改善.HZSM-5分子筛碱处理改性适宜的NaOH溶液浓度为0.4 mol/L,改性后的催化剂芳烃收率由25.07%增加到32.22%,使用寿命由8d增加到16d,但NaOH溶液浓度超过0.6 mol/L后会严重破坏HZSM-5分子筛骨架结构,催化活性下降较快.  相似文献   

12.
采用二次生长法在不锈钢管内壁上制备了不同n(硅)∶n(铝)的HZSM-5分子筛膜.采用XRD、SEM和原位吡啶吸附红外光谱对样品的结构和酸性质进行了表征,以超临界正十二烷的催化裂解为模型反应对样品的催化性能进行了评价.随着n(硅)∶n(铝)的增加,HZSM-5交织生长程度变大并且Brφnsted酸量逐渐减少.低n(硅)∶n(铝)的分子筛膜表面具有较高的Brφnsted酸量,在反应的初始阶段存在活性的快速下降行为.适当增加分子筛膜的n(硅)∶n(铝),可以减缓反应初始阶段的活性下降速度,从而明显提高HZSM-5分子筛膜的催化活性.但过高的n(硅)∶n(铝)使分子筛膜表面的酸量大幅减少、致密性增加,不利于裂解反应.n(硅)/n(铝)为125的HZSM-5分子筛膜具有最高的反应活性和初始活性稳定性.  相似文献   

13.
分别用非金属、碱金属、碱土金属、过渡金属以及稀土金属对HZSM-5催化剂进行改性,考察了改性催化剂对低碳烯烃的选择性影响,并选取改性效果较好的元素组合制备双金属改性催化剂,以进一步提高低碳烯烃的选择性。结果表明,双金属改性催化剂可明显提高C2=~C4=的总烯烃选择性,副产物得到了有效抑制。其中,钾-钙改性后丙烯的选择性最好,从25%提高到42%;钙-铈改性后,乙烯选择性较高,从25%提高到43%;钾-锌和钙-锌改性后,低碳烯烃选择性下降,二甲醚的选择性呈现不断上升趋势,从5%提高到60%左右。改性催化剂对反应过程的影响从一定程度上验证了本文提出的MTO反应网络。  相似文献   

14.
采用共浸渍法制备了不同Co含量的Mo-Co/HZSM-5系列双金属分子筛催化剂,利用N_2吸附脱附和NH3-TPD对其进行了表征,考察了其在甲烷无氧芳构化反应中的催化活性,并探讨了Co添加对催化活性的影响。结果表明,Co添加使得Mo与Co形成协同作用,提高了Mo物种的分散性和B酸位的酸强度,从而大大提高了催化剂的催化活性和苯的选择性。其中,Mo6%-Co0. 8%/HZSM-5催化剂的甲烷转化率和苯选择性为最佳。  相似文献   

15.
对两种不同硅铝比的HZSM-5分子筛进行碱处理,制备介-微孔复合HZSM-5分子筛,研究乙醇脱水制乙烯的催化性能,并考察碱溶液浓度和处理温度对HZSM-5分子筛孔结构和表面酸性的影响。结果表明,适宜的碱处理条件有利于分子筛发生骨架脱硅和脱铝,从而形成介孔。碱处理对硅铝比低的HZSM-5分子筛酸性质影响明显,而硅铝比高的HZSM-5分子筛在碱处理过程中酸性质变化不明显,更易发生脱硅和脱铝而形成更多介孔。碱改性介-微孔HZSM-5分子筛催化剂使乙醇脱水制乙烯催化性能得到改善,尤其低温催化活性提高,这主要归功于碱处理中介孔的形成和表面酸性的调变。  相似文献   

16.
对HZSM-5分子筛改性是提高甲醇制汽油反应催化性能的有效方式,分别用非金属、稀土金属及水热处理对HZSM-5分子筛催化剂进行改性,考察改性方法对HZSM-5分子筛酸性、孔径和比表面积等性质的影响,同时对改性HZSM-5分子筛催化剂催化甲醇制汽油的汽油收率和芳烃含量等指标进行比较。结果表明,经La改性的催化剂可明显提高汽油收率,水热处理的催化剂反应产物汽油中的均四甲苯含量大幅增加。改性催化剂对反应的影响可一定程度验证相关理论。  相似文献   

17.
18.
合成气经二甲醚(DME)羰基化合成乙酸甲酯(MA),MA进一步加氢制备乙醇是一种新型高效的煤基合成气制备乙醇路线。采用温和的后处理方法改性DME羰基化分子筛,进一步提高DME羰基化效率,对其工业应用具有重要意义。本研究利用四乙基氢氧化铵(TEAOH)对HMOR分子筛改性处理,探讨了有机碱改性处理对HMOR分子筛的结构和DME羰基化催化性能的影响。研究发现,TEAOH浓度为0.3 mol/L时,HMOR分子筛介孔孔容增大约26%,外比表面积增大约10%,DME的转化率增幅达68%。TEAOH水解产生的OH-能够温和脱除HMOR分子筛中的骨架硅,获得介-微多级孔结构,提高DME羰基化反应过程中的传质速率。此外,水解的TEA+在分子筛表面富集,抑制了OH-的过度脱硅,保护分子筛基本骨架结构不被更深层次破坏。  相似文献   

19.
该文探究了异丙醇制异丙醚反应中HZSM-5分子筛硅铝物质的量比、反应温度和反应时间对催化效果的影响.结果表明,首先对催化剂进行预处理,在硅铝物质的量比为60、反应温度为190℃及反应时间为6 h的条件下,异丙醚的转化率最大为44.26%,选择性为95.16%.  相似文献   

20.
朱静  赵亮  王海彦  马骏 《工业催化》2005,13(8):18-20
在反应温度430 ℃、压力0.1 MPa、液时空速1 h-1条件下,进行催化裂化汽油中间馏分(75~120 ℃)的芳构化反应,考察了锌和磷含量对催化剂性能的影响。实验结果表明,当锌和磷质量分数分别为2%和4%时,改性催化剂芳构化活性及芳烃选择性最佳,其烯烃转化率、芳烃含量和芳烃收率分别为94.53 %、68.8 % 和51.74 %。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号