首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The recently developed technique of field-induced droplet ionization (FIDI) is applied to study interfacial chemistry of a single droplet. In a new variation of the FIDI method, 1-2-mm-diameter droplets hang from a capillary and undergo heterogeneous reactions between solution-phase analytes and gas-phase species. Following a specified reaction time, the application of a high electric field induces FIDI in the droplet, generating fine jets of highly charged progeny droplets that are characterized by mass spectrometry. Sampling over a range of delay times following exposure of the droplet to gas-phase reactants, the spectra yield the temporal variation of reactant and product concentrations. We illustrate the technique with three examples: the adsorption of the polycyclic aromatic hydrocarbon naphthalene into a water-methanol droplet, the ozonolysis of oleic acid, and localization of the carbon-carbon double bond within a lysophosphatidic acid. Gas-phase naphthalene reacts with 80% methanol-20% water droplets containing 100 microM silver nitrate. Positive ion mass spectra show increasing concentrations of silver ion-naphthalene adducts as exposure times increase. To examine the ozonolysis of organic molecules, gas-phase ozone generated by a mercury pencil-style lamp reacts with either 10 microM oleic acid or 100 microM oleoyl-L-alpha-lysophosphatidic acid (LPA; 18:1). Negative ion spectra from the ozonolysis of oleic acid show azelaic acid and 9-oxononanoic acid as the principle reaction products. Ozonolysis products from LPA (18:1) unambiguously demonstrate the double bond position in the original phospholipid.  相似文献   

2.
A comparative study on atmospheric polycyclic aromatic hydrocarbons (PAHs) in particulate matter and the gaseous phase was performed at an urban and a residential site in Osaka, Japan, during 2005-2006. PAH concentrations at the urban site were found to be approximately twice higher than those at the residential site. At both sites, particulate PAH concentrations increased mainly in winter while the trends of temporal change in gaseous PAH concentrations were not clearly observed. The main sources of PAHs were estimated to be local traffic, e.g., diesel engines with catalytic converter. PAH concentrations did not significantly negatively correlate with ozone concentrations and meteorological parameters. Gas-particle partitioning coefficients of representative PAHs with low molecular weight (LMW) significantly negatively correlated with ambient temperature, showing that temporal change in the LMW PAH concentrations in PM could be attributable to the shift of their gas-particle distribution caused by the change in ambient temperature. For the first time, we studied the effect of the formation of atmospherically stable layer following an increase in PAH concentrations in Japan. At the urban site, PAHs showed a significant positive correlation with potential temperature gradients, indicating that temporal variability in PAH concentrations would be dominantly controlled by the formation of atmospherically stable layer in Osaka area.  相似文献   

3.
A facile and green synthesis of the Ag/ZnO nanocomposite by extract of Valeriana officinalis L. root in the absence of any stabiliser or surfactant has been reported in this work. The green synthesised Ag/ZnO nanocomposite was characterised by Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X‐ray spectroscopy (EDS), elemental mapping, Fourier‐Transform infrared (FT‐IR), X‐ray diffraction analysis (XRD) and UV‐Vis spectroscopy. According to SEM and TEM images, the Ag and ZnO particles are spherical with diameters of less than 20 and 40–50 nm, respectively. The Ag NPs/ZnO nanocomposite proved to be an effective catalyst in the reduction of various dyes including methyl orange (MO), Congo red (CR) and methylene blue (MB) in the presence of NaBH4 in aqueous media at ambient temperature. A maximum degradation (100%) of dyes was performed using Ag/ZnO nanocomposite. The extraordinary performance of the prepared Ag/ZnO nanocomposite is attributed to the synergetic effect induced by both ZnO and Ag NPs in the catalytic degradation of organic dyes. The catalyst could be reused and recovered several times with no significant loss of catalytic activity.Inspec keywords: nanocomposites, silver, zinc compounds, II‐VI semiconductors, nanofabrication, catalysts, reduction (chemical), field emission electron microscopy, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, X‐ray diffraction, surface morphology, nanoparticles, dyesOther keywords: green synthesis, nanocomposite, Valeriana officinalis L. root extract, reusable catalyst, reduction, organic dyes, surfactant, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, elemental mapping, Fourier‐transform infrared spectroscopy, X‐ray diffraction analysis, surface morphology, nanoparticles, methyl orange, congo red, methylene blue, UV–Vis spectroscopy, size 40 nm to 50 nm, wavelength 493 nm, wavelength 465 nm, wavelength 663 nm, Ag‐ZnO  相似文献   

4.
In this study, we investigated how the chemical degradability of polycyclic aromatic hydrocarbons (PAHs) in aged soil samples from various contaminated sites is influenced by soil characteristics and by PAH physico-chemical properties. The results were evaluated using the multivariate statistical tool, partial least squares projections to latent structures (PLS). The PAH-contaminated soil samples were characterised (by pH, conductivity, organic matter content, oxide content, particle size, specific surface area, and the time elapsed since the contamination events, i.e. age), and subjected to relatively mild, slurry-phase Fenton's reaction conditions. In general, low molecular weight PAHs were degraded to a greater extent than large, highly hydrophobic variants. Anthracene, benzo(a)pyrene, and pyrene were more susceptible to degradation than other, structurally similar, PAHs; an effect attributed to the known susceptibility of these compounds to reactions with hydroxyl radicals. The presence of organic matter and the specific surface area of the soil were clearly negatively correlated with the degradation of bi- and tri-cyclic PAHs, whereas the amount of degraded organic matter correlated positively with the degradation of PAHs with five or six fused rings. This was explained by enhanced availability of the larger PAHs, which were released from the organic matter as it degraded. Our study shows that sorption of PAHs is influenced by a combination of soil characteristics and physico-chemical properties of individual PAHs. Multivariate statistical tools have great potential for assessing the relative importance of these parameters.  相似文献   

5.
A comparison of the feasibility of the three operational modes of pressurized hot solvent extraction (PHSE) (namely, static, where a fixed extractant volume is used; dynamic, where the extractant continually flows through the sample; and static-dynamic mode, which consists of a combination of the two previous modes) for the extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental solid samples (such as soil, sediment, trout, and sardine) has been performed. In all cases, a sodium dodecyl sulfate (SDS) aqueous solution was used as leaching agent. The use of a flow injection manifold between the extractor and a molecular fluorescence detector allowed real-time on-line fluorescence monitoring of the PAHs extracted from the samples, thus working as a screening system and providing qualitative and semiquantitative information on the target analytes extracted from both natural and spiked samples. The on-line monitoring option allowed the extraction kinetics to be monitored and the end of the leaching step to be determined independently of the sample matrix, thereby reducing extraction times. Efficiencies close to 100% have been provided by the three modes, which differ in the extraction time required for total removal of the target compounds. The time needed for the dynamic mode was shorter than that for the static mode. However, the establishment of a static extraction step prior to dynamic extraction was the key to shorten the time required for complete extraction. The method has been applied to a certified reference material (CRM 524, BCR, industrial soil/organics) for quality assurance/validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号