首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.  相似文献   

2.
In the brain of teleost fish, radial glial cells are the major type of astroglial cells. To answer the question as to how radial glia structures adapt to the continuous growth of the brain, which is characteristic of salmonids, it is necessary to study various types of cells (neuronal precursors, astroglial cells, and cells in a state of neuronal differentiation) in the major integrative centers of the salmon brain (telencephalon and tectum opticum), using rainbow trout, Oncorhynchus mykiss, as a model. A study of the distribution of several molecular markers in the telencephalon and tectum with the identification of neural stem/progenitor cells, neuroblasts, and radial glia was carried out on juvenile (three-year-old) O. mykiss. The presence of all of these cell types provides specific conditions for the adult neurogenesis processes in the trout telencephalon and tectum. The distribution of glutamine synthetase, a molecular marker of neural stem cells, in the trout telencephalon revealed a large population of radial glia (RG) corresponding to adult-type neural stem cells (NSCs). RG dominated the pallial region of the telencephalon, while, in the subpallial region, RG was found in the lateral and ventral zones. In the optic tectum, RG fibers were widespread and localized both in the marginal layer and in the periventricular gray layer. Doublecortin (DC) immunolabeling revealed a large population of neuroblasts formed in the postembryonic period, which is indicative of intense adult neurogenesis in the trout brain. The pallial and subpallial regions of the telencephalon contained numerous DC+ cells and their clusters. In the tectum, DC+ cells were found not only in the stratum griseum periventriculare (SGP) and longitudinal torus (TL) containing proliferating cells, but also in the layers containing differentiated neurons: the central gray layer, the periventricular gray and white layers, and the superficial white layer. A study of the localization patterns of vimentin and nestin in the trout telencephalon and tectum showed the presence of neuroepithelial neural stem cells (eNSCs) and ependymoglial cells in the periventricular matrix zones of the brain. The presence of vimentin and nestin in the functionally heterogeneous cell types of adult trout indicates new functional properties of these proteins and their heterogeneous involvement in intracellular motility and adult neurogenesis. Investigation into the later stages of neuronal development in various regions of the fish brain can substantially elucidate the major mechanisms of adult neurogenesis, but it can also contribute to understanding the patterns of formation of certain brain regions and the involvement of RG in the construction of the definite brain structure.  相似文献   

3.
Radial glial cells are a distinct non-neuronal cell type that, during development, span the entire width of the brain walls of the ventricular system. They play a central role in the origin and placement of neurons, since their processes form structural scaffolds that guide and facilitate neuronal migration. Furthermore, glutamatergic signaling in the radial glia of the adult cerebellum (i.e., Bergmann glia), is crucial for precise motor coordination. Radial glial cells exhibit spontaneous calcium activity and functional coupling spread calcium waves. However, the origin of calcium activity in relation to the ontogeny of cerebellar radial glia has not been widely explored, and many questions remain unanswered regarding the role of radial glia in brain development in health and disease. In this study we used a combination of whole mount immunofluorescence and calcium imaging in transgenic (gfap-GCaMP6s) zebrafish to determine how development of calcium activity is related to morphological changes of the cerebellum. We found that the morphological changes in cerebellar radial glia are quite dynamic; the cells are remarkably larger and more elaborate in their soma size, process length and numbers after 7 days post fertilization. Spontaneous calcium events were scarce during the first 3 days of development and calcium waves appeared on day 5, which is associated with the onset of more complex morphologies of radial glia. Blockage of gap junction coupling inhibited the propagation of calcium waves, but not basal local calcium activity. This work establishes crucial clues in radial glia organization, morphology and calcium signaling during development and provides insight into its role in complex behavioral paradigms.  相似文献   

4.
The mammalian preoptic area (POA) has large populations of calbindin (CB), calretinin (CR) and parvalbumin (PV) neurons, but phenotypes of these cells are unknown. Therefore, the question is whether neurons expressing CB, CR, and/or PV are GABAergic or glutamatergic. Double-immunofluorescence staining followed by epifluorescence and confocal microscopy was used to determine the coexpression patterns of CB, CR and PV expressing neurons with vesicular GABA transporters (VGAT) as specific markers of GABAergic neurons and vesicular glutamate transporters (VGLUT 2) as specific markers of glutamatergic neurons. The guinea pig was adopted as, like humans, it has a reproductive cycle with a true luteal phase and a long gestation period. The results demonstrated that in the guinea pig POA of both sexes, ~80% of CB+ and ~90% of CR+ neurons coexpress VGAT; however, one-fifth of CB+ neurons and one-third of CR+ cells coexpress VGLUT. About two-thirds of PV+ neurons express VGAT, and similar proportion of them coexpress VGLUT. Thus, many CB+, CR+ and PV+ neurons may be exclusively GABAergic (VGAT-expressing cells) or glutamatergic (VGLUT-expressing cells); however, at least a small fraction of CR+ cells and at least one-third of PV+ cells are likely neurons with a dual GABA/glutamate phenotype that may coexpress both transporters.  相似文献   

5.
目的探讨骨髓间充质干细胞(Bone mesenchymal stem cells,BMSCs)对大鼠脑胶质瘤C6细胞系分化的影响及其相关机制。方法用Transwell小室共培养BMSCs与C6细胞,采用细胞计数法检测C6细胞增殖水平;流式细胞术检测C6细胞的细胞周期;免疫荧光与免疫组化法分别检测波形蛋白(vimentin)和胶质纤维酸性蛋白(Glia lfibrillary acidic protein,GFAP)的表达;生化法检测谷氨酰胺合成酶(Glutamine synthetase,GS)的活性。结果 BMSCs对C6细胞的增殖具有抑制作用;与BMSCs进行双层培养72h的C6细胞出现G0/G1期细胞周期阻滞,双层培养组的C6细胞GFAP表达明显增强,同时vimentin表达减弱,并且这两种分化标志物在细胞内的分布及排列发生了改变;双层培养组C6细胞内GS活性升高。结论 BMSCs能诱导C6细胞向成熟星形胶质细胞分化,可能与BMSCs分泌的某些细胞因子有关。  相似文献   

6.
It is largely assumed that the teleost retina shows continuous and active proliferative and neurogenic activity throughout life. However, when delving into the teleost literature, one finds that assumptions about a highly active and continuous proliferation in the adult retina are based on studies in which proliferation was not quantified in a comparative way at the different life stages or was mainly studied in juveniles/young adults. Here, we performed a systematic and comparative study of the constitutive proliferative activity of the retina from early developing (2 days post-fertilisation) to aged (up to 3–4 years post-fertilisation) zebrafish. The mitotic activity and cell cycle progression were analysed by using immunofluorescence against pH3 and PCNA, respectively. We observed a decline in the cell proliferation in the retina with ageing despite the occurrence of a wave of secondary proliferation during sexual maturation. During this wave of secondary proliferation, the distribution of proliferating and mitotic cells changes from the inner to the outer nuclear layer in the central retina. Importantly, in aged zebrafish, there is a virtual disappearance of mitotic activity. Our results showing a decline in the proliferative activity of the zebrafish retina with ageing are of crucial importance since it is generally assumed that the fish retina has continuous proliferative activity throughout life.  相似文献   

7.
The hypophysiotropic gonadotropin-releasing hormone (GnRH) and its neurons are crucial for vertebrate reproduction, primarily in regulating luteinizing hormone (LH) secretion and ovulation. However, in zebrafish, which lack GnRH1, and instead possess GnRH3 as the hypophysiotropic form, GnRH3 gene knockout did not affect reproduction. However, early-stage ablation of all GnRH3 neurons causes infertility in females, implicating GnRH3 neurons, rather than GnRH3 peptides in female reproduction. To determine the role of GnRH3 neurons in the reproduction of adult females, a Tg(gnrh3:Gal4ff; UAS:nfsb-mCherry) line was generated to facilitate a chemogenetic conditional ablation of GnRH3 neurons. Following ablation, there was a reduction of preoptic area GnRH3 neurons by an average of 85.3%, which was associated with reduced pituitary projections and gnrh3 mRNA levels. However, plasma LH levels were unaffected, and the ablated females displayed normal reproductive capacity. There was no correlation between the number of remaining GnRH3 neurons and reproductive performance. Though it is possible that the few remaining GnRH3 neurons can still induce an LH surge, our findings are consistent with the idea that GnRH and its neurons are likely dispensable for LH surge in zebrafish. Altogether, our results resurrected questions regarding the functional homology of the hypophysiotropic GnRH1 and GnRH3 in controlling ovulation.  相似文献   

8.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and warrants further study as well as timely treatment. Additionally, the mechanisms of the brain’s intrinsic defense against chronic injury are not yet fully understood. Herein, we examined the response of the main neurogenic niches to amyloid exposure and the associated changes in structure and synaptic activity. Flow cytometry of Nestin-, Vimentin-, Nestin/Vimentin-, NeuN-, GFAP-, NeuN/GFAP-, NSE-, BrdU-, Wnt-, BrdU/Wnt-, VEGF-, Sox14-, VEGF/Sox14-, Sox10-, Sox2-, Sox10/Sox2-, Bax-, and Bcl-xL-positive cells was performed in the subventricular zone (SVZ), hippocampus, and cerebral cortex of rat brains on 90th day after intracerebroventricular (i.c.v.) single injection of a fraction of β-amyloid (Aβ) (1-42). The relative structural changes in these areas and disruptions to synaptic activity in the entorhinal cortex–hippocampus circuit were also evaluated. Our flow analyses revealed a reduction in the numbers of Nestin-, Vimentin-, and Nestin/Vimentin-positive cells in neurogenic niches and the olfactory bulb. These changes were accompanied by an increased number of BrdU-positive cells in the hippocampus and SVZ. The latter changes were strongly correlated with changes in the numbers of VEGF- and VEGF/Sox14-positive cells. The morphological changes were characterized by significant neural loss, a characteristic shift in entorhinal cortex–hippocampus circuit activity, and decreased spontaneous alternation in a behavioral test. We conclude that although an injection of Aβ (1-42) induced stem cell proliferation and triggered neurogenesis at a certain stage, this process was incomplete and led to neural stem cell immaturity. We propose the idea of enhancing adult neurogenesis as a promising strategy for preventing dementia at healthy elderly people andpeople at high risk for developing AD, or treating patients diagnosed with AD.  相似文献   

9.
In this study, we characterized diabetic retinopathy in two mouse models and the response to anti-vascular endothelial growth factor (VEGF) injection. The study was conducted in 58 transgenic, non-obese diabetic (NOD) mice with spontaneous type 1 diabetes (n = 30, DMT1-NOD) or chemically induced (n = 28, streptozotocin, STZ-NOD) type 1 diabetes and 20 transgenic db/db mice with type 2 diabetes (DMT2-db/db); 30 NOD and 8 wild-type mice served as controls. Mice were examined at 21 days for vasculopathy, retinal thickness, and expression of genes involved in oxidative stress, angiogenesis, gliosis, and diabetes. The right eye was histologically examined one week after injection of bevacizumab, ranibizumab, saline, or no treatment. Flat mounts revealed microaneurysms and one apparent area of tufts of neovascularization in the diabetic retina. Immunostaining revealed activation of Müller glia and prominent Müller cells. Mean retinal thickness was greater in diabetic mice. RAGE increased and GFAP decreased in DMT1-NOD mice; GFAP and SOX-9 mildly increased in db/db mice. Anti-VEGF treatment led to reduced retinal thickness. Retinas showed vasculopathy and edema in DMT1-NOD and DMT2-db/db mice and activation of Müller glia in DMT1-NOD mice, with some response to anti-VEGF treatment. Given the similarity of diabetic retinopathy in mice and humans, comparisons of type 1 and type 2 diabetic mouse models may assist in the development of new treatment modalities.  相似文献   

10.
Orexin plays a key role in the regulation of sleep and wakefulness and in feeding behavior in the central nervous system, but its receptors are expressed in various peripheral tissues including endocrine tissues. In the present study, we elucidated the effects of orexin on pituitary gonadotropin regulation by focusing on the functional involvement of bone morphogenetic proteins (BMPs) and clock genes using mouse gonadotrope LβT2 cells that express orexin type 1 (OX1R) and type 2 (OX2R) receptors. Treatments with orexin A enhanced LHβ and FSHβ mRNA expression in a dose-dependent manner in the absence of GnRH, whereas orexin A in turn suppressed GnRH-induced gonadotropin expression in LβT2 cells. Orexin A downregulated GnRH receptor expression, while GnRH enhanced OX1R and OX2R mRNA expression. Treatments with orexin A as well as GnRH increased the mRNA levels of Bmal1 and Clock, which are oscillational regulators for gonadotropin expression. Of note, treatments with BMP-6 and -15 enhanced OX1R and OX2R mRNA expression with upregulation of clock gene expression. On the other hand, orexin A enhanced BMP receptor signaling of Smad1/5/9 phosphorylation through upregulation of ALK-2/BMPRII among the BMP receptors expressed in LβT2 cells. Collectively, the results indicate that orexin regulates gonadotropin expression via clock gene expression by mutually interacting with GnRH action and the pituitary BMP system in gonadotrope cells.  相似文献   

11.
Regeneration of auditory hair cells in adult mammals is challenging. It is also difficult to track the sources of regenerated hair cells, especially in vivo. Previous paper found newly generated hair cells in deafened mouse by injecting a DNA methyltransferase inhibitor 5-azacytidine into the inner ear. This paper aims to investigate the cell sources of new hair cells. Transgenic mice with enhanced green fluorescent protein (EGFP) expression controlled by the Sox2 gene were used in the study. A combination of kanamycin and furosemide was applied to deafen adult mice, which received 4 mM 5-azacytidine injection into the inner ear three days later. Mice were followed for 3, 5, 7 and 14 days after surgery to track hair cell regeneration. Immunostaining of Myosin VIIa and EGFP signals were used to track the fate of Sox2-expressing supporting cells. The results show that (i) expression of EGFP in the transgenic mice colocalized the supporting cells in the organ of Corti, and (ii) the cell source of regenerated hair cells following 5-azacytidine treatment may be supporting cells during 5–7 days post 5-azacytidine injection. In conclusion, 5-azacytidine may promote the conversion of supporting cells to hair cells in chemically deafened adult mice.  相似文献   

12.
The de novo synthesis of ethanolamine plasmalogen in isolated neuronal and glial cells from adult rabbit brain cortex was investigated in vitro, using labeled cytidine-5′-diphosphate ethanolamine as lipid precursor. The neuronal cell enriched fraction was found to possess a twofold ethanolaminephosphotransferase activity (EC 2.7.8.1), as compared to the glial fraction. The neuronal/glial ratio was similar both in the absence and in the presence of saturating alkenylacyl glycerol. Under the most favorable conditions, rates of 31 nmoles and 16 nmoles ethanolamine plasmalogen/mg protein/30 min were obtained for neurons and glia, respectively. Several kinetic properties of the phosphotransferase were found to be similar both in neurons and glia, e.g., Km of cytidine-5′-diphosphate ethanolamine, pH optimum, need for divalent cations; the Km value for alkenylacyl glycerol was twofold higher in glia (4 mM) than in neurons (2 mM). The neuronal/glial ratio for the phosphatidylethanolamine synthesizing activity was 2, 4.5, and 6 on using diacyl glycerols prepared from ox heart, ox brain, and soybean, respectively. It is concluded that the cytidine-dependent system for ethanolamine plasmalogen and phosphatidylethanolamine synthesis is concentrated prevalently in the neuronal cells, as compared to glia.  相似文献   

13.
Metastasising cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumours in the clinic. We aimed to clarify how vimentin regulates the motility of metastasising fibroblasts. STED super-resolution microscopy, live-cell imaging and quantitative proteomics revealed that oncogene-expressing and metastasising fibroblasts show a less-elongated cell shape, reduced cell spreading, increased cell migration speed, reduced directionality, and stronger coupling between these migration parameters compared to normal control cells. In total, we identified and compared 555 proteins in the vimentin interactome. In metastasising cells, the levels of keratin 18 and Rab5C were increased, while those of actin and collagen were decreased. Inhibition of HDAC6 reversed the shape, spreading and migration phenotypes of metastasising cells back to normal. Inhibition of HDAC6 also decreased the levels of talin 1, tropomyosin, Rab GDI β, collagen and emilin 1 in the vimentin interactome, and partially reversed the nanoscale vimentin organisation in oncogene-expressing cells. These findings describe the changes in the vimentin interactome and nanoscale distribution that accompany the defective cell shape, spreading and migration of metastasising cells. These results support the hypothesis that oncogenes can act through HDAC6 to regulate the vimentin binding of the cytoskeletal and cell–extracellular matrix adhesion components that contribute to the defective motility of metastasising cells.  相似文献   

14.
Members of the FOS protein family regulate gene expression responses to a multitude of extracellular signals and are dysregulated in several pathological states. Whilst mouse genetic models have provided key insights into the tissue-specific functions of these proteins in vivo, little is known about their roles during early vertebrate embryonic development. This study examined the potential of using zebrafish as a model for such studies and, more broadly, for investigating the mechanisms regulating the functions of Fos proteins in vivo. Through phylogenetic and sequence analysis, we identified six zebrafish FOS orthologues, fosaa, fosab, fosb, fosl1a, fosl1b, and fosl2, which show high conservation in key regulatory domains and post-translational modification sites compared to their equivalent human proteins. During embryogenesis, zebrafish fos genes exhibit both overlapping and distinct spatiotemporal patterns of expression in specific cell types and tissues. Most fos genes are also expressed in a variety of adult zebrafish tissues. As in humans, we also found that expression of zebrafish FOS orthologs is induced by oncogenic BRAF-ERK signalling in zebrafish melanomas. These findings suggest that zebrafish represent an alternate model to mice for investigating the regulation and functions of Fos proteins in vertebrate embryonic and adult tissues, and cancer.  相似文献   

15.
Understanding the mixing behavior of anthropogenic primary and biogenic secondary organic aerosol (POA and SOA) is important for characterizing their interactions with water vapor. The following work expands upon previous studies and investigates cloud condensation nuclei (CCN) activity and droplet kinetics of α-pinene SOA formed in an environmental chamber and mixed with diesel or motor oil-diesel fuel POA. The changes in the aerosol mixing are similar to previously published work but this study provides new CCN activity and droplet information. The CCN activity of the unmixed aerosol systems are measured separately; κ = 0.15, 0.11, 0.022 for α-pinene SOA, diesel POA and motor oil-diesel fuel POA, respectively. In the α-pinene SOA + diesel POA mixture, the CCN activity, characterized by κ-hygroscopicity, decreases from κ = 0.15 to 0.06 after an initial injection of the POA but increases to κ = 0.12. The increase in CCN activity occurs after particle collision (coagulation and wall-loss) rates dominate aerosol processes in the chamber. The α-pinene SOA + motor oil-fuel POA does not readily mix and the CCN activity of the complex system increases with time (from κ = 0.022 to 0.10). An empirical equation using unit mass resolution (UMR) AMS data of two different ion fragments reasonably predicts CCN activity of the POA and SOA mixtures. CCN measurement may be a promising tool to gain additional insight into the complex mixtures of organic aerosol and subsequent interactions with water vapor.

Copyright © 2018 American Association for Aerosol Research  相似文献   


16.
Skeletal Class III malocclusion with maxillary deficiency is a severe maxillofacial disease with unclear pathogenic mechanisms. We recruited a Han Chinese family who was clinically diagnosed with skeletal Class III malocclusion and maxillary deficiency. Using whole exome sequencing, a missense variant in ADAMTS2 (NM_014244: c.3506G>T: p.G1169V) was identified and predicted as deleterious by in silico tools. We also found ADAMTS2 variants associated with deficient maxillary development in a cohort. ADAMTS2 expression in HEK293 cells showed significant decrease due to the variant, which was also consistent in dental pulp stem cells from the proband and a healthy control. In the adamts2-knockdown zebrafish model, the length and width of the ethmoid plate, as well as the length of the palatoquadrate became significantly shorter than the control group (p < 0.001), while there was no significant difference in the length and width of the mandible. The expression of Sox3, which was required in early embryonic craniofacial development, was significantly downregulated in the adamts2-knockdown zebrafish embryos. Bioinformatic and cellular studies showed that the decreased expression of ADAMTS2 may inhibit downstream ErbB signaling pathway transduction and restrain subsequent osteogenesis in human adult mesenchymal stromal cells. Collectively, these data showed that ADAMTS2 (c.3506G>T: p.G1169V) may confer susceptibility to risk of skeletal Class III malocclusion with maxillary deficiency.  相似文献   

17.
Background: To analyze the course of microglial and macroglial activation in injured and contralateral retinas after unilateral optic nerve crush (ONC). Methods: The left optic nerve of adult pigmented C57Bl/6 female mice was intraorbitally crushed and injured, and contralateral retinas were analyzed from 1 to 45 days post-lesion (dpl) in cross-sections and flat mounts. As controls, intact retinas were studied. Iba1+ microglial cells (MCs), activated phagocytic CD68+MCs and M2 CD206+MCs were quantified. Macroglial cell changes were analyzed by GFAP and vimentin signal intensity. Results: After ONC, MC density increased significantly from 5 to 21 dpl in the inner layers of injured retinas, remaining within intact values in the contralateral ones. However, in both retinas there was a significant and long-lasting increase of CD68+MCs. Constitutive CD206+MCs were rare and mostly found in the ciliary body and around the optic-nerve head. While in the injured retinas their number increased in the retina and ciliary body, in the contralateral retinas decreased. Astrocytes and Müller cells transiently hypertrophied in the injured retinas and to a lesser extent in the contralateral ones. Conclusions: Unilateral ONC triggers a bilateral and persistent activation of MCs and an opposed response of M2 MCs between both retinas. Macroglial hypertrophy is transient.  相似文献   

18.
Recently, we have described a simple protocol to obtain an enriched culture of adult stem cells organized in neurospheres from two post-natal tissues: skin and adipose tissue. Due to their possible application in neuronal tissue regeneration, here we tested two kinds of scaffold well known in tissue engineering application: hyaluronan based membranes and fibrin-glue meshes. Neurospheres from skin and adipose tissue were seeded onto two scaffold types: hyaluronan based membrane and fibrin-glue meshes. Neurospheres were then induced to acquire a glial and neuronal-like phenotype. Gene expression, morphological feature and chromosomal imbalance (kariotype) were analyzed and compared. Adipose and skin derived neurospheres are able to grow well and to differentiate into glial/neuron cells without any chromosomal imbalance in both scaffolds. Adult cells are able to express typical cell surface markers such as S100; GFAP; nestin; βIII tubulin; CNPase. In summary, we have demonstrated that neurospheres isolated from skin and adipose tissues are able to differentiate in glial/neuron-like cells, without any chromosomal imbalance in two scaffold types, useful for tissue engineering application: hyaluronan based membrane and fibrin-glue meshes.  相似文献   

19.
Brain tissue may be especially sensitive to electromagnetic phenomena provoking signs of neural stress in cerebral activity. Fifty-four adult female Sprague-Dawley rats underwent ELISA and immunohistochemistry testing of four relevant anatomical areas of the cerebrum to measure biomarkers indicating induction of heat shock protein 70 (HSP-70), glucocorticoid receptors (GCR) or glial fibrillary acidic protein (GFAP) after single or repeated exposure to 2.45 GHz radiation in the experimental set-up. Neither radiation regime caused tissue heating, so thermal effects can be ruled out. A progressive decrease in GCR and HSP-70 was observed after acute or repeated irradiation in the somatosensory cortex, hypothalamus and hippocampus. In the limbic cortex; however, values for both biomarkers were significantly higher after repeated exposure to irradiation when compared to control animals. GFAP values in brain tissue after irradiation were not significantly different or were even lower than those of nonirradiated animals in all brain regions studied. Our results suggest that repeated exposure to 2.45 GHz elicited GCR/HSP-70 dysregulation in the brain, triggering a state of stress that could decrease tissue anti-inflammatory action without favoring glial proliferation and make the nervous system more vulnerable.  相似文献   

20.
目的构建UHRF2不同结构域缺失突变体,并在HEK293细胞中表达。方法根据UHRF2不同结构域位置特征,构建5种不同结构域缺失突变体;以重组质粒pCMV-3xFlag-UHRF2为模板,PCR法直接扩增△UBL、△RING和△YDG+△RING编码基因,重叠PCR法扩增△PHD和△YDG编码基因,定向克隆至pCMV-3xFlag真核表达载体中,构建重组表达质粒,转染HEK293细胞,Western blot鉴定重组蛋白的表达。结果 UHRF2的结构域缺失体△UBL、△PHD的上游和下游及上下游合并、△YDG的上游和下游及上下游合并、△RING和△YDG+△RING的PCR产物分别可见2 018、987、1 152、2 272、1 232、629、1 827、2 163和1 287 bp的特异条带;UHRF2各结构域缺失体的重组表达质粒经双酶切和测序鉴定,证明构建正确;重组质粒转染HEK293细胞表达的重组蛋白大小均与理论值相符。结论成功在HEK293细胞中表达了UHRF2不同结构域缺失突变体,为进一步研究UHRF2各结构域的功能及其与其他蛋白质的相互作用位点奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号