首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to expand the application in the medical field and enhance pharmacological effects, casein–myricetin nanomicelles were prepared by the self‐assembly method and characterised by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. The parameters in self‐assembly were optimised according to the factors of particle size, encapsulation yield, and drug loading. The result showed a pH of 5.5, a casein concentration of 2 mg/ml, a mass ratio of casein to myricetin of 8:1, ultrasonic power of 300 W, ultrasonic time of 5 min and ethanol volume of 7 ml were the optimal conditions. The situ cycle intestinal perfusion methods indicated that casein–myricetin nanomicelles can be more easily absorbed by small intestine than myricetin standard sample. Therefore, casein micelles are effective for improving the water solubility of myricetin.Inspec keywords: encapsulation, nanoparticles, nanomedicine, drugs, nanofabrication, biomedical materials, solubility, molecular biophysics, ultraviolet spectra, drug delivery systems, particle size, pH, visible spectra, colloids, self‐assembly, Fourier transform infrared spectraOther keywords: casein–myricetin nanomicelles, self‐assembly method, ultraviolet–visible spectroscopy, casein concentration, myricetin standard sample, casein micelles, medical field, pharmacological effects, Fourier transform infrared spectroscopy, particle size, pH, ultrasonic power, ethanol volume, water solubility, power 300.0 W, time 5.0 min  相似文献   

2.
Small molecule‐based amphiphiles self‐assemble into nanostructures (micelles) in aqueous medium which are currently being explored as novel drug delivery systems. Here, naproxen‐polyethylene glycol (N‐PEG), a small molecule‐derived amphiphile, has been synthesised, characterised and evaluated as hydrophobic drug carrier. 1 H, 13 C Nuclear magnetic resonance (NMR), mass spectrometry (MS) and Fourier‐transform infrared spectroscopy (FTIR) confirmed the formation of N‐PEG and dynamic light scattering (DLS) revealed the formation of nano‐sized structures of ∼228 nm. Transmission electron microscope (TEM) analysis showed aggregation behaviour of the structures with average size of ∼230 nm. Biodegradability aspect of the micellar‐structured N‐PEG was demonstrated by lipase‐mediated degradation studies using DLS and TEM. High encapsulation efficiency followed by release in a sustained manner of a well‐known anticancer drug, doxorubicin, demonstrated the feasibility of the new drug delivery system. These results advocate the promising potential of N‐PEG micelles as efficient drug delivery system for specific delivery to cancerous cells in vitro and in vivo.Inspec keywords: cancer, biodegradable materials, cellular biophysics, encapsulation, biomedical materials, drugs, nanofabrication, drug delivery systems, nanomedicine, self‐assembly, nanoparticles, transmission electron microscopy, colloids, molecular biophysics, light scattering, hydrophobicity, biochemistry, enzymes, core‐shell nanostructures, nanocomposites, proton magnetic resonance, Fourier transform infrared spectra, mass spectroscopic chemical analysisOther keywords: hydrophobic drug carrier, nanosized structures, transmission electron microscope analysis, doxorubicin, N‐PEG micelles, core/shell nanoassembly, amphiphilic naproxen‐polyethylene glycol, drug delivery system, small molecule‐based amphiphiles self‐assemble, small molecule‐derived amphiphile, 1 H NMR, 13 C NMR, MS, FTIR, dynamic light scattering, aggregation behaviour, biodegradability aspect, lipase‐mediated degradation studies, encapsulation efficiency, cancerous cells  相似文献   

3.
Biotinylated chitosan/poly(methyl vinyl ether‐alt ‐maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1 HNMR and Fourier transform infra‐red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX‐loaded biotin‐targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1 HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug‐loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX‐loaded in targeted micelles on HepG2 cell line was about 2.2‐fold compared with free drug.Inspec keywords: biomedical materials, cellular biophysics, dissolving, drug delivery systems, drugs, electrokinetic effects, fluorescence, Fourier transform infrared spectra, particle size, polymer blends, spectrochemical analysis, toxicologyOther keywords: 1 HNMR spectra, biotin‐targeted chitosan‐poly (methyl vinyl ether‐alt‐maleic acid) copolymeric micelles, doxorubicin delivery, amide reaction, structural characterisation, Fourier transform infrared spectra, pyrene, fluorescent probe, direct dissolution method, physicochemical properties, particle size, zeta potential, nanoparticles, irregular factorial design, in vitro cytotoxicity, DOX‐loaded biotin‐targeted micelles, 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay, polydispersity index, drug‐loading efficiency, HepG2 cell line, voltage 9.46 mV  相似文献   

4.
Nanomicelles are self‐assembling nanosized (usually with particle size within a range of 10 to 100 nm) colloidal dispersions with a hydrophobic core and hydrophilic shell. Owing to its size, solubility, customised surface or its exposure to the environment, nanomicelles show some unique or novel characteristics, which makes it multifunctional and thus makes its use indispensable in biomedical application and various other fields. This review presents the unique properties of nanomicelles that makes it different from other particles and paves its way to be used as drug delivery agent and many other biological uses or applications. It also emphasises on the drug encapsulation ability of the nanomicelles and different technique of drug loading and delivery along with its advantages and disadvantages.  相似文献   

5.
Phenylketonuria (PKU)‐associated DNA mutation in newborn children can be harmful to his health and early detection is the best way to inhibit consequences. A novel electrochemical nano‐biosensor was developed for PKU detection, based on signal amplification using nanomaterials, e.g. gold nanoparticles (AuNPs) decorated on the reduced graphene oxide sheet on the screen‐printed carbon electrode. The fabrication steps were checked by field emission scanning electron microscope imaging as well as cyclic voltammetry analysis. The specific alkanethiol single‐stranded DNA probes were attached by self‐assembly methodology on the AuNPs surface and Oracet blue was used as an intercalating electrochemical label. The results showed the detection limit of 21.3 fM and the dynamic range of 80–1200 fM. Moreover, the selectivity results represented a great specificity of the nano‐biosensor for its specific target DNA oligo versus other non‐specific sequences. The real sample simulation was performed successfully with almost no difference than a synthetic buffer solution environment.Inspec keywords: biosensors, nanosensors, nanoparticles, graphene compounds, gold, nanomedicine, DNA, molecular biophysics, biomedical equipment, electrochemical sensors, electrochemical electrodes, field emission scanning electron microscopy, voltammetry (chemical analysis), self‐assembly, biochemistryOther keywords: reduced graphene oxide, gold nanoparticles, phenylketonuria‐associated DNA mutation, newborn children, electrochemical nanobiosensor, signal amplification, nanomaterials, reduced graphene oxide sheet, screen‐printed carbon electrode, field emission scanning electron microscopy imaging, cyclic voltammetry, alkanethiol single‐stranded DNA probes, self‐assembly methodology, Oracet blue, intercalating electrochemical label, Au‐CO  相似文献   

6.
Atorvastatin known to be a potential inhibitor of HMG‐CoA reductase involved in the synthesis of cholesterol. It is touted as miracle drug due to its profound effect in decreasing the low‐density lipoproteins in blood. Unfortunately, the high dosage used poses side‐effects relatively in comparison to other statins. On the other hand, curcumin has a diverse therapeutic potential in health and disease. However, the poor aqueous solubility and low bioavailability hinders the therapeutic potential of it when administrated orally. Therefore, it was thought to minimise the frequency of atorvastatin doses to avoid the possibility of drug resistance and also to overcome the limitations of curcumin for desirable therapeutic effects by using nanocarriers in drug delivery. In this investigation, synergistic effect of atorvastatin and curcumin nanocarriers was encapsulated by chitosan polymer. The chitosan nanocarriers prepared by ionic gelation method were characterised for their particle size, zeta potential, and other parameters. The drug‐loaded nanocarriers exhibited good encapsulation efficiency (74.25%) and showed a slow and sustained release of atorvastatin and curcumin 60.36 and 61.44%, respectively, in a span of 48 h. The drug‐loaded nanocarriers found to be haemocompatible and qualified for drug delivery in atherosclerosis.Inspec keywords: nanomedicine, drug delivery systems, diseases, cardiovascular system, enzymes, nanofabricationOther keywords: atorvastatin chitosan nanoformulation, curcumin‐loaded chitosan nanoformulation, oral delivery, atherosclerosis, potential inhibitor, HMG‐CoA reductase, cholesterol synthesis, miracle drug, low‐density lipoproteins, blood, diverse therapeutic potential, poor aqueous solubility, low bioavailability, drug resistance, nanocarriers, ionic gelation method, particle size, zeta potential, encapsulation efficiency  相似文献   

7.
Gold nanoflowers (GNFs) prepared by reduction of HAuCl4 by ascorbic acid were capped with human serum albumin (HSA) by either electrostatic or covalent attachment to prevent their self‐aggregation. Measurement of surface plasmon resonance absorbance changes under different stress conditions showed that GNFs stabilised by covalent attachment of HSA were more stable than those stabilised by electrostatic attachment. Cytotoxicity of the covalently conjugated GNF was also studied in cultured human oral cancer cell lines by measuring the metabolic activity via 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay.Inspec keywords: proteins, molecular biophysics, biomedical materials, reduction (chemical), gold, cellular biophysics, nanofabrication, biochemistry, surface plasmon resonance, cancer, nanomedicine, materials preparation, nanostructured materialsOther keywords: Au, human serum albumin stabilised gold nanoflowers, cytotoxicity, in vitro oral cancer cell toxicity, stress conditions, surface plasmon resonance absorbance, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, self‐aggregation, covalent attachment, electrostatic attachment, ascorbic acid, cultured human oral cancer cell lines  相似文献   

8.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   

9.
Phytomedicine research received tremendous attention for novel therapeutic agent due to their safety and low cost. We assessed a novel nanoformulation of Biophytum sensitivum (BS), natural flavonoids for their improved efficacy and superior bioavailability against crude extract for prostate cancer cells (PC3). We prepared a nanomedicine of BS by nanoprecipitation method and size analysis via DLS and SEM revealed a range of 100–118 nm and surface zeta potential as −9.77 mV. FTIR was performed to evaluate functional for presence of carbonyl and aromatic rings, respectively. Human PC3 cells showed concentration at 0.5, 0.8, and 1 mg/ml dependent cytotoxicity 22, 39, and 56% for 24 h, whereas 43, 41, and 67% for 48 h of BS nanomedicine compared with crude 11, 22, and 53% for 24 h and 38, 31, and 60% for 48 h, respectively. Haemocompatibility of BS nanomedicine at the concentration of 0.5, 0.8, and 1 mg/ml did not show blood aggregation. Cellular uptake was confirmed using rhodamine‐conjugated BS nanomedicine for 48 h. Interestingly, BS nanomedicine 1 mg/ml decreases the nitrite productions in PC3 cells. Collectively, BS nanomedicine has the potential anti‐cancer agents with biocompatible and enhanced efficacy can be beneficial for the treatment of prostate cancerInspec keywords: nanomedicine, cancer, cellular biophysics, tumours, solubility, scanning electron microscopy, electrokinetic effects, Fourier transform infrared spectra, bloodOther keywords: Biophytum sensitivum, cell viability, nitrite production, prostate cancer cells, phytomedicine, therapeutic agent, natural flavonoids, pharmacological anti‐tumour agent, anti‐cancer agent, aqueous solubility, metabolism, dissolution rates, bioavailability, dynamic light scattering, scanning electron microscopy, surface zeta potential, FTIR, cytotoxicity, haemocompatibility, blood aggregation, cellular uptake level, cell membrane, cell nucleus, rhodamine‐conjugated BS nanomedicine, wave number 3358.07 cm‐1 , wave number 2312.65 cm‐1 , wave number 1737.86 cm‐1 , wave number 1508.33 cm‐1 , time 24 h, time 48 h  相似文献   

10.
The authors report a novel, effective and enhanced method of conjugating anticancer drug, paclitaxel and gallic acid with magnetosomes. Here, anticancer drugs were functionalised with magnetosomes membrane by direct and indirect (via crosslinkers: glutaraldehyde and 3‐aminopropyltriethoxysilane) adsorption methods. The prepared magnetosome–drug conjugates were characterised by Fourier transform infrared, zeta potential, field‐emission scanning electron microscope and thermogravimetric analysis/differential scanning calorimetry. The drug‐loading efficiency and capacity were found to be 87.874% for paclitaxel (MP) and 71.3% for gallic acid (MG), respectively as calculated by ultraviolet spectroscopy and high‐performance liquid chromatography. The drug release demonstrated by the diffusion method in phosphate buffer (PBS), showing a prolonged drug release for MP and MG, respectively. The cytotoxicity effect of the MP and MG displayed cytotoxicity of 69.71%, 55.194% against HeLa and MCF‐7 cell lines, respectively. The reactive oxygen species, acridine orange and ethidium bromide and 4, 6‐diamidino‐2‐phenylindole staining of the drug conjugates revealed the apoptotic effect of MP and MG. Further, the regulation of tumour suppressor protein, p53 was determined by western blotting which showed an upregulation of p53. Comparatively, the magnetosome–drug conjugates prepared by direct adsorption achieved the best effects on the drug‐loading efficiency and the increased percentage of cancer cell mortality and the upregulation of P53. The proposed research ascertains that magnetosomes could be used as effective nanocarriers in cancer therapy.Inspec keywords: cancer, molecular biophysics, cellular biophysics, tumours, drug delivery systems, adsorption, scanning electron microscopy, biomedical materials, nanofabrication, biochemistry, drugs, proteins, nanomedicine, toxicology, nanobiotechnology, nanoparticles, Fourier transform spectra, electrokinetic effects, differential scanning calorimetry, infrared spectra, chromatographyOther keywords: magnetosomes based drug, cancer therapy, enhanced method, gallic acid, anticancer drugs, magnetosomes membrane, glutaraldehyde, 3‐aminopropyltriethoxysilane, prepared magnetosome–drug conjugates, zeta potential field‐emission scanning electron microscope, drug‐loading efficiency, high‐performance liquid chromatography, diffusion method, phosphate buffer saline, prolonged drug release, cytotoxicity effect, MCF‐7 cell lines, 6‐diamidino‐2‐phenylindole staining, apoptotic effect, direct adsorption, cancer cell mortality, effective nanocarriers  相似文献   

11.
Self-assembled nanomicelles can be used as synthetic biomaterials and colloidal carriers for poorly water-soluble drug delivery systems. Some of these micellar systems have been introduced in clinical trials and showed hopeful results relating to their therapeutic index in patients. Biodegradable nanomicelle was prepared from self-assembling amphiphilic block copolymer composed of poly(dl-lactic-co-glycolic acid) (PLGA) as a core and polyethylene glycol (PEG) as a corona. The PLGA–PEG block copolymer was first synthesized and characterized by FTIR, 1H NMR, GPC and inherent viscosity measurements. The nanomicelle formed by PLGA–PEG block copolymer in the aqueous solution was characterized by dynamic light scattering, zeta potential, scanning electron microscopy (SEM) and fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration of obtained nanomicelle was about 0.006 mg/mL, with the size of about 160 nm and the zeta potential of −29 mV. Insulin-loaded PLGA–PEG nanomicelles were prepared by modified dialysis method and the physicochemical parameters of the micelles such as drug content, entrapment efficiency and in vitro drug release were characterized. The results showed that insulin was entrapped into PLGA–PEG nanomicelles with drug loading of 3.9 wt% and entrapment efficiency of 55 wt%. The nanomicelles containing insulin exhibited a controlled release profile. These observations suggested that the PLGA–PEG block copolymers nanomicelles have been prepared by a new synthetic route are potent nanocarrier for poorly water-soluble drugs as insulin.  相似文献   

12.
Temperature‐responsive magnetic nanomicelles can serve as thermal energy and cargo carriers with controlled drug release functionality. In view of their potential biomedical applications, understanding the modes of interaction between nanomaterials and living systems and evaluation of efficiency of cargo delivery is of the utmost importance. In this work, we investigate the interaction between the hybrid magnetic nanomicelles engineered for controlled platinum complex drug delivery and a biological system at three fundamental levels: subcellular compartments, a single cell and whole living animal. Nanomicelles with polymeric P(NIPAAm‐co‐AAm)‐b‐PCL core‐shell were loaded with a hydrophobic Pt(IV) complex and Fe3O4 nanoparticles though self‐assembly. The distribution of a platinum complex on subcellular level is visualized using hard X‐ray fluorescence microscopy with unprecedented level of detail at sub‐100 nm spatial resolution. We then study the cytotoxic effects of platinum complex‐loaded micelles in vitro on a head and neck cancer cell culture model SQ20B. Finally, by employing the magnetic functionality of the micelles and additionally loading them with a near infrared fluorescent dye, we magnetically target them to a tumor site in a live animal xenografted model which allows to visualize their biodistribution in vivo.  相似文献   

13.
Based on the enhancement of synergistic antitumour activity to treat cancer and the correlation between inflammation and carcinogenesis, the authors designed chitosan nanoparticles for co‐delivery of 5‐fluororacil (5‐Fu: an as anti‐cancer drug) and aspirin (a non‐steroidal anti‐inflammatory drug) and induced synergistic antitumour activity through the modulation of the nuclear factor kappa B (NF‐κB)/cyclooxygenase‐2 (COX‐2) signalling pathways. The results showed that aspirin at non‐cytotoxic concentrations synergistically sensitised hepatocellular carcinoma cells to 5‐Fu in vitro. It demonstrated that aspirin inhibited NF‐κB activation and suppressed NF‐κB regulated COX‐2 expression and prostaglandin E2 (PGE2) synthesis. Furthermore, the proposed results clearly indicated that the combination of 5‐Fu and aspirin by chitosan nanoparticles enhanced the intracellular concentration of drugs and exerted synergistic growth inhibition and apoptosis induction on hepatocellular carcinoma cells by suppressing NF‐κB activation and inhibition of expression of COX‐2.Inspec keywords: proteins, molecular biophysics, cellular biophysics, biomedical materials, cancer, nanoparticles, drug delivery systems, enzymes, tumours, nanomedicine, drugsOther keywords: chitosan nanoparticles, aspirin, 5‐fluororacil, synergistic antitumour activity, anticancer drug, nonsteroidal antiinflammatory drug, hepatocellular carcinoma cells, NF‐κB activation, NF‐κB regulated COX‐2 expression, PGE2, synergistic growth inhibition, apoptosis induction, prostaglandin E2 synthesis, intracellular concentration, noncytotoxic concentrations, NF‐κB‐cyclooxygenase‐2 signalling pathways, cyclooxygenase‐2, nuclear factor kappa B  相似文献   

14.
The main objective of this work was to investigate the uptake channels of skin cells through which coumarin 6, transported by deoxycholate‐mediated liposomes (DOC‐LS), was internalised; this was also compared against the action of conventional LS. Coumarin 6‐loaded DOC‐LS and LS were characterised for size distribution, zeta potential, and shape, and analysed in vitro in human epidermal immortal keratinocyte (HaCaT) (epidermal) and human embryonic skin fibroblast (CCC‐ESF‐1) (dermal) cell lines. Various endocytosis inhibitors were incubated with cells treated with the nanocarriers. Flow cytometry results indicated that HaCaT and CCC‐ESF‐1 cells internalise the tested preparations through pinocytotic vesicles, macropinocytosis, clathrin‐mediated endocytic pathways, and via lysosomes, which consume a considerable amount of energy. The endocytosis pathways of DOC‐LS and LS showed no difference. This study provides a basis for the application of LS being combined with a microneedle system for efficient intracellular drug delivery, targeting cutaneous histocyte disorders.Inspec keywords: drugs, nanoparticles, lipid bilayers, nanomedicine, biomedical materials, electrokinetic effects, biomembrane transport, drug delivery systems, skin, organic compoundsOther keywords: dermal delivery, CCC‐ESF‐1 cells, skin cells, deoxycholate‐mediated liposomes, coumarin 6‐loaded DOC‐LS, endocytosis inhibitors, clathrin‐mediated endocytic pathways, endocytosis pathways, HaCaT cell lines, size distribution, zeta potential, nanocarriers, flow cytometry, pinocytotic vesicles, macropinocytosis, microneedle system, efficient intracellular drug delivery, targeting cutaneous histocyte disorders  相似文献   

15.
Honokiol (HK) is a natural product isolated from the bark, cones, seeds and leaves of plants belonging to the genus Magnolia. It possesses anti‐cancer activity which can efficiently impede the growth and bring about apoptosis of a diversity of cancer cells. The major concerns of using HK are its poor solubility and lack of targeted drug delivery. In this study, a combinatorial drug is prepared by combining HK and camptothecin (CPT). Both CPT and HK belong to the Magnolian genus and induce apoptosis by cell cycle arrest at the S‐phase and G1 phase, respectively. The combinatorial drug thus synthesised was loaded onto a chitosan functionalised graphene oxide nanoparticles, predecorated with folic acid for site‐specific drug delivery. The CPT drug‐loaded nanocarrier was characterised by X‐ray diffractometer, scanning electron microscope, transmission electron microscope, UV–vis spectroscopy and fluorescence spectroscopy, atomic force microscopy. The antioxidant properties, haemolytic activity and anti‐inflammatory activities were analysed. The cellular toxicity was analysed by 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide (MTT assay) and Sulforhodamine B (SRB) assay against breast cancer (MCF‐7) cell lines.Inspec keywords: nanofabrication, cancer, nanoparticles, atomic force microscopy, graphene, scanning electron microscopy, cellular biophysics, toxicology, transmission electron microscopy, drug delivery systems, nanomedicine, tumours, solubilityOther keywords: targeted drug delivery, combinatorial drug, Magnolian genus, apoptosis, cell cycle, chitosan functionalised graphene oxide nanoparticles, site‐specific drug delivery, CPT drug‐loaded nanocarrier, transmission electron microscope, fluorescence spectroscopy, haemolytic activity, antiinflammatory activities, breast cancer cell lines, honokiol–camptothecin loaded graphene oxide nanoparticle, combinatorial anti‐cancer drug delivery, natural product, genus Magnolia, anticancer activity, cancer cells  相似文献   

16.
Alopecia is a treatable disorder that usually occurs due to high levels of 5‐alpha dihydrotestosterone in hair follicles. To enhance the storage capacity of hair follicles and alleviate the inherent characteristics of dutasteride, 5‐alpha reductase inhibitor, a prolonged‐release nanocarrier was synthesised, and its influence on rat abdomen''s skin was investigated. Results showed the lower ratio of S/Co (higher ethanol concentration) increased the hydrodynamic nanocarriers'' particle size due to thermodynamic disturbance and Ostwald ripening. In contrast, an increase in surfactant through a decrease in interfacial tension resulted in smaller nanocarriers of 32.4 nm. Moreover, an increase in viscosity had an inverse correlation with the nanoemulsions'' particle size. Nanocarriers containing ethanol showed less entrapment efficacy, perhaps due to the rapid dissolution of dutasteride into ethanol during nanoemulsification, while, based on Stokes'' equation, the addition of ethanol resulted in smaller particle size and stability of the system. Skin permeation analysis using Franz diffusion cells showed nanocarriers could pass through the skin and release dutasteride for 6 days. In conclusion, the optimum concentration of ingredients is decisive in guaranteeing the ideal particle size, stability, and skin permeation of nanocarriers. The Present dutasteride nanocarrier would promise a prolonged and sustained‐release drug delivery system for Alopecia therapy.  相似文献   

17.
The bio‐green methods of synthesis nanoparticles (NPs) have advantages over chemo‐physical procedures due to cost‐effective and ecofriendly products. The goal of current investigation is biosynthesis of zinc oxide NPs (ZnO‐NPs) and evaluation of their biological assessment. Water extract of Brassica napus pollen [rapeseed (RP)] prepared and used for the synthesis of ZnO‐NPs and synthesised ZnO‐NP characterised using ultraviolet–visible, X‐ray diffraction, Fourier‐transform infrared spectroscopy, field emission scanning electron microscope and transmission electron microscope. Antioxidant properties of ZnO‐NPs, cytotoxic and pro‐apoptotic potentials of NPs were also evaluated. The results showed that ZnO‐NPs have a hexagonal shape with 26 nm size. ZnO‐NPs synthesised in RP (RP/ZnO‐NPs) exhibited the good antioxidant potential compared with the butylated hydroxyanisole as a positive control. These NPs showed the cytotoxic effects against breast cancer cells (M.D. Anderson‐Metastasis Breast cancer (MDA‐MB)) with IC50 about 1, 6 and 6 μg/ml after 24, 48 and 72 h of exposure, respectively. RP/ZnO‐NPs were found effective in increasing the expression of catalase enzyme, the enzyme involved in antioxidants properties of the cells. Bio‐green synthesised RP/ZnO‐NPs showed antioxidant and cytotoxic properties. The results of the present study support the advantages of using the bio‐green procedure for the synthesis of NPs as an antioxidant and as anti‐cancer agents.Inspec keywords: II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, toxicology, X‐ray diffraction, biochemistry, zinc compounds, nanomedicine, enzymes, biomedical materials, particle size, antibacterial activity, transmission electron microscopy, molecular biophysics, visible spectra, nanofabrication, cellular biophysics, nanoparticles, cancer, field emission scanning electron microscopy, Fourier transform infrared spectra, semiconductor growthOther keywords: bio‐green synthesis ZnO‐NPs, zinc oxide NPs, synthesised ZnO‐NP, field emission scanning electron microscope, transmission electron microscope, antioxidant properties, bio‐green synthesised RP‐ZnO‐NPs, Fourier‐transform infrared spectroscopy, X‐ray diffraction, breast cancer cells MDA‐MB, pro‐apoptotic potentials, cytotoxic effects, catalase enzyme, bio‐green procedure, time 48.0 hour, time 72.0 hour, size 26.0 nm, time 24.0 hour, ZnO  相似文献   

18.
In this study, the authors demonstrate the fabrication, calibration, and testing of a piezoresistive microcantilever‐based sensor for biomedical microelectromechanical system (BioMEMS) application. To use any sensor in BioMEMS application requires surface modification to capture the targeted biomolecules. The surface alteration comprises self‐assembled monolayer (SAM) formation on gold (Au)/chromium (Cr) thin films. So, the Au/Cr coating is essential for most of the BioMEMS applications. The fabricated sensor uses the piezoresistive technique to capture the targeted biomolecules with the SAM/Au/Cr layer on top of the silicon dioxide layer. The stiffness (k) of the cantilever‐based biosensor is a crucial design parameter for the low‐pressure range and also influence the sensitivity of the microelectromechanical system‐based sensor. Based on the calibration data, the average stiffness of the fabricated microcantilever with and without Au/Cr thin film is 141.39 and 70.53 mN/m, respectively, which is well below the maximum preferred range of stiffness for BioMEMS applications. The fabricated sensor is ultra‐sensitive and selective towards Hg2+ ions in the presence of other heavy metal ions (HMIs) and good enough to achieve a lower limit of detection 0.75 ng/ml (3.73 pM/ml).Inspec keywords: molecular biophysics, bioMEMS, chemical sensors, microfabrication, cantilevers, microsensors, self‐assembly, monolayers, gold, piezoresistive devices, calibration, chromium, thin film sensors, mercury (metal), silicon compoundsOther keywords: microcantilever‐based piezoresistive sensor, BioMEMS application, biomedical microelectromechanical system application, targeted biomolecules, piezoresistive technique, cantilever‐based biosensor, microelectromechanical system‐based sensor, microcantilever fabrication, calibration, surface modification, surface alteration, self‐assembled monolayer, SAM, coating, thin films, HMI, heavy metal ion, Au‐Cr‐SiO2 , Hg  相似文献   

19.
This study describes the development and testing of a simple and novel enzyme‐free nanolabel for the detection and signal amplification in a sandwich immunoassay. Gold nanoparticles decorated reduced graphene oxide (rGOAu) was used as the nanolabel for the quantitative detection of human immunoglobulin G (HIgG). The rGOAu nanolabel was synthesised by one pot chemical reduction of graphene oxide and chloroauric acid using sodium borohydride. The pseudo‐peroxidase behaviour of rGOAu makes the nanolabel unique from other existing labels. The immunosensing platform was fabricated using self‐assembled monolayers of 11‐mercaptoundecanoic acid (11‐MUDA) on a gold disc electrode. The covalent immobilisation of antibody was achieved through the bonding of the carboxyl group of 11‐MUDA and the amino group of the antibody using chemical linkers [1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide] and N ‐hydroxysuccinimide. The fabricated immunosensor exhibited a linear range that included HIgG concentrations of 62.5–500 ng ml−1. The sensor was also used for the testing of HIgG in the blood sample.Inspec keywords: proteins, nanomedicine, reduction (chemical), chemical sensors, nanofabrication, electrochemical sensors, voltammetry (chemical analysis), gold, oxidation, self‐assembly, monolayers, molecular biophysics, biochemistry, biosensors, nanoparticles, nanosensors, blood, grapheneOther keywords: gold nanoparticles, voltammetric immunosensing, enzyme‐free nanolabel, signal amplification, sandwich immunoassay, human immunoglobulin G, rGOAu nanolabel, chloroauric acid, sodium borohydride, 11‐mercaptoundecanoic acid, 11‐MUDA, gold disc electrode, chemical linkers, 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide], HIgG concentrations, reduced graphene oxide nanolabel, quantitative HIgG detection, one pot chemical reduction, covalent antibody immobilisation, carboxyl group bonding, pseudo‐peroxidase behaviour, self‐assembled monolayers, N‐hydroxysuccinimide, immunosensor, blood sample, Au‐CO  相似文献   

20.
In this study, green synthesis of gold nanoparticles (AuNPs) was performed by a sunlight irradiation method using the Borassus flabellifer fruit extract as a reducing agent. 5‐Fluorouracil (5‐FU)‐loaded GG capped AuNPs (5FU‐G‐AuNPs) was prepared. The nanoparticles was further characterised by UV‐visible spectra, particle size analysis, zeta potential, SAED, HRTEM, and XRD. The MTT assay results showed the suitability 5‐FU‐G‐AuNPs. In this study, 5‐FU‐G‐AuNPs exhibited potential cytotoxic and apoptotic effects on (MiaPaCa‐2) cell line.Inspec keywords: gold, biochemistry, X‐ray diffraction, nanofabrication, biomedical materials, transmission electron microscopy, toxicology, electrokinetic effects, particle size, nanoparticles, cancer, visible spectra, cellular biophysics, ultraviolet spectra, nanomedicine, patient treatment, organic compoundsOther keywords: 5FU‐G‐AuNPs, suitability 5‐FU‐G‐AuNPs, human pancreatic cancer cell, green synthesis, sunlight irradiation method, 5‐Fluorouracil‐loaded GG, in vitro treatment, 5 fluorouracil‐loaded biosynthesised gold nanoparticles, borassus flabellifer fruit extract, reducing agent, UV‐visible spectra, particle size analysis, zeta potential, SAED, HRTEM, XRD, MTT assay, apoptotic effects, cytotoxic effects, MiaPaCa‐2 cell line, Au  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号