首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenium (Se) is a rare and essential element for the human body and other living organisms because of its role in the structure of several proteins and having anti‐oxidant properties to reduce oxidative stress at cells. Some microorganisms can absorb Se oxyanions and convert them into zero‐valent Se (Se0) in the nanoscale dimensions, which can be used for producing Se nanoparticles (SeNPs). In the present study, SeNPs were intracellularly biosynthesised by yeast Nematospora coryli, which is an inexpensive method and does not involve using materials hazardous for human and environment. The produced NPs were refined by a two‐phase system and then characterised and identified by ultraviolet–visible, X‐ray diffraction, X‐ray fluorescence, transmission electron microscope, and Fourier transform infrared spectroscopy analyses. The structural analysis of biosynthesised SeNPs showed spherical‐shaped NPs with size ranging from 50 to 250 nm. Also, extracted NPs were applied to explore their anti‐candida and anti‐oxidant activities. The results of this investigation confirm the biological properties of Se.Inspec keywords: X‐ray diffraction, microorganisms, oxidation, transmission electron microscopy, reduction (chemical), nanomedicine, biomedical materials, visible spectra, nanoparticles, proteins, nanofabrication, selenium, ultraviolet spectra, particle size, Fourier transform infrared spectra, antibacterial activityOther keywords: proteins, oxidative stress, Se oxyanions, yeast, biosynthesised SeNPs, anti‐oxidant activities, human body, living organisms, Se nanoparticles, Nematospora coryli, anti‐candida activities, biosynthesis, ultraviolet–visible analysis, X‐ray diffraction, X‐ray fluorescence, transmission electron microscope, Fourier transform infrared spectroscopy, structural analysis, size 50.0 nm to 250.0 nm, Se  相似文献   

2.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

3.
The present investigation aims for the synthesis of copper oxide nanoparticles (CuO NPs) using Nilgirianthus ciliatus plant extract. The obtained CuO NPs were characterised by X‐ray diffraction, Fourier transform infrared spectrum, ultraviolet–visible spectroscopy, photoluminescence, scanning electron microscopy and transmission electron microscopy analysis. Significant bacterial activity was manifested by CuO nanoparticles against both Gram‐positive (Staphylococcus aureus and Staphylococcus mutans) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The synthesised CuO NPs have good cytotoxicity against both human breast cancer cell line (MCF‐7) and lung cancer cell line (A549) with minimum cytotoxic effect on normal L929 (fibroblast) cell lines.Inspec keywords: microorganisms, ultraviolet spectra, nanomedicine, transmission electron microscopy, visible spectra, cellular biophysics, antibacterial activity, nanoparticles, X‐ray diffraction, lung, copper compounds, cancer, toxicology, biomedical materials, scanning electron microscopy, photoluminescence, Fourier transform infrared spectraOther keywords: antibacterial activity, anticancer activity, biosynthesised CuO nanoparticles, copper oxide nanoparticles, Nilgirianthus ciliatus plant, X‐ray diffraction, infrared spectrum, ultraviolet–visible spectroscopy, transmission electron microscopy analysis, bacterial activity, Gram‐negative bacteria, synthesised CuO NPs, human breast cancer cell line, Staphylococcus aureus, Staphylococcus mutans, CuO  相似文献   

4.
In the present study, a phyto‐mediated synthesis of gold nanoparticles (AuNPs) using an isoflavone, Dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone) isolated from the alcoholic extract of roots of Dalbergia coromandeliana is reported. It is observed that Dalspinosin itself acts both as a reducing and a capping agent in the synthesis of the nanoparticles (NPs). An ultraviolet–visible (UV–Vis) spectral study showed a surface plasmon resonance band at 526 nm confirming the formation of AuNPs. The NPs formed were characterised by UV–Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM) with energy‐dispersive x‐ray spectroscopy (EDX) and dynamic light scattering. HR‐TEM analysis showed the synthesised AuNPs were spherical in shape with a size of 7.5 nm. The AuNPs were found to be stable for seven months when tested by in vitro methods showed good antioxidant and anti‐inflammatory activities. They also showed moderate anti‐microbial activities when tested against Gram positive (Staphylococcus aureus and Streptococcus sp), Gram negative bacterial strains (Klebsiella pneumonia and Klebsiella terrigena) and fungal strain (Candida glabrata). The biosynthesised AuNPs showed significant catalytic activity in the reduction of methylene blue with NaBH4 to leucomethylene blue.Inspec keywords: biomedical materials, catalysis, Fourier transform infrared spectra, gold, light scattering, microorganisms, nanomedicine, nanoparticles, spectrochemical analysis, surface plasmon resonance, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, X‐ray diffractionOther keywords: phyto‐mediated synthesis, biological activity studies, catalytic activity studies, dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone), alcoholic extract, roots, Dalbergia coromandeliana, ultraviolet‐visible spectral study, surface plasmon resonance band, UV‐Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy, EDX analysis, dynamic light scattering, HR‐TEM analysis, antioxidant activities, antiinflammatory activities, antimicrobial activities, Gram positive bacterial strains, Staphylococcus aureus, Streptococcus sp, Gram negative bacterial strains, wavelength 526 nm, size 7.5 nm, time 7 month, Au  相似文献   

5.
In the present study, Ag/AgCl‐NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor‐sharp peak at 424 nm by UV–visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl‐NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl‐NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT‐116) and breast cancer (MCF‐7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT‐116 and MCF‐7 cells was confirmed using PI, FITC‐annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG‐5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF‐7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase‐3 protein expression. Ag/AgCl‐NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.  相似文献   

6.
A green bioreductive approach with methanobactin was adopted to fabricate bimetallic Au–Pd/Al2 O3 catalysts for solvent‐free oxidation of glucose to gluconic acid with H2 O2 at atmospheric pressure. The catalyst was characterised by diffuse reflectance UV–vis spectroscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, and X‐ray diffraction techniques to understand synergistic interactions between Au and Pd. Effects of Au to Pd molar ratio on the catalytic activity of Au–Pd/Al2 O3 were investigated. The Au–Pd/Al2 O3 catalyst with Au/Pd molar ratio of 0.8:0.2 exhibited excellent catalytic performance. With the catalyst, the oxidation activities of glucose to gluconic acid 2856 mmol min−1 g−1 and selectivity 99.6% were attained at 323 K with H2 O2. The results indicated the activity and selectivity was affected by the ratio of Au/Pd on the Al2 O3. The formation of Au0.8 Pd0.2 /Al2 O3 was favourable for the catalytic reaction.Inspec keywords: sugar, oxidation, biochemistry, gold, lead, aluminium compounds, catalysts, X‐ray diffraction, ultraviolet spectra, X‐ray photoelectron spectra, transmission electron microscopy, visible spectra, catalysis, biological techniquesOther keywords: bimetallic Au‐Pd‐Al2 O3 methanobactin‐mediated synthesis, glucose oxidation, green bioreductive approach, bimetallic Au‐Pd‐Al2 O3 catalysts, glucose solvent‐free oxidation, gluconic acid, Au‐to‐Pd molar ratio, catalytic reaction, X‐ray diffraction, X‐ray photoelectron spectroscopy, transmission electron microscopy, diffuse reflectance UV‐vis spectroscopy, temperature 323 K, Au‐Pd‐Al2 O3   相似文献   

7.
The aim of this study was to green synthesised silver nanoparticles (AgNPs) using Centella asiatica leaf extract and investigate the cytotoxic and apoptosis‐inducing effects of these nanoparticles in MCF‐7 breast cancer cell line. The characteristics and morphology of the green synthesised AgNPs were evaluated using transmission electron microscopy, scanning electron microscopy, UV–visible spectroscopy, X‐ray diffraction, and Fourier‐transform infrared spectroscopy. The MTT assay was used to investigate the anti‐proliferative activity of biosynthesised nanoparticles in MCF‐7 cells. Apoptosis test was performed using flow cytometry and expression of caspase 3 and 9 genes. The spherical AgNPs with an average size of 19.17 nm were synthesised. The results showed that biosynthesised AgNPs exhibited cytotoxicity, anti‐cancer, apoptosis induction, and increased expression of genes encoding for caspases 3 and 9 in MCF‐7 cancer cells in a concentration‐ and time‐dependent manner. It seems that green synthesised AgNPs have potential uses for pharmaceutical industries.Inspec keywords: ultraviolet spectra, transmission electron microscopy, cellular biophysics, infrared spectra, visible spectra, nanofabrication, cancer, toxicology, nanomedicine, nanoparticles, biomedical materials, scanning electron microscopy, silver, Fourier transform spectra, X‐ray diffraction, genetics, enzymes, botany, biochemistryOther keywords: spherical AgNPs, biosynthesised AgNPs, anti‐cancer, apoptosis induction, green synthesised AgNPs, MCF‐7 breast cancer cell line, green synthesised silver nanoparticles, Ag, caspase gene expression, flow cytometry, anti‐proliferative activity, MTT assay, pharmaceutical industries, cytotoxicity, UV–visible spectroscopy, nanoparticle morphology, scanning electron microscopy, Centella asiatica leaf extract, biosynthesised nanoparticles, Fourier‐transform infrared spectroscopy, transmission electron microscopy  相似文献   

8.
In this study, the authors investigated antimicrobial activity of TiO2 nanoparticles (NPs) synthesised by sol–gel method. As synthesised TiO2 NPs were characterised by X‐ray diffraction, scanning electron microscopy and ultraviolet‐visible absorption spectroscopy. The antimicrobial activity of calcined TiO2 nanoparticle samples was examined in day light on Gram positive bacteria (Staphylococcus aureus, Streptococcus pneumonia and Bacillus subtilis), Gram negative bacteria (Proteus vulgaris, Pseudomonas aeruginosa and Escherichia coli) and fungal test pathogen Candida albicans. The synthesised TiO2 NPs were found to be effective in visible light against Streptococcus pneumonia, Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa and Candida albicans.Inspec keywords: titanium compounds, microorganisms, nanomedicine, biomedical materials, nanofabrication, sol‐gel processing, ultraviolet spectra, visible spectra, X‐ray diffraction, scanning electron microscopy, nanoparticles, antibacterial activityOther keywords: microbicidal activity, titanium dioxide nanoparticle, sol‐gel method, antimicrobial activity, X‐ray diffraction, scanning electron microscopy, ultraviolet‐visible absorption spectroscopy, Gram positive bacteria, Staphylococcus aureus, Streptococcus pneumonia, Bacillus subtilis, TiO2 , Candida albicans, fungal test pathogen, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Gram negative bacteria  相似文献   

9.
Facile green synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Carissa carandas (C. carandas) leaves was studied. Fabrication of AgNPs was confirmed by the UV–visible spectroscopy which gives absorption maxima at 420 nm. C. carandas leaves are the rich source of the bioactive molecules, acts as a reducing and stabilising agent in AgNPs, confirmed by Fourier transforms infrared spectroscopy. The field emission scanning electron microscope revealed the spherical shape of biosynthesised AgNPs. A distinctive peak of silver at 3 keV was determined by energy dispersive X‐ray spectroscopy. X‐ray diffraction showed the facecentred cubic structure of biosynthesised AgNPs and thermal stability was confirmed by the thermogravimetric analysis. Total flavonoid and total phenolic contents were evaluated in biosynthesised AgNPs. Biosynthesised AgNPs showed free radical scavenging activities against 2, 2‐diphenyl‐1‐picrylhydrazyl test and ferric reducing antioxidant power assay. In vitro cytotoxicity against hepatic cell lines (HUH‐7) and renal cell lines (HEK‐293) were also assessed. Finally, biosynthesised AgNPs were scrutinised for their antibacterial activity against methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii and Salmonella typhimurium. This study demonstrated the biofabrication of AgNPs by using C. carandas leaves extract and a potential in vitro biological application as antioxidant, anticancer and antibacterial agents.Inspec keywords: antibacterial activity, biomedical materials, cancer, tumours, nanomedicine, silver, nanoparticles, reduction (chemical), nanofabrication, ultraviolet spectra, visible spectra, field emission scanning electron microscopy, Fourier transform infrared spectra, X‐ray chemical analysis, X‐ray diffraction, thermal stability, thermal analysis, free radical reactions, toxicology, cellular biophysics, microorganismsOther keywords: total phenolic contents, free radical scavenging activities, 2,2‐diphenyl‐1‐picrylhydrazyl test, ferric reducing antioxidant power assay, in vitro cytotoxicity, hepatic cell lines HUH‐7, renal cell lines HEK‐293, antibacterial activity, methicillin‐resistant Staphylococcus aureus, Shigella sonnei, Shigella boydii, Salmonella typhimurium, biofabrication, in vitro biological application, Ag, total flavonoid contents, thermogravimetric analysis, thermal stability, face‐centred cubic structure, X‐ray diffraction, energy dispersive X‐ray spectroscopy, distinctive peak, spherical shape, field emission scanning electron microscope, Fourier transforms infrared spectroscopy, stabilising agent, reducing agent, bioactive molecules, absorption maxima, UV‐visible spectroscopy, plant extract colour, antibacterial activities, anticancer activities, antioxidant activities, Carissa carandas, aqueous leaves extract, silver nanoparticles, structural characterisation, one‐pot green synthesis  相似文献   

10.
The present study focuses on the biosynthesis of gold nanoparticles (AuNPs) using Streptomyces coelicoflavus (S. coelicoflavus) SRBVIT13 isolated from marine salt pan soils collected from Ongole, Andhra Pradesh, India. The biosynthesised AuNPs are characterised by UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy and energy‐dispersive X‐ray analysis. Transmission electron microscopy study suggests that the biosynthesised AuNPs are spherical in shape within a size range of 12–20 nm (mean diameter as 14 nm). The anti‐type II diabetes activity of AuNPs is carried out by testing it in vitro α ‐glucosidase and α ‐amylase enzyme inhibition activity and in vivo postprandial anti‐hyperglycemic activity in sucrose and glucose‐loaded streptozotocin induced diabetic albino Wister rats. AuNPs has shown a significant inhibitory activity of 84.70 and 87.82% with IC50 values of 67.65 and 65.59 μg/mL to α ‐glucosidase and α ‐amylase enzymes, while the diabetic rats have shown significant reduction in the post postprandial blood glucose level by 57.80 and 88.09%, respectively compared with control group after AuNPs treatment at the concentration of 300 and 600 mg/kg body weight. Hence, this biosynthesised AuNPs might be useful in combating type II diabetes mellitus for the betterment of human life.Inspec keywords: gold, nanoparticles, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, diseases, enzymes, nanomedicine, biochemistry, spectrochemical analysisOther keywords: gold nanoparticles, Streptomyces coelicoflavus SRBVIT13, biosynthesis, UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy, energy‐dispersive X‐ray analysis, antitype II diabetes activity, in vitro enzyme inhibition activity, in vivo postprandial antihyperglycemic activity, streptozotocin induced diabetic albino Wister rats, type II diabetes mellitus, Au  相似文献   

11.
Currently, the evolution of green chemistry in the synthesis of nanoparticles (NPs) with the usage of plants has captivated a great response. In this study, in vitro plantlets and callus of Silybum marianum were exploited as a stabilising agent for the synthesis of zinc oxide (ZnO) NPs using zinc acetate and sodium hydroxide as a substitute for chemical method. The contemporary investigation defines the synthesis of ZnO NPs prepared by chemical and bio‐extract‐assisted methods. Characterisation techniques such as X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and energy dispersive X‐ray were used to confirm the synthesis. Although chemical and bio‐assisted methods are suitable choices for NPs synthesis, the bio‐assisted green assembly is advantageous due to superior stability. Moreover, this report describes the antibacterial activity of the synthesised NPs against standard strains of Klebsiella pneumonia and Bacillus subtilis.Inspec keywords: zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, semiconductor growth, antibacterial activity, X‐ray diffraction, X‐ray chemical analysis, scanning electron microscopy, Fourier transform infrared spectra, nanobiotechnologyOther keywords: chemical methods, bio‐assisted methods, Silybum marianum in vitro plantlets methods, Silybum marianum in vitro callus extract methods, green chemistry, zinc oxide nanoparticles, sodium hydroxide, zinc acetate, X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X‐ray analysis, bio‐assisted green assembly, antibacterial activity, Klebsiella pneumonia, Bacillus subtilis, ZnO  相似文献   

12.
Nanoparticles (NPs), especially biosynthesised in living plants by absorbing soluble salts and reducing metal ions, are extensively used in various fields. This work aimed at investigating the in vivo biosynthesis of silver NPs (Ag‐NPs) in maize and the spatial distribution of the NPs and some important nutrient elements in the plant. The content of silver in plant was examined by inductively coupled plasma‐atomic emission spectrometer showing that Ag can be absorbed by plant as soluble salts. The NPs in different parts of maize plant were detected and analysed by transmission electron microscopy, demonstrating the synthesis of NPs and their transport from the root to the shoots. Two‐dimensional proton induced X‐ray emission of silver, chlorine and several nutrient elements elucidated the possible relationship between synthesis of NPs and several nutrient elements in plant tissues. To their knowledge, this is the first report of possibility of synthesis of Ag‐NPs in living plants maize (Zea mays L.). This study presents direct evidence for synthesis of NPs and distribution of related nutrient elements in maize, which has great significance for studying synthetic application of NPs in crop plants.Inspec keywords: atomic emission spectroscopy, nanoparticles, nanofabrication, crops, silver, transmission electron microscopy, X‐ray chemical analysis, sorption, chlorineOther keywords: maize plant, plant tissues, crop plants, spatial distribution, metal ion reduction, nutrient elements, inductively coupled plasma analysis, atomic emission spectrometry, Zea mays L., soluble salt absorbtion, transmission electron microscopy, proton induced X‐ray emission analysis, chlorine, silver nanoparticle biosynthesis process, Ag, Cl  相似文献   

13.
Silver nanoparticles (Ag NPs) were synthesised using the crude ethyl acetate extracts of Ulva lactuca and evaluated their bioefficacy against two crop‐damaging pathogens. The sets of lattice planes in the XRD spectrum for the Ag NPs were indexed to the 111, 200, 220 and 311 orientations and support the crystalline nature of the Ag NPs. The 3414 and 2968 cm−1 peaks were observed in crude algal thallus extract and they were characteristic of terpenoids. Further, a peak at 1389 cm−1 was observed as fatty acids. The marine macroalgae terpenoids and palmitic acid acted as reducing agent and stabiliser, respectively. The size (3 and 50 nm) and shape (spherical) of Ag NPs were recorded. The energy‐dispersive X‐ray spectroscopy analysis exemplified the presence of silver in its elemental nature. Moreover, U. lactuca Ag NPs were effective against two cotton phytopathogens namely Fusarium oxysporum f.sp. vasinfectum (FOV) and Xanthomonas campestris pv. malvacearum (XAM). The minimum inhibitory concentration was found to be 80.0 and 43.33 μg ml−1 against FOV and XAM, respectively. Results confirmed the anti‐microbial activity of green nanoparticles against select pathogens and suggest their possible usage in developing antifungal agents for controlling destructive pathogens in a cotton agroecosystem.Inspec keywords: nanoparticles, biotechnology, antibacterial activity, silver, microorganisms, X‐ray chemical analysis, crops, X‐ray diffraction, cottonOther keywords: crude ethyl acetate extracts, crop‐damaging pathogens, lattice planes, XRD spectrum, crystalline nature, crude algal thallus, fatty acids, marine macroalgae terpenoids, palmitic acid, energy‐dispersive X‐ray spectroscopy analysis, elemental nature, cotton phytopathogens, green nanoparticles, destructive pathogens, cotton agroecosystem, green preparation, seaweed‐based silver nanoliquid, cotton pathogenic fungi management, silver nanoparticles, Ag NP, Ag  相似文献   

14.
An environmentally friendly and rapid procedure was developed to synthesise silver nanoparticles (Ag‐NPs) by Chamaemelum nobile extract and to evaluate its in vivo anti‐inflammatory and antioxidant activities. The ultraviolet–visible absorption spectrum of the synthesised Ag‐NPs showed an absorbance peak at 422. The average size of spherical nanoparticles was 24 nm as revealed by transmission electron microscopy. Fourier transform infra‐red spectroscopy analysis supported the presence of biological active compounds involved in the reduction of Ag ion and X‐ray diffraction confirmed the crystalline structure of the metallic Ag. The anti‐inflammatory and antioxidant activity of the Ag‐NPs was investigated against carrageenan‐induced paw oedema in mice. The levels of malondialdehyde (MDA) and antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and inflammatory cytokines tumour necrosis factor (TNF‐α), interferon gamma and interleukin (IL)‐6, IL‐1β were assessed in this respect. The results demonstrated that anti‐inflammatory activity of the Ag‐NPs might be due to the ability of the nanoparticles to reduce IL‐1β, IL‐6 and TNF‐α. Moreover, reduction of antioxidant enzymes along with an increase in MDA level shows that the anti‐inflammatory activity of the synthesised Ag‐NPs by C. nobile is attributed to its ameliorating effect on the oxidative damage.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, particle size, transmission electron microscopy, Fourier transform infrared spectra, X‐ray diffraction, crystal structure, enzymes, molecular biophysics, tumours, biomedical materials, nanomedicineOther keywords: Chamaemelum nobile extract, oxidative stress, mice paw, silver nanoparticles, antiinflammatory activity, antioxidant activity, ultraviolet‐visible absorption spectrum, spherical nanoparticle size, transmission electron microscopy, Fourier transform infrared spectroscopy, biological active compounds, X‐ray diffraction, crystalline structure, carrageenan‐induced paw oedema, malondialdehyde, antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase, inflammatory cytokines, tumour necrosis factor, interferon gamma, interleukin, IL‐1β, IL‐6, TNF‐α, MDA level, Ag  相似文献   

15.
In the first section of this research, superparamagnetic nanoparticles (NPs) (Fe3 O4) modified with hydroxyapatite (HAP) and zirconium oxide (ZrO2) and thereby Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs were synthesised through co‐precipitation method. Then Fe3 O4 /HAP and Fe3 O4 /ZrO2 NPs characterised with various techniques such as X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer–Emmett–Teller, Fourier transform infrared, and vibrating sample magnetometer. Observed results confirmed the successful synthesis of desired NPs. In the second section, the antibacterial activity of synthesised magnetic NPs (MNPs) was investigated. This investigation performed with multiple microbial cultivations on the two bacteria; Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Obtained results proved that although both MNPs have good antibacterial properties, however, Fe3 O4 /HAP NP has greater antibacterial performance than the other. Based on minimum inhibitory concentration and minimum bactericidal concentration evaluations, S. aureus bacteria are more sensitive to both NPs. These nanocomposites combine the advantages of MNP and antibacterial effects, with distinctive merits including easy preparation, high inactivation capacity, and easy isolation from sample solutions by the application of an external magnetic field.Inspec keywords: nanocomposites, X‐ray chemical analysis, microorganisms, magnetic particles, scanning electron microscopy, precipitation (physical chemistry), nanomagnetics, X‐ray diffraction, X‐ray photoelectron spectra, nanoparticles, superparamagnetism, iron compounds, antibacterial activity, biomedical materials, nanomedicine, calcium compounds, nanofabrication, Fourier transform infrared spectra, magnetometers, zirconium compoundsOther keywords: antibacterial effects, antibacterial property, superparamagnetic nanoparticles, X‐ray photoelectron spectroscopy, X‐ray diffraction, X‐ray analysis, antibacterial activity, bactericidal concentration, S. aureus bacteria, Staphylococcus aureus, Escherichia coli, hydroxyapatite, coprecipitation method, scanning electron microscopy, energy dispersive X‐ray analysis, Brunauer‐Emmett‐Teller method, Fourier transform infrared spectroscopy, vibrating sample magnetometer, microbial cultivations, nanocomposites  相似文献   

16.
The current research study focuses on biosynthesis of silver nanoparticles (Ag NPs) for the first time from silver acetate employing methanolic root extract of Diospyros assimilis. The UV–Vis absorption spectrum of biologically synthesised nanoparticles displayed a surface plasmon peak at 428 nm indicating the formation of Ag NPs. The influence of metal ion concentration, reaction time and amount of root extract in forming Ag NPs by microscopic and spectral analysis was thoroughly investigated. Structural analysis from transmission electron microscopy confirmed the nature of metallic silver as face‐centered cubic (FCC) crystalline with an average diameter of 17 nm, which correlates with an average crystallite size (19 nm) calculated from X‐ray diffraction analysis. Further, the work was extended for the preliminary examination of antimicrobial activity of biologically synthesised Ag NPs that displayed promising activity against all the tested pathogenic strains.Inspec keywords: antibacterial activity, nanoparticles, silver, particle size, nanofabrication, nanomedicine, biomedical materials, ultraviolet spectra, visible spectra, optical microscopy, surface plasmon resonance, transmission electron microscopy, crystallites, X‐ray diffraction, microorganismsOther keywords: Diospyros assimilis root extract assisted biosynthesised silver nanoparticles, antimicrobial activity, silver acetate, methanolic root extract, UV‐visible absorption spectrum, biologically synthesised nanoparticles, surface plasmon peak, Ag NPs formation, metal ion concentration, reaction time, microscopic analysis, spectral analysis, structural analysis, transmission electron microscopy, metallic silver, FCC crystalline phase, average crystallite size, X‐ray diffraction analysis, pathogenic strains, Ag  相似文献   

17.
Green synthesis of nanoparticles has gained importance due to its eco‐friendly, low toxicity and cost effective nature. This study deals with the biosynthesis of silver nanoparticles (AgNPs) from the bark extract of Amentotaxus assamica. The AgNPs have been synthesised by reducing the silver ions into stable AgNPs using the bark extract of Amentotaxus assamica under the influence of sunlight irradiation. The characterisation of the biosynthesised AgNPs was carried out by UV–vis spectroscopy, X‐ray diffraction analysis (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM) and energy dispersive X‐ray analysis. The UV–vis spectrum showed a broad peak at 472 nm. Also, the XRD confirmed the crystalline structure of the AgNPs. Moreover, the SEM analysis revealed that the biosynthesised AgNPs were spherical in shape. Also, dynamic light scattering techniques were used to evaluate the size distribution profile of the biosynthesised AgNPs. Furthermore, the biosynthesised AgNPs showed a prominent inhibitory effect against both Escherichia coli (MTCC 111) and Staphylococcus aureus (MTCC 97). Thus the biosynthesis of AgNPs from the bark extract of Amentotaxus assamica is found to eco‐friendly way of producing AgNPs compared to chemical method.Inspec keywords: X‐ray chemical analysis, microorganisms, transmission electron microscopy, nanoparticles, toxicology, scanning electron microscopy, ultraviolet spectra, particle size, Fourier transform spectra, X‐ray diffraction, antibacterial activity, visible spectra, infrared spectra, nanomedicine, silverOther keywords: stable AgNP, biosynthesised AgNP, SEM analysis, sunlight irradiation, silver ions, silver nanoparticle, amentotaxus assamica, biosynthesis, escherichia coli  相似文献   

18.
For the first time, through a fast, eco‐friendly and economic method, the aqueous extract of the leaf of Euphorbia corollate was used to the green synthesis of the highly stable CuO@Magnetite@Hen Bone nanocomposites (NCs) as a potent antioxidant and antibacterial agent against Pseudomonas aureus, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae pathogenic bacteria. The biosynthesised NCs were identified using the scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy, elemental mapping, X‐ray diffraction (XRD), Fourier transforms infrared spectroscopy and UV–vis analytical techniques. Also, the radical scavenging activity using (2,2‐diphenyl‐1‐picrylhydrazyl) method was used to evaluate the antioxidant activity of the NCs. The stability of nanocatalyst was monitored using the XRD and SEM analyses after 30 days from its synthesis. Furthermore, its excellent catalytic activity, recycling stability, and high substrate applicability were demonstrated to the adsorption of the polycyclic aromatic hydrocarbons of the light crude oil from Shiwashok oil fields and destruction of methylene blue and methyl orange as harmful organic dyes at ambient temperature using UV–vis spectroscopy. Moreover, the green CuO@Magnetite@Hen Bone NCs were recovered and reused several times without considerable loss of its catalytic activity.Inspec keywords: nanobiotechnology, X‐ray diffraction, infrared spectra, catalysis, crude oil, Fourier transform spectra, ultraviolet spectra, scanning electron microscopy, dyes, catalysts, photochemistry, iron compounds, X‐ray chemical analysis, antibacterial activity, adsorption, visible spectra, microorganisms, organic compounds, reduction (chemical), nanomedicine, toxicology, recycling, chemical industryOther keywords: antioxidant activity, XRD, SEM analyses, recycling stability, polycyclic aromatic hydrocarbons, harmful organic dyes, UV–vis spectroscopy, green CuO@Magnetite@Hen Bone NCs, reusable CuO@Magnetite@Hen Bone NCs, recyclable CuO@Magnetite@Hen Bone NCs, antioxidant activities, antibacterial activities, highly stable magnetically nanocatalyst, eco‐friendly method, economic method, euphorbia corollate, green synthesis, CuO@Magnetite@Hen Bone nanocomposites, antibacterial agent, pseudomonas aureus, staphylococcus aureus, escherichia coli, klebsiella pneumoniae pathogenic bacteria, biosynthesised NCs, X‐ray spectroscopy, X‐ray diffraction, radical scavenging activity, antioxidant agent, 2,2‐diphenyl‐1‐picrylhydrazyl, catalytic activity, organic dye reduction, light crude oil, CuO  相似文献   

19.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

20.
Sustainable methods are needed for rapid and efficient detection of environmental and food pollutants. The Sudan group of dyes has been used extensively as adulterants in food and also are found to be polluting the soil and water bodies. There have been several methods for detection of Sudan dyes, but most of them are not practical enough for common use. In this study, the electrochemical detection efficiency and stability of gold nanoparticle (AuNPs), silver NPs and Au–Ag bionanocomposites, synthesised by peanut skin extract, modified glassy carbon electrode has been investigated. The synthesised nanomaterial samples were characterised, for their quality and quantity, using ultra–visible spectroscopy, inductive coupled plasma mass spectrophotometer, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, high‐resolution transmission electron microscope and field emission scanning electron microscope. The nanomaterial hybrid electrodes showed great efficiency and stability in the detection of Sudan IV compared with the other previous electrodes. The peak current of the Sudan IV oxidation and reduction was found to be proportional to its concentration, in the range of 10–80 µM, with a detection limit of 4 µM. The hybrid electrodes showed 90% stability in detection for 20 cycles.Inspec keywords: gold, silver, nanoparticles, nanocomposites, biomedical materials, electrochemical sensors, dyes, nanofabrication, ultraviolet spectra, visible spectra, spectrophotometry, Fourier transform infrared spectra, X‐ray chemical analysis, transmission electron microscopy, scanning electron microscopy, field emission electron microscopyOther keywords: peanut skin extract mediated synthesis, gold nanoparticles, silver nanoparticles, gold–silver bionanocomposites, electrochemical Sudan IV sensing, electrochemical detection efficiency, modified glassy carbon electrode, ultra–visible spectroscopy, inductive coupled plasma mass spectrophotometer, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, high‐resolution transmission electron microscope, field emission scanning electron microscope, oxidation, reduction, detection limit, Au, Ag, Au‐Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号