首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Effective and targeted delivery of the antitumour drugs towards the specific cancer spot is the major motive of drug delivery. In this direction, suitably functionalised magnetic iron oxide nanoparticles (NPs) have been utilised as a theranostic agent for imaging, hyperthermia and drug delivery applications. Herein, the authors reported the preparation of multifunctional polyethyleneglycol‐diamine functionalised mesoporous superparamagnetic iron oxide NPs (SPION) prepared by a facile solvothermal method for biomedical applications. To endow targeting ability towards tumour site, folic acid (FA) is attached to the amine groups which are present on the NPs surface by 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride/N‐hydroxysuccinimide chemistry. FA attached SPION shows good colloidal stability and possesses high drug‐loading efficiency of ∼ 96% owing to its mesoporous nature and the electrostatic attachment of daunosamine (NH3 +) group of doxorubicin (DOX) towards the negative surface charge of carboxyl and hydroxyl group. The NPs possess superior magnetic properties in result endowed with high hyperthermic ability under alternating magnetic field reaching the hyperthermic temperature of 43°C within 223 s at NP''s concentration of 1 mg/ml. The functionalised NPs possess non‐appreciable toxicity in breast cancer cells (MCF‐7) which is triggered under DOX‐loaded SPION.Inspec keywords: nanoparticles, nanocomposites, mesoporous materials, colloids, biochemistry, nanomagnetics, molecular biophysics, tumours, superparamagnetism, drugs, toxicology, biomedical materials, nanofabrication, hyperthermia, cancer, magnetic particles, cellular biophysics, nanomedicine, iron compounds, drug delivery systems, filled polymers, biological organs, liquid phase depositionOther keywords: NP surface, colloidal stability, drug‐loading efficiency, hydroxyl group, magnetic properties, high hyperthermic ability, magnetic field, DOX‐loaded SPION, folate encapsulation, targeted delivery, antitumour drugs, specific cancer spot, magnetic iron oxide nanoparticles, theranostic agent, drug delivery applications, multifunctional polyethyleneglycol‐diamine, facile solvothermal method, biomedical applications, tumour site, amine groups, mesoporous superparamagnetic nanoparticles, PEG‐diamine grafted mesoporous nanoparticles, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide hydrochloride‐N‐hydroxysuccinimide chemistry, daunosamine group, carboxyl group, breast cancer cells, temperature 43.0 degC, Fe3 O4   相似文献   

2.
Acute lymphoblastic leukemia (ALL) is the white blood cell cancer in children. L‐asparaginase (L‐ASNase) is one of the first drugs used in ALL treatment. Anti‐tumor activity of L‐ASNase is not specific and indicates limited stability in different biological environments, in addition to its quick clearance from blood. The purpose of the present study was to achieve a new L‐ASNase polymer bioconjugate to improve pharmacokinetic, increase half‐life and stability of the enzyme. The conjugations were achieved by the cross‐linking agent of 1‐ethyl‐3‐(3‐ dimethylaminopropyl) carbodiimide (EDC) which activates the carboxylic acid groups of polymeric nanoparticles to create amide bond. EDC conjugated the L‐ASNase to two biodegradable polymers including; Ecoflex® and poly (styrene‐co‐maleic acid) (PSMA) nanoparticles. To achieve optimal L‐ASNase nanoparticles the amounts of each polymer and the crosslinker were optimized and the nanoparticles were characterized according to their particle size, zeta potential and percent of conjugation of the enzyme. The results showed that conjugated enzyme had more stability against pH changes and proteolysis. It had lower Km value (indicating more affinity to the substrate) and greater half‐life in plasma and phosphate buffered saline, in comparison to native enzyme. Generally, the conjugated enzyme to PSMA nanoparticles showed greater results than Ecoflex® nanoparticles.Inspec keywords: enzymes, polymer blends, nanomedicine, biomedical materials, blood, nanoparticles, cancer, molecular biophysics, molecular configurations, biochemistry, conducting polymers, electrokinetic effects, particle size, bonds (chemical), biodegradable materials, pHOther keywords: enhanced stability, L‐asparaginase, bioconjugation, poly(styrene‐co‐maleic acid), Ecoflex nanoparticles, acute lymphoblastic leukaemia, white blood cell cancer, children, drugs, ALL treatment, antitumour activity, biological environments, L‐ASNase polymer bioconjugate, pharmacokinetic, enzyme, crosslinking agent, amide bond, 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide, carboxylic acid groups, polymeric nanoparticles, EDC conjugation, biodegradable polymers, PSMA nanoparticles, optimal L‐ASNase nanoparticles, particle size, zeta potential, pH changes, proteolysis, native enzyme, conjugated enzyme  相似文献   

3.
Chondroitin sulphate is a sulphated glycosaminoglycan biopolymer composed over 100 individual sugars. Chondroitin sulphate nanoparticles (NPs) loaded with catechin were prepared by an ionic gelation method using AlCl3 and optimised for polymer and cross‐linking agent concentration, curing time and stirring speed. Zeta potential, particle size, loading efficiency, and release efficiency over 24 h (RE24 %) were evaluated. The surface morphology of NPs was investigated by scanning electron microscopy and their thermal behaviour by differential scanning calorimetric. Antioxidant effect of NPs was determined by chelating activity of iron ions. The cell viability of mesenchymal stem cells was determined by 3‐[4, 5‐dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay and the calcification of osteoblasts was studied by Alizarin red staining. The optimised NPs showed particle size of 176 nm, zeta potential of −20.8 mV, loading efficiency of 93.3% and RE24 % of 80.6%. The chatechin loaded chondroitin sulphate NPs showed 70‐fold more antioxidant activity, 3‐fold proliferation effect and higher calcium precipitation in osteoblasts than free catechin.Inspec keywords: nanoparticles, encapsulation, biomedical materials, particle size, nanofabrication, nanomedicine, electrokinetic effects, cellular biophysics, polymer blends, molecular biophysics, molecular configurations, biochemistry, curing, surface morphology, scanning electron microscopy, differential scanning calorimetry, dyes, precipitationOther keywords: in vitro evaluation, cross‐linked chondroitin sulphate nanoparticles, aluminium ions, nanoparticles, green tea flavonoids, sulphated glycosaminoglycan biopolymer, sugars, catechin, ionic gelation method, cross‐linking agent concentration, curing time, size 176 nm, time 24 h, calcium precipitation, 3‐fold proliferation effect, antioxidant activity, chatechin loaded chondroitin sulphate NPs, Alizarin red staining, osteoblasts, calcification, 3‐[4,5‐dimethylthiazol‐2‐yl]‐2,5‐diphenyl tetrazolium bromide assay, mesenchymal stem cells, cell viability, chelating activity, differential scanning calorimetry, thermal behaviour, scanning electron microscopy, surface morphology, release efficiency, loading efficiency, particle size, zeta potential, stirring speed  相似文献   

4.
5.
In the present study, Ag/AgCl‐NPs were biosynthesised using Hypnea musciformis seaweed extract; NPs synthesis was confirmed by a change of colour and observation of a razor‐sharp peak at 424 nm by UV–visible spectroscopy. Synthesised nanoparticles were characterised by transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray powder diffraction and Fourier transform infrared spectroscopy. Bacterial cell growth inhibition proves that the Ag/AgCl‐NPs have strong antibacterial activity and cell morphological alteration was observed in treated bacterial cells using propidium iodide (PI). Ag/AgCl‐NPs inhibited Ehrlich ascites carcinoma (EAC) cells, colorectal cancer (HCT‐116) and breast cancer (MCF‐7) cell line in vitro with the IC50 values of 40.45, 24.08 and 36.95 μg/ml, respectively. Initiation of apoptosis in HCT‐116 and MCF‐7 cells was confirmed using PI, FITC‐annexin V and Hoechst 33342 dye. No reaction oxygen species generation was observed in both treated and untreated cell lines. A significant increase of ATG‐5 gene expression indicates the possibility of autophagy cell death besides apoptosis in MCF‐7 cells. The initiation of apoptosis in EAC cells was confirmed by observing caspase‐3 protein expression. Ag/AgCl‐NPs inhibited 22.83% and 51% of the EAC cell growth in vivo in mice when administered 1.5 and 3.0 mg/kg/day (i.p.), respectively, for 5 consequent days.  相似文献   

6.
Human epidermal growth factor receptor 2 (HER‐2) is overexpressed in 20–30% of human breast cancers, associated with poor prognosis and tumour aggression. The aim of this study was the production of trastuzumab‐targeted Ecoflex nanoparticles (NPs) loaded with docetaxel and in vitro evaluation of their cytotoxicity and cellular uptake. The NPs were manufactured by electrospraying and characterised regarding size, zeta potential, drug loading, and release behaviour. Then their cytotoxicity was evaluated by MTT assay against an HER‐2‐positive cell line, BT‐474, and an HER‐2‐negative cell line, MDA‐MB‐468. The cellular uptake was studied by flow cytometry and fluorescent microscope. The particle size of NPs was in an appropriate range, with relatively high drug entrapment and acceptable release efficiency. The results showed no cytotoxicity for the polymer, but the significant increment of cytotoxicity was observed by treatment with docetaxel‐loaded NPs in both HER‐2‐positive and HER‐2‐negative cell lines, in comparison with the free drug. The trastuzumab‐targeted NPs also significantly enhanced cytotoxicity against BT‐474 cells, compared with non‐targeted NPs.Inspec keywords: cancer, proteins, biomedical materials, nanofabrication, drug delivery systems, cellular biophysics, biological organs, nanomedicine, toxicology, tumours, nanoparticles, biomedical optical imaging, fluorescence, particle sizeOther keywords: human breast cancers, tumour aggression, trastuzumab‐targeted Ecoflex nanoparticles, cellular uptake, zeta potential drug loading, HER‐2‐positive cell line, HER‐2‐negative cell line, MDA‐MB‐468, particle size, trastuzumab‐conjugated nanoparticles, electrospraying technique, human epidermal growth factor receptor, cytotoxicity, nontargeted nanoparticles, butylene adipate‐co‐butylene terephthalate, trastuzumab‐targeted NP, docetaxel‐loaded NP  相似文献   

7.
The motive of work was to develop a multi‐walled carbon nanoplatform through facile method for transportation of potential anticancer drug doxorubicin (DOX). Folic acid (FA)‐ethylene diamine (EDA) anchored and acid functionalised MWCNTs were covalently grafted with DOX via π–π stacking interaction. The resultant composite was corroborated by 1 H NMR, FTIR, XRD, EDX, SEM, and DSC study. The drug entrapment efficiency of FA‐conjugated MWCNT was found high and stability study revealed its suitability in biological system. FA‐EDA‐MWCNTs‐DOX conjugate demonstrated a significant in vitro anticancer activity on human breast cancer MCF‐7 cells. MTT study revealed the lesser cytotoxicity of folate‐conjugated MWCNTs. The obtained results demonstrated the targeting specificity of FA‐conjugate via overexpressed folate receptor deemed greater scientific value to overcome multidrug protection during cancer therapy. The proposed strategy is a gentle contribution towards development of biocompatible targeted drug delivery and offers potential to address the current challenges in cancer therapy.Inspec keywords: toxicology, nanoparticles, biomedical materials, scanning electron microscopy, drug delivery systems, nanofabrication, nanomedicine, nanocomposites, cellular biophysics, cancer, drugs, multi‐wall carbon nanotubes, Fourier transform infrared spectra, X‐ray chemical analysis, differential scanning calorimetry, proton magnetic resonance, organic compoundsOther keywords: facile synthesis, multiwalled carbon nanotube, precise delivery, multiwalled carbon nanoplatform, drug entrapment efficiency, FA‐conjugated MWCNT, stability study, biological system, human breast cancer MCF‐7 cells, MTT study, folate‐conjugated MWCNTs, overexpressed folate receptor, cancer therapy, biocompatible targeted drug delivery, anticancer drug doxorubicin, π‐π stacking interaction, composite material, 1 H NMR, in vitro anticancer activity, folic acid grafted nanoparticle, folic acid‐ethylene diamine, acid functionalised MWCNT, FTIR spectra, XRD, EDX, SEM, FA‐EDA‐MWCNT‐DOX conjugate, cytotoxicity, DSC, C  相似文献   

8.
The objective of this study is to develop resveratrol (RES) loaded polyethylene glycols (PEGs) modified chitosan (CS) nanoparticles (NPs) by ionic gelation method for the treatment of glaucoma. While increasing the concentration of PEG, the particle size and polydispersity index of the formulations increased. Entrapment efficiency and RES loading (RL) of NPs decreased while increasing PEG concentration. The in vitro release of NPs showed an initial burst release of RES (45%) followed by controlled release. Osmolality of formulations revealed that the prepared NPs were iso‐osmolar with the tear. Ocular tolerance of the NPs was evaluated using hen''s egg test on the chorioallantoic membrane and it showed that the NPs were non‐irritant. RES‐loaded PEG‐modified CS NPs shows an improved corneal permeation compared with RES dispersion. Fluorescein isothiocyanate loaded CS NPs accumulated on the surface of the cornea but the PEG‐modified CS NPs crossed the cornea and reached retinal choroid. RES‐loaded PEG‐modified CS NPs reduced the intra‐ocular pressure (IOP) by 4.3 ± 0.5 mmHg up to 8 h in normotensive rabbits. These results indicate that the developed NPs have efficient delivery of RES to the ocular tissues and reduce the IOP for the treatment of glaucoma.Inspec keywords: conducting polymers, nanoparticles, nanomedicine, drug delivery systems, particle size, nanofabrication, organic compounds, biomembranes, cellular biophysics, eye, vision defects, biological tissuesOther keywords: RES‐loaded pegylated CS NP, efficient ocular delivery, resveratrol loaded polyethylene glycol modified chitosan nanoparticles, ionic gelation method, glaucoma treatment, particle size, polydispersity index, entrapment efficiency, RES loading, PEG concentration, in vitro release, osmolality formulations, ocular tolerance, hen egg testing, chorioallantoic membrane, improved corneal permeation, RES dispersion, fluorescein isothiocyanate loaded CS NP, cornea surface, reached retinal choroid, intraocular pressure, normotensive rabbits, RES delivery, ocular tissues  相似文献   

9.
Herein, the authors developed a new and potential semi‐interpenetrating polymer network (semi‐IPN) hydrogels of poly vinyl alcohol (PVA), acryl amide and diallyldimethyl ammonium chloride employing chemical cross‐linker N, N''‐methylene bisacrylamide (NNMBA) and ammonium persulphate as an initiator by radical polymerisation. To analyse the copolymer formation between two monomers and IPN cross‐linking reaction, the resulting hydrogel was characterised by Fourier transform infrared spectroscopy and the surface morphology was analysed using scanning electron microscopy. Differential scanning calorimetry and X‐ray diffraction studies were also carried out for investigating drug loading and distribution and swelling experiments were carried out for the uptake of water. In vitro release of ciprofloxacin hydrochloride from hydrogel was performed at intestinal conditions. The amount of PVA, NNMBA and total monomer concentration was found to strongly control the drug release behaviour from the hydrogels.Inspec keywords: hydrogels, polymer blends, biomedical materials, drug delivery systems, polymerisation, Fourier transform infrared spectra, surface morphology, scanning electron microscopy, differential scanning calorimetry, X‐ray diffraction, swelling, biological organs, ammonium compoundsOther keywords: PVA‐poly(acrylamide‐co‐diallyldimethyl ammonium chloride) semiIPN hydrogels, ciprofloxacin hydrochloride drug delivery, semiinterpenetrating polymer network hydrogels, polyvinyl alcohol, acryl amide, diallyldimethyl ammonium chloride, chemical crosslinker N,N''‐methylene bisacrylamide, ammonium persulphate, radical polymerisation initiator, NNMBA, copolymer formation, IPN crosslinking reaction, Fourier transform infrared spectroscopy, surface morphology, scanning electron microscopy, differential scanning calorimetry, X‐ray diffraction, drug loading, drug distribution, swelling, water uptake, in vitro ciprofloxacin hydrochloride release, intestinal conditions, total monomer concentration, drug release behaviour  相似文献   

10.
Biotinylated chitosan/poly(methyl vinyl ether‐alt ‐maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1 HNMR and Fourier transform infra‐red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX‐loaded biotin‐targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1 HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug‐loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX‐loaded in targeted micelles on HepG2 cell line was about 2.2‐fold compared with free drug.Inspec keywords: biomedical materials, cellular biophysics, dissolving, drug delivery systems, drugs, electrokinetic effects, fluorescence, Fourier transform infrared spectra, particle size, polymer blends, spectrochemical analysis, toxicologyOther keywords: 1 HNMR spectra, biotin‐targeted chitosan‐poly (methyl vinyl ether‐alt‐maleic acid) copolymeric micelles, doxorubicin delivery, amide reaction, structural characterisation, Fourier transform infrared spectra, pyrene, fluorescent probe, direct dissolution method, physicochemical properties, particle size, zeta potential, nanoparticles, irregular factorial design, in vitro cytotoxicity, DOX‐loaded biotin‐targeted micelles, 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay, polydispersity index, drug‐loading efficiency, HepG2 cell line, voltage 9.46 mV  相似文献   

11.
Biosynthesis of nanoparticles (NPs) using biomass is now one of the best methods for synthesising NPs due to their nontoxic and biocompatibility. Plants are the best choice among all biomass to synthesise large‐scale NPs. The objectives of this study were to synthesise zinc oxide nanoparticles (ZnO‐NPs) using Anjbar (root of Persicaria bistorta) [An/ZnO‐NPs] and investigate the cytotoxic and anti‐oxidant effects. For this purpose, the An/ZnO‐NPs were synthesised by using Bistort extract and characterised using UV–Visible spectroscopy, transmission electron microscope, field emission scanning electron microscope, x‐ray diffraction and Fourier‐transform infrared spectroscopy. The cytotoxic effects of the An/ZnO‐NPs on MCF‐7 cells were followed by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assays at 24, 48, and 72 h. Nuclear morphology changed and apoptosis in cells was investigated using acridine orange/propodium iodide (AO/PI) staining and flow cytometry analysis. The pure biosynthesised ZnO‐NPs were spherical in shape and particles sizes ranged from 1 to 50 nm. Treated MCF‐7 cells with different concentrations of ZnO‐NPs inhibited cell viability in a time‐ and dose‐dependent manner with IC50 about 32 μg/ml after 48 h of incubation. In flow cytometry analysis the sub‐G1 population, which indicated apoptotic cells, increased from 12.6% at 0 μg/ml (control) to 92.8% at 60 μg/ml, 48 h after exposure. AO/PI staining showed that the treated cells displayed morphologic evidence of apoptosis, compared to untreated groups. Inspec keywords: cancer, cellular biophysics, toxicology, particle size, nanofabrication, X‐ray diffraction, nanomedicine, nanoparticles, ultraviolet spectra, scanning electron microscopy, visible spectra, transmission electron microscopy, patient treatment, field emission electron microscopy, Fourier transform infrared spectra, drug delivery systemsOther keywords: anjbar, cytotoxic effects, human breast cancer cell line, biomass, transmission electron microscope, field emission scanning electron microscope, Fourier‐transform infrared spectroscopy, flow cytometry analysis, ZnO‐NPs inhibited cell viability, antioxidant effects, MCF‐7 cells, biosynthesised ZnO‐NP, biosynthesised ZnO‐NP, acridine orange‐propodium iodide staining, An‐ZnO‐NP, Persicaria bistorta, zinc oxide nanoparticle biosynthesis, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide  相似文献   

12.
Honokiol (HK) is a natural product isolated from the bark, cones, seeds and leaves of plants belonging to the genus Magnolia. It possesses anti‐cancer activity which can efficiently impede the growth and bring about apoptosis of a diversity of cancer cells. The major concerns of using HK are its poor solubility and lack of targeted drug delivery. In this study, a combinatorial drug is prepared by combining HK and camptothecin (CPT). Both CPT and HK belong to the Magnolian genus and induce apoptosis by cell cycle arrest at the S‐phase and G1 phase, respectively. The combinatorial drug thus synthesised was loaded onto a chitosan functionalised graphene oxide nanoparticles, predecorated with folic acid for site‐specific drug delivery. The CPT drug‐loaded nanocarrier was characterised by X‐ray diffractometer, scanning electron microscope, transmission electron microscope, UV–vis spectroscopy and fluorescence spectroscopy, atomic force microscopy. The antioxidant properties, haemolytic activity and anti‐inflammatory activities were analysed. The cellular toxicity was analysed by 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐Diphenyltetrazolium Bromide (MTT assay) and Sulforhodamine B (SRB) assay against breast cancer (MCF‐7) cell lines.Inspec keywords: nanofabrication, cancer, nanoparticles, atomic force microscopy, graphene, scanning electron microscopy, cellular biophysics, toxicology, transmission electron microscopy, drug delivery systems, nanomedicine, tumours, solubilityOther keywords: targeted drug delivery, combinatorial drug, Magnolian genus, apoptosis, cell cycle, chitosan functionalised graphene oxide nanoparticles, site‐specific drug delivery, CPT drug‐loaded nanocarrier, transmission electron microscope, fluorescence spectroscopy, haemolytic activity, antiinflammatory activities, breast cancer cell lines, honokiol–camptothecin loaded graphene oxide nanoparticle, combinatorial anti‐cancer drug delivery, natural product, genus Magnolia, anticancer activity, cancer cells  相似文献   

13.
Metal‐organic frameworks (MOFs) as drug carriers have many advantages than traditional drug carriers and have received extensive attention from researchers. However, how to regulate the microstructure of MOFs to improve the efficiency of drug delivery and sustained release behaviour is still a big problem for the clinical application. Herein, the authors synthesise surfactant‐modified ZIF‐8 nanoparticles with different microstructures by using different types of surfactants to modify ZIF‐8. The surfactant‐modified ZIF‐8 nanoparticles have the larger specific surface area and total micropore volumes than the original ZIF‐8, which enables doxorubicin (DOX) to be more effectively loaded on the drug carriers and achieve controlled drug sustained release. Excellent degradation performance of ZIF‐8 nanoparticles facilitates the metabolism of drug carriers. The formulation was evaluated for cytotoxicity, cellular uptake and intracellular location in the A549 human non‐small‐cell lung cancer cell line. ZIF‐8/DOX nano drugs exhibit higher cytotoxicity towards cells in comparison with free DOX, suggesting the potential application in nano drugs to cancer chemotherapy.Inspec keywords: nanomedicine, lung, nanofabrication, drug delivery systems, cellular biophysics, nanoparticles, cancer, toxicology, biomedical materials, drugs, organometallic compounds, surfactants, porosity, biodegradable materialsOther keywords: controlled drug sustained release, nanodrugs, controllable microstructures, drug loading, metal‐organic frameworks, traditional drug carriers, drug delivery, surfactant‐modified ZIF‐8 nanoparticles, specific surface area, micropore volumes, doxorubicin, degradation performance, metabolism, cytotoxicity, cellular uptake, intracellular location, A549 human nonsmall‐cell lung cancer cell line, cancer chemotherapy  相似文献   

14.
The authors used mesoporous silica microspheres as a support for the immobilization of inulinase from Aspergillus brasiliensis MTCC 1344 by the process of cross‐linking. Under optimized operating conditions of pH 6.0, particle/enzyme ratio of 2.0:1.0 and glutaraldehyde concentration of 7 mM, a maximum immobilization yield of 90.7% was obtained after a cross‐linking time of 12.25 h. Subsequently, the cross‐linked inulinase was utilized for the hydrolysis of 5% inulin, and a maximum fructose concentration of 31.7 g/L was achieved under the optimum conditions of pH 6.0 and temperature 60°C in 3 h. Furthermore, on performing reusability studies during inulin hydrolysis, it was observed that the immobilized inulinase could be reused up to 10 subsequent cycles of hydrolysis, thus providing a facile and commercially attractive process of high‐fructose syrup production.  相似文献   

15.
Breast cancer accounts for the first highest mortality rate in India and second in world. Though current treatment strategies are effectively killing cancer cells, they also end in causing severe side effects and drug resistance. Curcumin is a nutraceutical with multipotent activity but its insolubility in water limits its therapeutic potential as an anti‐cancer drug. The hydrophilicity of curcumin could be increased by nanoformulation or changing its functional groups. In this study, curcumin is loaded on mesoporous silica nanoparticle and its anti‐cancer activity is elucidated with MCF‐7 cell death. Structural characteristics of Mobil Composition of Matter ‐ 41(MCM‐41) as determined by high‐resolution transmission electron microscopy (HR‐TEM) shows that MCM‐41 size ranges from 100 to 200 nm diameters with pore size 2–10 nm for drug adsorption. The authors found 80–90% of curcumin is loaded on MCM‐41 and curcumin is released efficiently at pH 3.0. The 50 µM curcumin‐loaded MCM‐41 induced 50% mortality of MCF‐7 cells. Altogether, their results suggested that increased curcumin loading and sustained release from MCM‐41 effectively decreased cell survival of MCF‐7 cells in vitro.Inspec keywords: cancer, cellular biophysics, nanoparticles, nanomedicine, biomedical materials, polymers, mesoporous materials, transmission electron microscopy, drugs, adsorptionOther keywords: polyethylenimine‐modified curcumin‐loaded mesoporus silica nanoparticle, MCF‐7 cell line, breast cancer, cancer cells, drug resistance, multipotent activity, therapeutic potential, anticancer drug, mesoporous silica nanoparticle, MCF‐7 cell death, high‐resolution transmission electron microscopy, drug adsorption, curcumin‐loaded MCM‐41, nutraceutical curcumin, size 2 nm to 10 nm, size 100 nm to 200 nm  相似文献   

16.
The main focus of the current study is the fabrication of a multifunctional nanohybrid based on graphene oxide (GO)/iron oxide/gold nanoparticles (NPs) as the combinatorial cancer treatment agent. Gold and iron oxide NPs formed on the GONPs via the in situ synthesis approach. The characterisations showed that gold and iron oxide NPs formed onto the GO. Cell toxicity assessment revealed that the fabricated nanohybrid exhibited negligible toxicity against MCF‐7 cells in low doses (<50 ppm). Temperature measurement showed a time and dose‐dependent heat elevation under the interaction of the nanohybrid with the radio frequency (RF) wave. The highest temperature was recorded using 200 ppm concentration nanohybrid during 40 min exposure. The combinatorial treatments demonstrated that the maximum cell death (average of 53%) was induced with the combination of the nanohybrid with RF waves and radiotherapy (RT). The mechanistic study using the flow cytometry technique illustrated that early apoptosis was the main underlying cell death. Moreover, the dose enhancement factor of 1.63 and 2.63 were obtained from RT and RF, respectively. To sum up, the authors’ findings indicated that the prepared nanohybrid could be considered as multifunctional and combinatorial cancer therapy agents.Inspec keywords: radiation therapy, toxicology, gold, biomedical materials, nanofabrication, nanoparticles, iron compounds, cancer, nanomedicine, cellular biophysics, tumours, graphene compounds, biothermicsOther keywords: graphene oxide nanohybrid, combinatorial cancer treatment agent, cell toxicity assessment, MCF‐7 cells, dose‐dependent heat elevation, multifunctional cancer therapy agents, thermoradiotherapy agent, graphene oxide‐iron oxide‐gold nanoparticles, temperature measurement, radiofrequency wave, flow cytometry, time 40.0 min, CO‐FeO‐Au  相似文献   

17.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   

18.
Intelligent inorganic nanoparticles were designed and produced for use in imaging and annihilating tumour cells by radio‐frequency (RF) hyperthermia. Nanoparticles synthesised to provide RF hyperthermia must have magnetite properties. For this purpose, magnetite nanoparticles were first synthesised by the coprecipitation method (10–15 NM). These superparamagnetic nanoparticles were then covered with gold ions without losing their magnetic properties. In this step, gold ions are reduced around the magnetite nanoparticles. Surface modification of the gold‐coated magnetic nanoparticles was performed in the next step. A self‐assembled monolayer was created using cysteamine (2‐aminoethanethiol) molecules, which have two different end groups (SH and NH2). These molecules react with the gold surface by SH groups. The NH2 groups give a positive charge to the nanoparticles. After that, a monoclonal antibody (Monoclonal Anti‐N‐CAM Clone NCAM‐OB11) was immobilised by the 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide/N‐hydroxysuccinimide method. Then, the antenna RF system (144.00015 MHz) was created for RF hyperthermia. The antibody‐nanoparticle binding rate and cytotoxicity tests were followed by in vitro and in vivo experiments. As the main result, antibody‐bound gold‐coated magnetic nanoparticles were successfully connected to tumour cells. After RF hyperthermia, the tumour size decreased owing to apoptosis and necrosis of tumour cells.  相似文献   

19.
Preparation of manganese ferrite (MnFe2 O4) nanorods by the reduction of akaganeite seeds in the presence of oleylamine is reported. The Mn‐doped β‐FeOOH akaganeite seeds have been processed by the hydrolysis of metal‐chloride salts in the presence of polyethylenimine (PEI) surfactant. The hydrophobic oleylamine capped nanorods are made hydrophilic using trisodium citrate as a phase transferring agent. The nanorods form with an aspect ratio of 5.47 and possess a high magnetisation value of 69 emu/g at an applied magnetic field of 1.5 T. The colloidal water dispersion of nanorods exhibits superior heating efficiency by the application of alternating magnetic field (AMF). A specific absorption rate value of 798 W/g is achieved at an applied AMF of field strength 500 Oe and frequency 316 kHz. Further, the citrate functionalised nanorods are capable of attaching with doxorubicin (DOX) electrostatically with a loading efficiency of 97% and the drug release is pH responsive. The DOX loaded nanorods show a promising effect on the apoptosis of MCF‐7 as experimented in vitro.Inspec keywords: manganese, hydrophobicity, drug delivery systems, cellular biophysics, magnetic particles, ferrites, manganese compounds, colloids, hyperthermia, pH, iron compounds, biomedical materials, cancer, nanofabrication, nanomagnetics, hydrophilicity, nanoparticles, magnetisation, nanorods, nanomedicineOther keywords: enhanced drug delivery, hyperthermia application, manganese ferrite nanorods, polyethylenimine surfactant, hydrophilic using trisodium citrate, phase transferring agent, high magnetisation, applied magnetic field, heating efficiency, absorption rate, hydrophobic oleylamine capped nanorods, reduction, akaganeite seeds, hydrolysis, trisodium citrate, hydrophilicity, colloidal water dispersion, alternating magnetic field, frequency 316.0 kHz, FeOOH:Mg, MnFe2 O4   相似文献   

20.
Cancer is a major cause of death. Thus, the incidence and mortality rate of cancer is globally important. Regarding vast problems caused by chemotherapy drugs, efforts have progressed to find new anti‐cancer drugs. Pyrazole derivatives are known as components with anti‐cancer properties. In here, Fe3 O4 nanoparticles were first functionalized with (3‐chloropropyl) trimethoxysilane, then 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide (P) was anchored on the surface of magnetic nanoparticles (PL). The synthesized nano‐compounds were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, and energy‐dispersive x‐ray spectrometry analyses. The cytotoxicity effect was evaluated using MTT assay, apoptosis test by Flow cytometry, cell cycle analysis, Caspase‐3 activity assay and Hoechst staining on MCF‐7 cell line. The high toxicity for tumor cells and low toxicity on normal cells (MCF10A) was considered as an important feature (selectivity index, 10.9). Based on results, the IC50 for P and PL compounds were 157.80 and 131.84 μM/ml respectively. Moreover, apoptosis inducing, nuclear fragmentation, Caspase 3 activity and induction of cell rest in sub‐G1 and S phases, were also observed. The inhibitory effect of PL was significantly higher than P, which could be due to the high penetrability of Fe3 O4 nanoparticles.Inspec keywords: magnetic particles, drugs, nanomedicine, biochemistry, cancer, light scattering, scanning electron microscopy, molecular biophysics, iron compounds, electrokinetic effects, nanofabrication, tumours, X‐ray diffraction, cellular biophysics, nanoparticles, biomedical materials, toxicology, nanomagnetics, Fourier transform infrared spectra, enzymes, X‐ray chemical analysisOther keywords: anticancer properties, Fe3 O4 magnetic nanoparticles, (3‐chloropropyl) trimethoxysilane, energy‐dispersive X‐ray spectrometry, cell cycle analysis, MCF‐7 cell line, tumour cells, human breast cancer MCF‐7 cells, mortality rate, pyrazole derivatives, 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide, chemotherapy drugs, heterocyclic components, nanocompounds, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, cytotoxicity effect, MTT assay, apoptosis test, caspase‐3 activity assay, Hoechst staining, MCF10A nontumourigenic cells, cell rest induction, nuclear fragmentation, Fe3 O4   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号