首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of water-soluble fluorescent carbon dots (C-dots) has received much attention recently. Here, high quality fluorescent C-dots have been synthesized through low-temperature carbonization and simple filtration using watermelon peel, a waste and reproducible raw resource, as a novel carbon resource. This facile approach allows large-scale production of aqueous C-dots dispersions without any post-treatment process. The as-prepared C-dots possess small particle sizes (~ 2.0 nm), strong blue luminescence, acceptable fluorescence lifetime and good stability in a wide range of pH values (pH 2.0-11.0) and at a high salt concentration. Besides, the obtained C-dots have been successfully applied in live cell imaging, indicating these carbon nanoparticles can serve as high-performance optical imaging probes.  相似文献   

2.
The present study deals with the production of 5‐hydroxymethyl furfural (HMF) from fructose by chemo‐conversion method using chemical catalyst, conventionally achieved by microwave‐assisted dehydration process. Five different chemical catalysts, namely oxalic acid, phosphotungstic acid and mesoporous titanium dioxide nanoparticles (TNPs) were compared at constant conditions of which TNPs yielded a maxima of 33.95%. The optimum temperature and catalyst loading were found to be 200°C and 20%, respectively, at a 5% optimum substrate concentration during 15 min optimum reaction time to yield 61.53% HMF. The efficiency of synthesised TNPs was investigated further through reusability studies. TNPs were properly recycled and the catalytic activity recovery was good even after a 14 batch reactions. The specific surface area of the TNP obtained is about 105.46 m2 /g and its pore‐volume is about 0.42 cm3 /g according to single point adsorption. A large accessible surface area combined with a minimal pore size (15.92 nm) obtained with mesoporous TNPs is desirable for better catalyst loading, high‐yield HMF, retention and reduced diffusion constraints.Inspec keywords: mesoporous materials, recycling, production management, dissociation, nanoparticles, nanotechnologyOther keywords: mesoporous titanium dioxide nanocatalyst, recyclable approach, one‐pot synthesis, 5‐hydroxymethyl furfural production, HMF, chemo‐conversion method, chemical catalyst, microwave‐assisted dehydration process, oxalic acid, phosphotungstic acid, mesoporous titanium dioxide nanoparticles, TNP  相似文献   

3.
In this study, we report a facile plasma-induced method to fabricate photoluminescent carbon dots (CDs) using acrylamide as the precursor in few minutes. The Fourier transform infrared spectra, UV–Vis absorption spectra, photoluminescence, fluorescent lifetime, and transmission electron microscopy of the as-prepared CDs were investigated thoroughly. The CDs have a narrow size distribution of 3–4 nm and exhibit strong blue fluorescence with quantum yield of ~6 %. More importantly, we explored the CDs as color converters along with CdTe quantum dots to generate white light-emitting diodes (LEDs) using a UV-LED chip as the excitation light source. Compared with the conventional YAG:Ce phosphor-based white LEDs, this resulted LED emitted white light with a higher color rendering index up to 87, which may find their potential in optoelectronic device.  相似文献   

4.
We are reporting highly economical plant based method for the production of luminescent water soluble carbon dots (C-dot) using Indian water plant Trapa bispinosa peel extract without adding any external oxidizing agent at 90 °C. C-dots ranging from 5 to 10 nm were found in the solution with a prominent green fluorescence under UV-light (λex = 365 nm). UV–vis spectra recorded at different time intervals (30–120 min) displayed signature absorption of C-dots between 400 and 600 nm. Fluorescence spectra of the dispersion after 120 min of synthesis exhibited characteristic emission peaks of C-dots when excited at 350, 400, 450 and 500 nm. C-dots were further analyzed using X-ray diffraction (XRD), Raman Spectroscopy and Thermo-Gravimetric Analysis (TGA). Structure of the C-dots was found to be turbostratic when studied using XRD. C-dots synthesized by our method were found to be exceptionally biocompatible against MDCK cells.  相似文献   

5.
Carbon quantum dots (CQDs) were synthesized by a simple and economic hydrothermal method using Lycium barbarum (LB-CQDs) as precursor. Ammonia was used as a dopant to prepare nitrogen modified LB-CQDs (N-LB-CQDs). The characterizations of atomic force microscope, transmission electron microscopy, X-ray photoelectron spectroscopy showed that N-LB-CQDs were spherical in shape with an average diameter of 2~5 nm. Its surface was rich in nitrogen-containing groups. The fluorescence spectrophotometer showed that N-LB-CQDs exhibited double peak emission. The two peak positions in photoluminescence were about 462 nm and 512 nm. The as-prepared N-LB-CQDs are high-fluorescent quantum yield and water soluble. In addition, iron selectively results in a strong fluorescence quenching of N-LB-CQDs. Theoretical research results verified that iron reduced energy gap between HOMO and LUMO of N-LB-CQDs greatly, which leads to its emission wavelength shift out of the visible range. Results from the study may shed light on the production of fluorescent and biocompatible CQDs with simple, economic and environmental benign strategy in which Lycium barbarum was used as a carbon source.  相似文献   

6.
Cellulosic coagulant with low crystallinity and surface charge of −19.2 mV were extracted from wet banana peels (WBE) using kitchen‐blending method. Functionalization with ferric chloride and aluminium chloride yielded higher surface charge of −23.8 mV (mWBE). Both WBE and mWBE coagulants were used to target cadmium ions from aqueous solution. Coagulants and the floccules (WBEA and mWBEA) were characterized by XRD, FT‐IR, zeta sizer nano series, and SEM/EDs. The amount of cadmium ion coagulated was determined using ICP‐OES. The FTIR analysis revealed the functional groups involved in the coordination and subsequent removal of the metals ions around 1634 cm−1, ascribed to the C = O vibrational band of carbonyl group. Microscopic analysis revealed that the mWBE is porous and exhibited microfibers with rod‐like morphology. The effects of parameters such as the initial concentration, coagulant dosage and solution pH were investigated. Coagulation results showed that 10 mg of WBE and mWBE could remove about 80% and 90% of the Cd2+ ions respectively. However; the difference in the performance of both materials does not justify the essence of surface modification. Therefore, WBE is considered more efficient and environmentally friendly. Notwithstanding, the performance of these coagulants in real environmental samples will confirm their robustness.Inspec keywords: electrokinetic effects, nanofabrication, porosity, cadmium, toxicology, pH, scanning electron microscopy, X‐ray diffraction, coagulation, wastewater treatment, Fourier transform infrared spectra, industrial waste, waste reduction, waste recovery, recycling, separation, iron compounds, aluminium, blending, hazardous materialsOther keywords: cadmium‐spiked water, low crystallinity, modified WBE, scanning electron microscopy, aqueous solution, inductively coupled plasma optical emission spectroscopy, cellulosic coagulant synthesis, kitchen‐blending method, high surface charge, unmodified wet banana peel extract, X‐ray diffraction, Fourier transform infrared spectroscopy, zeta‐sizer nano series, solution pH, metal ions removal, microstructural analysis, chemical interaction, surface modification, coagulant microfibres, porosity, mass 10.0 mg, Cd, FeCl3 , AlCl3   相似文献   

7.
To solve the problem of high temperature or long reaction time in hydrothermal synthesis of carbon dots (CDs), a novel method based on the promoting carbonization by hydrochloric acid as catalysis was developed in present work. The acid catalyzed carbon dots (ACDs) were prepared facilely from tryptophan and phenylalanine at 200 °C for 2 h. In our findings, the acids could promote significantly the formation of the ACDs’ carbon core, as a result of the accelerating of the carbonization due to the easy deoxidation. The ACDs showed an average size of 4.8 nm, and consisted of high carbon crystalline core and various surface groups. The ACDs exhibited good optical properties and pH-dependent photoluminescence (PL) intensities. Furthermore, the ACDs were safe and biocompatible. The experimental results demonstrated that such new ACDs were connected with DNA-aptamer by EDC/NHS reaction maintaining both the bright fluorescence and recognizing ability on the cancer cells, which so could be served as an effective PL sensing platform. The resultant DNA-aptamer with ACDs (DNA-ACDs) could stick to human breast cancer cells (MCF-7) specifically, and exhibited high sensitivity and selectivity, indicating the potential applications in the cancer cells targeted imaging fields.
  相似文献   

8.
The motive of work was to develop a multi‐walled carbon nanoplatform through facile method for transportation of potential anticancer drug doxorubicin (DOX). Folic acid (FA)‐ethylene diamine (EDA) anchored and acid functionalised MWCNTs were covalently grafted with DOX via π–π stacking interaction. The resultant composite was corroborated by 1 H NMR, FTIR, XRD, EDX, SEM, and DSC study. The drug entrapment efficiency of FA‐conjugated MWCNT was found high and stability study revealed its suitability in biological system. FA‐EDA‐MWCNTs‐DOX conjugate demonstrated a significant in vitro anticancer activity on human breast cancer MCF‐7 cells. MTT study revealed the lesser cytotoxicity of folate‐conjugated MWCNTs. The obtained results demonstrated the targeting specificity of FA‐conjugate via overexpressed folate receptor deemed greater scientific value to overcome multidrug protection during cancer therapy. The proposed strategy is a gentle contribution towards development of biocompatible targeted drug delivery and offers potential to address the current challenges in cancer therapy.Inspec keywords: toxicology, nanoparticles, biomedical materials, scanning electron microscopy, drug delivery systems, nanofabrication, nanomedicine, nanocomposites, cellular biophysics, cancer, drugs, multi‐wall carbon nanotubes, Fourier transform infrared spectra, X‐ray chemical analysis, differential scanning calorimetry, proton magnetic resonance, organic compoundsOther keywords: facile synthesis, multiwalled carbon nanotube, precise delivery, multiwalled carbon nanoplatform, drug entrapment efficiency, FA‐conjugated MWCNT, stability study, biological system, human breast cancer MCF‐7 cells, MTT study, folate‐conjugated MWCNTs, overexpressed folate receptor, cancer therapy, biocompatible targeted drug delivery, anticancer drug doxorubicin, π‐π stacking interaction, composite material, 1 H NMR, in vitro anticancer activity, folic acid grafted nanoparticle, folic acid‐ethylene diamine, acid functionalised MWCNT, FTIR spectra, XRD, EDX, SEM, FA‐EDA‐MWCNT‐DOX conjugate, cytotoxicity, DSC, C  相似文献   

9.
ZnO nanorods were synthesized at low temperature by hydrothermally heating 0·1 M solution of ZnCl2 for 5, 10 and 15 h at a pH of 10. No template, seeded substrate, catalyst and autoclave were employed for the synthesis of ZnO nanorods. The effect of heating durations on the morphology and crystal orientation of the structure were investigated by using scanning electron microscopy and X-ray diffraction, respectively. SEM images showed that the flower-like structures were formed in 5 h hydrothermally-heated sample, whereas the hexagonal zinc oxide nanorods were perfectly fabricated with the increase in growth time. XRD patterns showed that the preferred orientation in nanorods could be controlled by hydrothermal treatment time. The crystallite size and microstrain were analysed by Williamson–Hall and Halder–Wagner methods. These results revealed the presence of defects in ZnO nanorods. However, by increasing the hydrothermal treatment time, both defects in lattice and crystallite size are decreased.  相似文献   

10.
Hollow carbon nanospheres (HCNS) with large surface area were synthesized from hollow chitosan nanospheres by one-step pyrolysis with a relatively low temperature (550 degrees C). The resulted HCNS is fully carbonized and partially graphitized under the experiment conditions. It is an important and facile method to prepare the uniform, shape- and size-controlled carbon nanomaterials by carbonization of the natural polysaccharide compounds and their derivatives. The as-prepared HCNS has a narrow size distribution in hollow carbon nanospheres (about 53 nm). The structure and size of HCNS are reproducible and could be tunable by changing the preparation conditions. The characterizations to estimate the composition, decompose properties, crystalline form, structure and surface property of the HCNS were investigated using FT-IR spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction measurement (XRD), transmission electron microscopy (TEM) analysis, and the N2 adsorption-desorption isothermal process. The present preparation method makes it feasible to synthesize carbon nanospheres in abundance in the lab, and the synthesized HCNS could be a promising support for metal catalysts, an ideal matrix connecting with DNA or other bioactive substances.  相似文献   

11.
12.
Graphene-like nanostructures were synthesized from multiwall carbon nanotubes through chemical exfoliation route in mild conditions. For this purpose multiwall carbon nanotubes were synthesized by Chemical Vapor Deposition method using Al-Fe-Co catalyst and treated with KMnO4. The obtained nanostructures were characterized by Raman spectroscopy, XRD, FTIR, EDX, SEM and TEM methods. FTIR results show that, treating the carbon nanotubes with KMnO4 decorates their surface with oxygen containing functional groups. XRD and Raman spectroscopy results reveal that the outermost layers of the nanotubes were exfoliated during the treatment. The formation of graphene-like nanostructures was confirmed by SEM and TEM methods. The novelty of this work is the first time use of this type of mild and cheap condition for obtaining graphene-like nanostructures from MWCNTs without any other intermediate treatment.  相似文献   

13.
Magnetic FeCo alloy nanoparticles have been synthesized by reduction of FeSO4 and CoCl2 with hydrazine in concentrated alkaline media via a hydrothermal route. The size could be controlled by synthetic conditions such as reaction time and temperature, respectively. The obtained samples were characterized by XRD, SEM, TEM, and VSM techniques. Magnetic investigations show the ferromagnetic behavior with saturation magnetization higher than 148.2 emu/g and maximum coercivity up to 411.0 Oe at room temperature. The present method is simple, inexpensive, surfactant-free, and may stimulate technological interests. Such FeCo alloy nanoparticles may have potential applications in biomedical field and magnetic storage devices.  相似文献   

14.
Carbon dots are often synthesized in the presence of a carbon source and passivating agents in which they are crucial for an enhanced fluorescence. The solvent choice and/or combination to be used in the synthesis of these nanoparticles can influence their surface chemical composition, morphology, and fluorescence properties. In this study, highly fluorescent carbon dots were synthesized using deep eutectic solvents of different compositions as green solvent media and doping agent. Resulting carbon dots were then separated by their hydrophilicity/hydrophobicity using a three-phase solvent system (water/acetone/chloroform) and compared with traditional centrifugation-based separation method. Carbon dots with a size below 20 nm and quantum yield reaching 50% were obtained. Many properties of them including surface functional groups, optical, fluorescence, and electric properties were shown to be determined by the deep eutectic solvent composition.  相似文献   

15.
A novel method for the synthesis of CdTe quantum dots–polystyrene (CdTe/PS) composite nanospheres was developed by a two-step route. The as-prepared composite nanospheres were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray powder diffraction (XRD), fluorescent microscope imaging and fluorescence spectrometer. The results showed that the composite nanospheres were spherical and relatively uniform with a diameter of 120 nm. Compared with previous methods, the proposed method was simple, efficient and inexpensive, moreover the composite nanospheres exhibited favorable water-dispersible, stable, size-tunable and fluorescent properties.  相似文献   

16.
17.
石准  张志焜 《功能材料》2007,38(A01):289-291
采用三氧化二铟和真空蒸发法制得的纳米锡粉为原料,溶解在一定浓度的氢氧化钠溶液中,水热条件下成功的合成了纳米级的铟锡氧化物粒子,通过粉末X射线衍射(XRD),场发射扫描电子显微镜(FE-SEM),透射电子显微镜(TEM)和紫外可见光光吸收光谱(Uv-Vis)等手段对所得产物进行表征。讨论了反应时间、pH值因素对产物成分和形貌的影响。结果表明:在温度为180℃,10mol/L NaOH溶液的条件下,水热反应36h得到比较均一的产物In1.94Sn0.06O3,产物形貌为均匀的六面体,大小在100nm左右,且对波长在200-400nm的光有强烈的吸收。  相似文献   

18.
The current time increase in the prevalence of antibiotic resistant ‘super‐bugs’ and the risks associated with food safety have become global issues. Therefore, further research is warranted to identify new and effective antimicrobial substances. Silver nanoparticles (Ag‐NPs) were synthesized by autoclaving technique using, different concentrations of Ag salt (AgNO3) solution (1, 5, 10, and 25 mM). Their presence was confirmed by a surface plasmon resonance band at ∼435 nm using UV–Vis absorption spectra. The morphology of the synthesized Ag‐NPs stabilized by polyacrylamide (PAM) was examined by TEM, SAED, and EDS. TEM images revealed that the synthesized Ag‐NPs had an average diameter of 2.98±0.08 nm and SAED and EDS results confirmed the formation of Ag‐NPs. In addition, FT‐IR spectroscopy revealed that a PAM polymer matrix stabilized the Ag‐NPs. The well diffusion method, was used to test, Gram positive and Gram negative bacteria were examined. Also the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were studied against Ag‐NPs. The Ag‐NPs exhibited strong inhibitory activity, MIC and MBC against the tested clinical bacterial isolates. These results suggest that Ag‐NPs stabilized in PAM are highly effective against clinical bacterial isolates can be applied in medical fields.Inspec keywords: antibacterial activity, silver, nanoparticles, nanomedicine, surface plasmon resonance, X‐ray chemical analysis, transmission electron microscopy, electron diffraction, Fourier transform infrared spectroscopy, microorganisms, ultraviolet spectra, visible spectraOther keywords: Ag‐NP facile synthesis, PAM‐reduction approach, antibacterial application, antibiotic resistant super‐bugs, food safety, antimicrobial agents, antibiotics, antimicrobial substances, Ag salt solution concentration, ultraviolet‐visible absorption spectra, polyacrylamide, transmission electron microscopy, electron diffraction, energy dispersive X‐ray spectroscopy, TEM images, Fourier transform infrared spectroscopy, PAM polymer matrix, diffusion method, Gram positive bacteria, Gram negative bacteria, clinical bacterial isolates, Ag  相似文献   

19.
Nanomaterials synthesis using natural sources is the technology to up come with advanced materials through extracts of plant, microorganisms, poultry waste etc. In this study, the authors report the synthesis of porous carbon nanotubes using high‐temperature decomposition technique facilitated by cobalt salt using chicken fats, a poultry waste as a precursor. Since chicken fats contain fatty acids which can decompose into short hydrocarbon chains and cobalt can act as the catalyst. The formation of carbon nanotubes was confirmed by Raman spectra, peaks at 1580 and 1350.46 cm−1 confirmed the graphite mode G‐band and structural imperfections defect mode D‐band, respectively. Transmission electron microscopy showed the formation of tube‐like structures. Nitrogen adsorption–desorption studies showed the high‐surface area of 418.1 m2 g−1 with an estimated pore diameter of 8.1 nm. Thermogravimetry analysis–derivative thermogravimetric analysis–differential thermal analysis showed the instant weight loss at 517°C attributed to the rapid combustion of nanotubes. A vibrating‐sample magnetometer showed the paramagnetic nature of the so‐formed carbon nanotubes formed.Inspec keywords: transmission electron microscopy, infrared spectra, nanomagnetics, pyrolysis, decomposition, adsorption, desorption, carbon nanotubes, differential thermal analysis, thermal analysis, nanofabrication, Raman spectra, X‐ray diffraction, scanning electron microscopy, paramagnetic materialsOther keywords: biogenic synthesis, highly porous carbon nanotubes, microorganisms, high‐temperature decomposition technique, cobalt salt, chicken fats, fatty acids, short hydrocarbon chains, Raman spectra, graphite mode G‐band, structural imperfections defect mode D‐band, transmission electron microscopy, paramagnetic nature, thermo‐magnetic properties, poultry waste, nitrogen adsorption‐desorption studies, thermogravimetry analysis, differential thermal analysis, carbon nanotubes, temperature 517.0 degC, C  相似文献   

20.
荧光碳点的制备和性质及其应用研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
荧光碳点是继碳纳米管、纳米金刚石和石墨烯之后,最受关注的碳纳米材料之一。与传统半导体量子点相比,碳点具有优异的荧光性能、小尺寸特性、良好的生物相容性、低毒性以及表面易于化学修饰等特点,在环境检测、生物成像、药物载体、光催化及电催化技术等领域具有很好的潜在应用价值。总结了碳点合成方法、结构与性能及应用面进展,剖析了目前制约碳点应用发展的瓶颈问题,并展望了其未来的研究发展重点方向。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号