首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, extracellular synthesis of silver nanoparticles (AgNPs) was carried out by Planococcus plakortidis strain BGCC‐51 isolated from dye industry effluent soil. The microbes were isolated, screened, and characterised by molecular analysis (accession number KX776160). The optimisation of synthesis of AgNPs to determine the optimum substrate level (1–5 mM), pH (5–9), and temperature (25–55°C) were further carried out. P. plakortidis strain BGCC‐51 gave best yield of AgNPs at substrate concentration 5 mM, pH 8, and at 35°C. Synthesised AgNPs were characterised by scanning electron microscope and high‐resolution transmission electron microscope. The size of synthesised AgNPs was in the range of 20–40 nm having spherical morphology. The AgNPs were found to show antimicrobial activity against bacteria such as Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Staphylococcus aureus (ATCC 29213).Inspec keywords: cellular biophysics, silver, nanoparticles, nanofabrication, microorganisms, particle size, effluents, soil, pH, scanning electron microscopy, transmission electron microscopy, antibacterial activity, nanomedicineOther keywords: extracellular synthesis, silver nanoparticles, bioreducing potential, Planococcus plakortidis strain BGCC‐51, dye industry effluent soil, microbes, molecular analysis, accession number KX776160, pH, substrate concentration, scanning electron microscopy, high‐resolution transmission electron microscopy, spherical morphology, antimicrobial activity, bacteria, Escherichia coli, ATCC 25922, Pseudomonas aeruginosa, ATCC 27853, Staphylococcus aureus, ATCC 29213, temperature 25 degC to 55 degC, Ag  相似文献   

2.
The present study is designed to analyse the antibacterial and anticancer effects of silver nanoparticles (AgNPs) synthesised from the Cymbopogon citratus, (lemongrass) (LG‐AgNPs), which is widely used in ayurvedic drugs for treating various diseases. The LG‐AgNPs were synthesised and characterised using ultraviolet (UV) spectroscopy, Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. The characterised LG‐AgNPs was subjected to antimicrobial analysis by disc diffusion method against pathogenic bacteria and fungi. Furthermore, the cytotoxicity and anticancer activity of the LG‐AgNPs were assessed with lung alveolar carcinoma cell line A549. Results depict that UV–visible spectra of LG‐AgNPs showed strong absorption peak at 435 nm. The XRD study exposed LG‐AgNPs crystals, which confirmed with TEM analysis exhibiting particle size ranging between 17 and 25.8 nm. The FTIR spectra recorded peaks at 3347, 2126, 1639, 659, 598 and 553 cm−1. The zone of inhibition study proves the LG‐AgNPs possessed both antibacterial and antifungal activities. 3‐(4, 5‐dimethyl thiazoyl‐2‐yl)‐(2,5‐diphenyltetrazolium bromide) results show the cytotoxicity effect of LG‐AgNPs in lung cancer cells. It also inhibited the cell migration and invasion at the dose of 25 µg ml−1 by increasing the apoptotic gene expression. The results reveal LG‐AgNPs possess anticancer activities, proposing that it may be an alternative drug for allopathic drugs with lots of side effects used in lung cancer treatment.Inspec keywords: particle size, Fourier transform spectra, nanomedicine, cellular biophysics, infrared spectra, X‐ray diffraction, antibacterial activity, microorganisms, diseases, nanoparticles, transmission electron microscopy, lung, cancer, toxicology, drugsOther keywords: anticancer activity, green synthesised AgNPs, LG‐AgNPs crystals, lung carcinoma cell line A549, Cymbopogon citratus  相似文献   

3.
Cinnamomum camphora fruit extract was used to biosynthesise silver nanoparticles (AgNPs), and the optimised synthesis system was ascertained through solution colour change and ultraviolet–visible absorption spectra. It contained 20 ml of fruit extract, 4 mM Ag nitrate, and pH 7. AgNPs obtained based on such conditions were spherical and finely dispersed, with an average size of 20.3 nm. As‐synthesised AgNPs exhibited excellent antifungal effect against Fusarium oxysporum. At a dose of 400 μg/ml of AgNPs, the inhibition rate of colony growth reached 61.00% and an IC50 value of 154.39 μg/ml. In addition, the conidia germination was totally inhibited at 100 μg/ml of AgNPs. Results of this study provide a new approach for biological control of plant pathogenic fungi, and it makes that possible for developing a brand new fungistat.Inspec keywords: nanoparticles, microorganisms, agricultural products, nanobiotechnology, silver, antibacterial activity, nanomedicine, pharmaceutical technologyOther keywords: fusarium oxysporum, cinnamomum camphora fruit extract, biosynthesis, silver nanoparticles, antifungal effect, conidia germination, plant pathogenic fungi, Ag  相似文献   

4.
Mastitis is an important economic disease causing production losses in dairy industry. Antibiotics are becoming ineffective in controlling mastitis due to the emergence of resistant strains requiring the development of novel therapeutic agents. In this study, the authors present the phytochemical synthesis of silver nanoparticles (AgNPs) with acetyl‐11‐α‐keto‐β‐boswellic acid and evaluation of their activity in Staphylococcus aureus induced murine mastitis. Boswellic acid mediated AgNP (BANS) were oval, polydispersed (99.8 nm) with an minimum inhibitory concentration of 0.033 µg ml−1 against S. aureus, inhibitory concentration (IC50) of 30.04 µg ml−1 on mouse splenocytes and safe at an in vivo acute oral dose of 3.5 mg kg−1 in mice. Mastitis was induced in lactating mice by inoculating S. aureus (log10 5.60 cfu) and treated 6 h post‐inoculation with BANS (0.12 mg kg−1, intramammary and intraperitoneal), and cefepime (1 mg kg−1, intraperitoneal). S. aureus inoculated mice showed increased bacterial load, neutrophil infiltration in mammary glands and elevated C‐reactive protein (CRP) in serum. Oxidative stress was also observed with elevated malondialdehyde level, superoxide dismutase (SOD) and catalase (CAT) activities. BANS treatment significantly (P  < 0.05) reduced bacterial load, CRP, SOD, CAT activities and neutrophil infiltration in affected mammary glands. BANS could be a potential therapeutic agent for managing bovine mastitis.Inspec keywords: nanomedicine, nanoparticles, silver, antibacterial activity, drugs, diseases, enzymesOther keywords: antibacterial effects, antiinflammatory effects, antioxidant effects, acetyl‐11‐α‐keto‐β‐boswellic acid, mediated silver nanoparticles, experimental murine mastitis, economic disease, dairy industry, resistant strains, phytochemical synthesis, Staphylococcus aureus, minimum inhibitory concentration, inoculating S. aureus, neutrophil infiltration, mammary glands, elevated C‐reactive protein, superoxide dismutase, catalase, bovine mastitis, Ag  相似文献   

5.
The present study reports on biogenic‐synthesised silver nanoparticles (AgNPs) derived by treating Ag ions with an extract of Cassia fistula leaf, a popular Indian medicinal plant found in natural habitation. The progress of biogenic synthesis was monitored time to time using a ultraviolet–visible spectroscopy. The effect of phytochemicals present in C. fistula including flavonoids, tannins, phenolic compounds and alkaloids on the homogeneous growth of AgNPs was investigated by Fourier‐transform infrared spectroscopy. The dynamic light scattering studies have revealed an average size and surface Zeta potential of the NPs as, −39.5 nm and −21.6 mV, respectively. The potential antibacterial and antifungal activities of the AgNPs were evaluated against Bacillus subtilis, Staphylococcus aureus, Candida kruseii and Trichophyton mentagrophytes. Moreover, their strong antioxidant capability was determined by radical scavenging methods (1,1‐diphenyl‐2‐picryl‐hydrazil assay). Furthermore, the AgNPs displayed an effective cytotoxicity against A‐431 skin cancer cell line by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT) assay, with the inhibitory concentration (IC50) predicted as, 92.2 ± 1.2 μg/ml. The biogenically derived AgNPs could find immense scope as antimicrobial, antioxidant and anticancer agents apart from their potential use in chemical sensors and translational medicine.Inspec keywords: antibacterial activity, biomedical materials, cancer, cellular biophysics, electrokinetic effects, Fourier transform infrared spectra, light scattering, microorganisms, nanomedicine, nanoparticles, silver, skin, spectrochemical analysis, toxicology, ultraviolet spectra, visible spectraOther keywords: Ag, voltage ‐21.6 mV, size ‐39.5 nm, A‐431 skin cancer cell line, cytotoxicity, 1,1‐diphenyl‐2‐picryl‐hydrazil assay, radical scavenging methods, Trichophyton mentagrophytes, Candida kruseii, Staphylococcus aureus, Bacillus subtilis, surface zeta potential, dynamic light scattering studies, Fourier‐transform infrared spectroscopy, alkaloids, phenolic compounds, tannins, flavonoids, phytochemical effect, ultraviolet‐visible spectroscopy, Cassia fistula leaf extract, biogenic‐synthesised silver nanoparticles, cytotoxic activities, antimicrobial activities, antioxidant activities  相似文献   

6.
In this study, the bacterial strain CEES 33 was isolated from the coastal area of the Red Sea, Jeddah, Kingdom of Saudi Arabia. The bacterium isolate was identified and characterized by using biochemical and molecular methods. The isolate CEES 33 has been identified as Gram‐negative rod shaped and cream pigmented spherical colonies. It also demonstrated a positive result for nitrate reduction, oxidase, catalase, citrate utilization, lipase and exopolysaccharide production. Strain CEES 33 was characterized at the molecular level by partial 16S rRNA sequencing and it has been identified as Marinobacter lipolyticus (EMBL|LN835275.1). The lipolytic activity of the isolate was also observed 2.105 nkatml−1. Furthermore, the bacterial aqueous extract was used for green synthesis of silver nanoparticles (AgNPs), which was further confirmed by UV‐visible spectra (430 nm), XRD and SEM analysis. Moreover, the biological functional group that involved in AgNPs synthesis was confirmed by FTIR spectra. The biological activities of AgNPs were also investigated, which showed a significant growth inhibition of Candida albicans with 16 ± 2 mm zone of inhibition at 10 μg dose/wells. Therefore, bacterium Marinobacter lipolyticus might be used in future for lipase production and nanoparticles fabrication for biomedical application, to control fungal diseases caused by C. albicans.Inspec keywords: enzymes, molecular biophysics, biochemistry, silver, nanoparticles, nanofabrication, nanomedicine, antibacterial activity, biomedical materials, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, microorganisms, reduction (chemical), RNA, molecular configurations, X‐ray diffraction, scanning electron microscopy, diseasesOther keywords: lipase production, silver nanomaterial modulation, anticandidal activities, bacterial strain CEES 33, bacterial isolate, biochemical method, molecular method, gram‐negative rod shaped colonies, cream pigmented spherical colonies, nitrate reduction, oxidase, catalase, citrate utilisation, exopolysaccharide production, molecular level, partial 16S rRNA sequencing, Marinobacter lipolyticus strain EMBL|LN835275.1, lipolytic activity, bacterial aqueous extract, green synthesis, UV‐visible spectra, X‐ray diffraction, scanning electron microscopy, biological functional group, AgNPs synthesis, Fourier transform infrared spectroscopy, Candida albicans, media plate, industrial lipase production, biomedical application, fungal diseases, wavelength 430 nm, Ag  相似文献   

7.
In the present study, an efficient biosurfactant producing bacterial strain Pseudomonas aeruginosa MKVIT3 was isolated from an oil logging area in Vellore district of Tamil Nadu, India. Liquid chromatography–mass spectrometry (LC‐MS/MS) analysis was performed for the identification of different congeners present in the extracted biosurfactant. The column purified biosurfactant was used to stabilise the formation of silver nanoparticles (NP) using borohydrate reduction in reverse micelles. The silver NP were characterised using UV‐vis absorption spectroscopy, Powder‐XRD TEM analysis and zeta potential. A comparative study of the antimicrobial activity and cytotoxic efficacy was done for the extracted purified biosurfactant and the silver NP. The LC‐MS/MS analysis of the biosurfactant revealed the presence of five rhamnolipid congeners. The synthesised silver NP showed the characteristic absorption peak in UV‐vis at 440 nm. Powder‐XRD and TEM analysis revealed the average particle size of the NP as 17.89 ± 8.74 nm as well as their cubic structure. Zeta potential value of −30.9 mV suggested that the silver NPs are stable in the suspension. Comparative study of the antimicrobial activity revealed that the silver NP are more potent than the biosurfactant in inhibiting the growth of microbes. Cytotoxic activity revealed that the biosurfactant are more effective than the synthesised silver NP.Inspec keywords: microemulsions, silver, nanoparticles, nanomedicine, cellular biophysics, surfactants, microorganisms, chromatography, mass spectroscopic chemical analysis, ultraviolet spectra, visible spectra, antibacterial activityOther keywords: Ag, microemulsion synthesis, silver nanoparticles, Pseudomonas aeruginosa, MKVIT3 strain, antimicrobial activities, cytotoxic activities, biosurfactant producing bacterial strain, oil logging area, Vellore district, Tamil Nadu, India, liquid chromatography–mass spectrometry, LC‐MS/MS analysis, extracted biosurfactant, column purified biosurfactant, borohydrate reduction, reverse micelles, UV‐vis absorption spectroscopy, powder‐XRD TEM analysis, zeta potential, antimicrobial activity, cytotoxic efficacy, extracted purified biosurfactant, rhamnolipid congeners  相似文献   

8.
This paper investigated the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of silky hairs of corn (Zea mays L.) which is a waste material of the crop, as both a reducing and stabilising/capping agent. The AgNPs were characterised by UV‐visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X‐ray analysis (EDX), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT‐IR). The average size of AgNPs was found to be 249.12 nm. The AgNPs displayed strong antibacterial activity against five different foodborne pathogenic bacteria with diameter of inhibition zones ranged between (9.23 − 12.81 mm). It also exhibited potent synergistic antibacterial activity together with standard antibiotics, kanamycin (10.6 − 13.65 mm inhibition zones) and rifampicin (10.02 − 12.86 mm inhibition zones) and anticandidal activity with amphotericin b (10.57 − 13.63 mm inhibition zones). The AgNPs exhibited strong antioxidant activity in terms of nitric oxide scavenging (IC50 91.56 µg/mL), ABTS (2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) radical scavenging (IC50 115.75 µg/mL), DPPH (1,1‐diphenyl‐2‐picrylhydrazyl) radical scavenging (IC50 385.87 µg/mL), and reducing power (IC0.5 23.14 µg/mL). This study demonstrated the synthesis of spherical AgNPs with strong antibacterial, anticandidal and antioxidant properties that could potentially be utilised in the biomedical, cosmetic, food and pharmaceutical industries.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, botany, ultraviolet spectra, visible spectra, scanning electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, crystallitesOther keywords: biomedical industry, cosmetic industry, food industry, pharmaceutical industry, Ag, crystallite size, 1,1‐diphenyl‐2‐picrylhydrazyl radical scavenging, 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid) radical scavenging, nitric oxide scavenging, amphotericin b, anticandidal activity, rifampicin, kanamycin, standard antibiotics, inhibition zones, foodborne pathogenic bacteria, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, energy‐dispersive X‐ray analysis, scanning electron microscopy, ultraviolet‐visible spectroscopy, Zea mays L, antioxidant potential, anticandidal synergistic activity, antibacterial synergistic activity, corn, silky hair aqueous extract, silver nanoparticles biosynthesis  相似文献   

9.
In this study, the endogenous lipid signalling molecules, N ‐myristoylethanolamine, were explored as a capping agent to synthesise stable silver nanoparticles (AgNPs) and Ag sulphide NPs (Ag2 S NPs). Sulphidation of the AgNPs abolishes the surface plasmon resonance (SPR) maximum of AgNPs at 415 nm with concomitant changes in the SPR, indicating the formation of Ag2 S NPs. Transmission electron microscopy revealed that the AgNPs and Ag2 S NPs are spherical in shape with a size of 5–30 and 8–30 nm, respectively. AgNPs and Ag2 S NPs exhibit antimicrobial activity against Gram‐positive and Gram‐negative bacteria. The minimum inhibitory concentrations (MIC) of 25 and 50 μM for AgNPs and Ag2 S NPs, respectively, were determined from resazurin microtitre plate assay. At or above MIC, both AgNPs and Ag2 S NPs decrease the cell viability through the mechanism of membrane damage and generation of excess reactive oxygen species.Inspec keywords: cellular biophysics, biomembranes, transmission electron microscopy, nanomedicine, microorganisms, molecular biophysics, antibacterial activity, nanofabrication, silver, biomedical materials, surface plasmon resonance, nanoparticles, materials preparation, silver compounds, lipid bilayersOther keywords: Gram‐negative bacteria, Gram‐positive bacteria, endogenous lipid signalling molecules, N‐myristoylethanolamine, capping agent, silver nanoparticles, Ag sulphide NPs, sulphidation, surface plasmon resonance, concomitant changes, transmission electron microscopy, minimum inhibitory concentrations, resazurin microtitre plate assay, cell viability, membrane damage, reactive oxygen species, Ag toxicities, Ag, Ag2 S  相似文献   

10.
In the present study, green synthesis and cost effective approach of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India is reported. The biosynthesised AgNPs were characterised using UV‐visible spectroscopy, particle analyser and scanning electron microscopy studies. It was found by dynamic light scattering analysis, that the average size and charges of the AgNPs were 133.0 ± 0.361 nm and −6.01 ± 5.30 mV, respectively. Moreover, the Fourier transform infrared study was also conducted to identify the biomolecules or functional groups responsible for the reduction of Ag and stabilisation of the AgNPs. The potential biomedical application with reference to antimicrobial activity of the synthesised AgNPs was investigated against some pathogenic microorganisms viz. Escherichia coli, Bacillus subtilis, Staphylococcus epidermidis, Vibrio cholerae, Staphylococcus aureus and Shigella flexneri.Inspec keywords: antibacterial activity, biomedical materials, nanomedicine, nanofabrication, materials preparation, ultraviolet spectra, visible spectra, scanning electron microscopy, Fourier transform infrared spectra, molecular biophysics, reduction (chemical), biochemistry, microorganisms, silver, nanoparticlesOther keywords: green synthesis, antimicrobial activity, silver nanoparticles, wild medicinal mushroom, Ganoderma applanatum Pat, Similipal Biosphere Reserve, Odisha, UV‐visible spectroscopy, particle analyser, scanning electron microscopy, dynamic light scattering analysis, Fourier transform infrared study, biomolecules, functional groups, silver reduction, AgNP stabilisation, biomedical application, pathogenic microorganisms, Escherichia coli, Bacillus subtilis, Staphylococcus epidermidis, Vibrio cholerae, Staphylococcus aureus, Shigella flexneri, Ag

Abbreviations

AgNPs
‐ Silver Nanoparticles
SPR
‐Surface plasmon resonance
AgNO3
‐Silver nitrate
nm
‐ Nanometer
mm
‐Milimetre
  相似文献   

11.
This study was performed to determine the antimicrobial and antibiofilm activities of silver nanoparticles (AgNPs) biosynthesised using Streptomyces griseorubens AU2 isolated from soil. The antimicrobial activity of the AgNPs was determined by agar well diffusion, disc diffusion and broth microdilution methods. Diameters of the zone of inhibition results clearly displayed that the microbially biosynthesised AgNPs have potent antimicrobial activity against Candida albicans, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of the nanoparticles that had been determined by broth microdilution method were found to be 20 and 50 µg/ml for C. albicans, B. subtilis and S. aureus; 10 and 20 µg/ml for E. coli and P. aeruginosa, respectively. For determining the effect of AgNPs on biofilm formation under in vitro conditions, MIC and subMICs were studied on P. aeruginosa and S. aureus biofilms by using microplate biofilm assay. Treatment of the AgNPs resulted in a decrease in the biofilm formation of S. aureus and P. aeruginosa as 26.52 and 25.50%, respectively. As a result of this study, it can be suggested that actinobacterially synthesised AgNPs have an effective potential to be used for pharmaceutical applications against multi‐resistant microorganisms.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, microorganismsOther keywords: antimicrobial potentials, antibiofilm potentials, silver nanoparticles, antimicrobial activity, antibiofilm activity, Streptomyces griseorubens AU2, disc diffusion, microdilution method, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, nanoparticle minimum inhibitory concentration, nanoparticle minimum lethal concentration, biofilm formation, in vitro conditions, microplate biofilm assay, pharmaceutical applications, multiresistant microorganisms, Ag  相似文献   

12.
Several materials such as silver are used to enhance graphene oxide (GO) sheets antimicrobial activity. However, these toxic materials decrease its biocompatibility and hinder its usage in many biological applications. Therefore, there is an urgent need to develop nanocomposites that can preserve both the antimicrobial activity and biocompatibility simultaneously. This work highlights the importance of functionalisation of GO sheets using Polyvinylpyrrolidone (PVP) and decorating them with silver nanoparticles (AgNPs) in order to enhance their antimicrobial activity and biocompatibility at the same time. The structural and morphological characterisations were performed by UV‐Visible, Fourier transform infrared (FTIR), and Raman spectroscopic techniques, X‐ray diffraction (XRD), and high‐resolution transmission electron microscopy (HR‐TEM). The antimicrobial activities of the prepared samples against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans were studied. The cytotoxicity of prepared materials was tested against BJ1 normal skin fibroblasts. The results indicated that the decoration with AgNPs showed a significant increase in the antimicrobial activity of GO and FGO sheets, and functionalisation of GO sheets and GO‐Ag nanocomposite with PVP improved the cell viability about 40 and 35%, respectively.Inspec keywords: biomedical materials, nanocomposites, visible spectra, ultraviolet spectra, X‐ray diffraction, cellular biophysics, nanoparticles, Raman spectra, filled polymers, transmission electron microscopy, silver, microorganisms, antibacterial activity, nanomedicine, nanofabrication, graphene compounds, toxicology, Fourier transform infrared spectraOther keywords: graphene oxide‐silver nanocomposite, polyvinylpyrrolidone, toxic materials, biocompatibility, antimicrobial activity, morphological characterisations, structural characterisations, UV‐visible spectra, Fourier transform infrared spectra, Raman spectra, X‐ray diffraction, high‐resolution transmission electron microscopy, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, cytotoxicity, BJ1 normal skin fibroblasts, cell viability, CO‐Ag  相似文献   

13.
The biosynthesis of silver nanoparticles (AgNPs) has been proved to be a cost effective and environmental friendly approach toward chemical and physical methods. In the present study, biosynthesis of AgNPs was carried out using aqueous extract of Zea mays (Zm) husk. The initial colour change from golden yellow to orange was observed between 410 and 450 nm which confirmed the synthesis of AgNPs. Also, dynamic light scattering‐particle size analysis confirmed the average size to be 113 nm and zeta potential value of −28 kV. The morphology of synthesised Zm AgNPs displayed flower‐shaped structure, X‐ray diffraction pattern revealed the strongest peaks at 2θ = 38.6° and 64° which proved that the nanoparticle has the face centred crystalline structure. The Fourier transform infrared spectroscopy results showed strong absorption bands at 1394.53, 2980.02 and 2980.02 cm−1 due to the presence of alkynes, carboxylic acids, alcoholic and phenolic groups. The maximum zone of inhibition was observed against Salmonella typhi (22 mm) and Candida albicans (18 mm). The synthesised nanoparticles exhibited more free radical scavenging activity than the aqueous plant extract. This is the first report on the synthesis of AgNP from Zm husk, delivers the efficient and stable Zm AgNPs through simple feasible approach toward green biotechnology.Inspec keywords: silver, nanoparticles, nanofabrication, light scattering, particle size, X‐ray diffraction, crystal structure, Fourier transform infrared spectra, absorption coefficients, free radicalsOther keywords: green synthesis, silver nanoparticles, biosynthesis, environmental friendly approach, aqueous extract, Zea mays husk, colour change, golden yellow, dynamic light scattering‐particle size analysis, average size, zeta potential value, flower‐shaped structure, X‐ray diffraction pattern, face centred crystalline structure, Fourier transform infrared spectroscopy, absorption bands, alkynes, carboxylic acids, alcoholic groups, phenolic groups, Salmonella typhi, Candida albicans, free radical scavenging activity, aqueous plant extraction, green biotechnology, size 113 nm, wavelength 410 nm to 450 nm  相似文献   

14.
In this study, silver nanoparticles (AgNPs) were biosynthesised by using acidophilic actinobacterial SH11 strain isolated from pine forest soil. Isolate SH11 was identified based on 16S rRNA gene sequence to Streptomyces kasugaensis M338‐M1T and S. celluloflavus NRRL B‐2493T (99.8% similarity, both). Biosynthesised AgNPs were analysed by UV–visible spectroscopy, which revealed specific peak at λ  = 420 nm. Transmission electron microscopy analyses showed polydispersed, spherical nanoparticles with a mean size of 13.2 nm, while Fourier transform infrared spectroscopy confirmed the presence of proteins as the capping agents over the surface of AgNPs. The zeta potential was found to be −16.6 mV, which indicated stability of AgNPs. The antibacterial activity of AgNPs from SH11 strain against gram‐positive (Staphylococcus aureus and Bacillus subtilis) and gram‐negative (Escherichia coli) bacteria was estimated using disc diffusion, minimum inhibitory concentration and live/dead analyses. The AgNPs showed the maximum antimicrobial activity against E. coli, followed by B. subtilis and S. aureus. Further, the synergistic effect of AgNPs in combination with commercial antibiotics (kanamycin, ampicillin, tetracycline) was also evaluated against bacterial isolates. The antimicrobial efficacy of antibiotics was found to be enhanced in the presence of AgNPs.Inspec keywords: antibacterial activity, silver, nanoparticles, electrokinetic effects, Fourier transform infrared spectra, microorganisms, nanofabricationOther keywords: actinobacterial mediated synthesis, silver nanoparticles, pathogenic bacteria, biosynthesis, acidophilic actinobacterial SH11 strain, pine forest soil, 16S rRNA gene sequence, Streptomyces kasugaensis M338‐M1T, S. celluloflavus NRRL B‐2493T, UV–visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, zeta potential, gram positive bacteria, Staphylococcus aureus, Bacillus subtilis, gram negative bacteria, Escherichia coli, disc diffusion, wavelength 420 nm, Ag  相似文献   

15.
The production of different size and shape silver nanoparticles (AgNPs) has increased considerably in recent years due to several commercial and biological applications. Here, rod‐shaped AgNPs (SNRs) were prepared using the microwave‐assisted method and characterised by ultraviolet–visible spectroscopy, and transmission electron microscopy analysis. The present study aims to investigate the cyto–genotoxic effect of various concentrations (5, 10, and 15 µM) of SNRs using Allium cepa model. As a result, concentration‐dependent cyto–genotoxic effect of SNRs was observed through a decrease in the mitotic index, and an increase in the chromosomal aberrations such as chromosome break, disturbed metaphase, and anaphase bridge. To check the impact of Ag+ ions, 15 µM silver nitrate (AgNO3) was prepared and tested in all the assays. Furthermore, cell viability and different reactive oxygen species assays were performed to test the cytotoxicity evaluation of SNRs. The authors found that in all the tested assays, SNRs at high concentrations (15 µM) and AgNO3 (15 µM) were observed to cause maximal damage to the roots. Therefore, the current study implies that the cytotoxicity and genotoxicity of SNRs were dependent on the concentration of SNRs.Inspec keywords: ultraviolet spectra, biomedical materials, silver, cellular biophysics, nanorods, toxicology, visible spectra, nanoparticles, nanofabrication, transmission electron microscopy, nanomedicine, aberrations, microwave materials processingOther keywords: biological applications, rod‐shaped AgNPs, microwave‐assisted method, ultraviolet‐visible spectroscopy, transmission electron microscopy, chromosomal aberrations, chromosome break, silver nitrate, reactive oxygen species assays, cytotoxicity, genotoxicity, silver nanorods, oxidative stress, shape silver nanoparticles, concentration‐dependent cyto‐genotoxic effect, Allium cepa model, mitotic index, disturbed metaphase, anaphase bridge, cell viability, cytotoxicity evaluation, Ag  相似文献   

16.
Present study utilised textile soil isolated bacterium Pseudomonas stutzeri to synthesise extracellular silver nanoparticles (AgNPs) under optimised conditions. The synthesised AgNPs were characterised using ultraviolet‐visible spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Optimisation showed AgNPs synthesis within 8 h using 2mM Ag nitrate at pH9, temperature 80°C and maximum absorbance toward 400 nm. TEM analysis revealed spherical shape AgNPs and reduction in size upto 8 nm was observed under optimised conditions. FTIR spectra confirmed presence of proteins bound to AgNPs act as reducing agent. AgNPs showed strong antibacterial activity against multi‐drug resistant (MDR) Escherichia coli and Klebsiella pneumoniae as demonstrated by disc diffusion and colony forming unit assays. Zone of inhibition increased with increasing concentration of AgNPs with maximum of 19 mm against E. coli and 17 mm against K. pneumoniae at concentration of 2 μg/disc. Furthermore, AgNPs did not show any cytotoxic effects on human epithelial cells as demonstrated by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay even at 2 μg/ml concentration of AgNPs. The results of the present study suggest that AgNPs can be synthesised rapidly under optimised conditions and show strong antimicrobial property against MDR pathogens without having toxicity effect on human epithelial cells.Inspec keywords: ultraviolet spectra, proteins, transmission electron microscopy, infrared spectra, Fourier transform spectra, visible spectra, microorganisms, toxicology, cellular biophysics, biomedical materials, antibacterial activity, nanomedicine, nanofabrication, nanoparticles, silverOther keywords: 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay, human epithelial cells, cytotoxic effects, K. pneumoniae, colony forming unit counting assays, disc diffusion, Klebsiella pneumoniae, Escherichia coli, multidrug resistant, stabilising agent, reducing agent, proteins, parametric optimisation, TEM, transmission electron microscopy, FTIR spectra, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, bacterium, cytotoxicity properties, antimicrobial properties, textile soil, Pseudomonas stutzeri, silver nanoparticle synthesis  相似文献   

17.
The one‐pot synthesis of silver nanoparticles (AgNPs) using the medium‐polar extract of Desmodium adscendens (Sw.) DC. is presented here as an alternative synthesis of metal NPs. Characterisation of the formed NPs showed polydispersed AgNPs ranging from 15 to 100 nm where the concentration of metal ions was found to play a role in the size and shape of the prepared NPs. It could be established that the flavonoids, saponins, and alkaloids present in the extract acted as both reducing and stabilising agents during the formation of the capped metal NPs. This means of NP synthesis was also employed during the in situ immobilisation of AgNPs on gauze and plaster. An evaluation of the antibacterial activity of the medium‐polar D. adscendens extract, AgNPs suspended in solution, and the immobilised AgNPs against Staphylococcus aureus (ATCC 25923), Bacillus cereus (ATCC 11778), and Escherichia coli (ATCC 25922) showed high efficacy against the latter in particular. This suggests that gauze, dilute silver nitrate solutions, and D. adscendens extract could be used successfully in the simple in situ preparation of effective antibacterial wound dressings.Inspec keywords: wounds, silver, nanoparticles, nanomedicine, biomedical materials, antibacterial activityOther keywords: size 15 nm to 100 nm, antibacterial wound dressings, in situ preparation, dilute silver nitrate solutions, alkaloids, saponins, flavonoids, metal ions, wound dressing material, antibacterial evaluation, Desmodium adscendens extract, silver nanoparticle synthesis  相似文献   

18.
The current study was performed to synthesize stable, eco‐friendly and bio‐compatible silver nano‐particles (AgNPs) of Agave americana, Mentha spicata and Mangifera indica leaves and to screen them for biological activities. The ultraviolet‐visible spectroscopic analysis revealed that λ‐max for AgNPs range from 350–500 nm. All AgNPs possessed polycrystalline structure as notified as intense graphical peaks in complete spectrum of 20 values ranging from 10–80° in X‐ray diffraction measurements and supported by scanning electron microscopy data. The size of the nano‐particles was confirmed by transmission electron microscopy (30–150 nm). Mass loss at variable temperatures was evaluated by simultaneous thermogravimetric and differential thermal analysis revealed reduction in mass and activity of compounds was notified by temperature increase from 200 to 800 °C, thus concluding it as thermally sensitive compounds. A. americana AgNPs showed significant (96%) activity against Methicillin resistant Staphylococcus aureus, Escherichia coli (95%) and Fusarium oxysporum (89%). Good antioxidant activity was shown by M. spicata AgNPs at 300 µl (79%). M. indica AgNPs showed significant phytotoxic activity (88%) at highest concentration. No haemagglutination reaction was observed for the test samples. The above results revealed that AgNPs synthesized from selected plant species possesses significant antimicrobial and phytotoxic effect.Inspec keywords: silver, nanoparticles, nanofabrication, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, differential thermal analysis, microorganisms, antibacterial activity, nanomedicine, particle size, toxicologyOther keywords: green synthesis, biological evaluation, Agave americana aqueous leave extract, Mentha spicata aqueous leave extract, Mangifera indica aqueous leave extract, stable ecofriendly biocompatible silver nanoparticles, ultraviolet‐visible spectroscopy, polycrystalline structure, X‐ray diffraction, scanning electron microscopy, nanoparticle size, transmission electron microscopy, thermogravimetric analysis, differential thermal analysis, mass loss, thermally sensitive compounds, Methicillin resistant Staphylococcus aureus, Escherichia coli, Fusarium oxysporum, antioxidant activity, phytotoxic activity, plant species, antimicrobial effect, temperature 200 degC to 800 degC, Ag  相似文献   

19.
In the previous report, the authors showed the gold nanoparticle (GNP) functionalised multiple N ‐methylated fragments of the residue (32–37) of beta (β)‐amyloid protein (1–42), CGGIGLMVG and CGGGGGIGLMVG toward disruption of β ‐amyloid (1–42), the predominant component of senile plaques. Herein the in vitro antimicrobial activities of both normal and multiple N ‐methylated sequences of CGGIGLMVG and CGGGGGIGLMVG were screened and it was found that all the eight sequences including four (non‐functionalised with GNP) to possess activity against both Gram‐positive [Staphylococcus aureus (ATCC 43300) and Enterococcus faecalis (ATCC 5129)] and Gram‐negative [Escherichia coli (ATCC 35218), Pseudomonas aeruginosa (ATCC 27853) and Klebsiella pneumoniae (ATCC 700603)] bacteria. Among them, N ‐methylated sequences CGGIGLMVG and CGGGGGIGLMVG shown remarkable activity against Gram‐positive bacteria.Inspec keywords: microorganisms, gold, nanoparticles, nanomedicineOther keywords: GNP functionalisation, N‐methylation, β‐amyloid residue, Gram‐positive bacterium, gold nanoparticle functionalised multiple N‐methylated fragments, beta β‐amyloid protein, CGGGGGIGLMVG, Staphylococcus aureus, ATCC 43300, Enterococcus faecalis, ATCC 5129, Escherichia coli, ATCC 35218, Pseudomonas aeruginosa, ATCC 27853, Klebsiella pneumoniae, ATCC 700603, Au  相似文献   

20.
Widespread resistance to antibiotics amongst pathogens has become a tremendous challenge of high morbidity and mortality rates which increases the needs to exploring novel methods of treatment. An efficient antimicrobial procedure to root out pathogenic bacteria is photothermal therapy. In this study, antimicrobial effects of a polypyrrole–carbon nanocomposite (PPy‐C) upon laser irradiation in order to destroy the pathogenic gram‐positive bacterium, methicillin‐resistant Staphylococcus aureus (MRSA) were assessed. The bacterial cells were incubated with 500, 750 and 1000 μg ml−1 concentrations of PPy‐C and irradiated with an 808‐nm laser at a power density of 1.0 W cm−2. To indicate the biocompatibility and toxic effect of the nanocomposite without and with laser irradiation, the authors counted the number of CFUs and compared it to an untreated sample. Antibacterial mechanisms of PPy‐C were assessed through temperature increment, reactive oxygen species production, and protein and DNA leakages. Photothermal heating assay showed that 26°C temperature increases in the presence of 1000 µg ml−1 PPy‐C led to >98% killing of MRSA. Furthermore, 20 min radiation of near‐infrared light to PPy‐C in different concentrations indicated destruction and reduction in the MRSA biofilm formation. Therefore, PPy‐C was introduced as a photothermal absorber with a bactericidal effect in MRSA.Inspec keywords: laser applications in medicine, biomedical materials, DNA, nanofabrication, biochemistry, nanocomposites, microorganisms, nanomedicine, cellular biophysics, antibacterial activity, molecular biophysics, proteinsOther keywords: photothermal inactivation, staphylococcus aureus, anti‐biofilm, polypyrrole–carbon nanocomposite, widespread resistance, bacterial pathogens, high morbidity, mortality rates, efficient antimicrobial procedure, pathogenic bacteria, photothermal therapy, antimicrobial effects, PPy‐C, laser irradiation, pathogenic gram‐positive bacterium, bacterial cells, biocompatibility, toxic effect, reactive oxygen species production, photothermal heating assay, MRSA biofilm formation, photothermal absorber, bactericidal effect, methicillin‐resistance, temperature 26.0 degC, time 20.0 min  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号