首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study focuses on the biosynthesis of gold nanoparticles (AuNPs) using Streptomyces coelicoflavus (S. coelicoflavus) SRBVIT13 isolated from marine salt pan soils collected from Ongole, Andhra Pradesh, India. The biosynthesised AuNPs are characterised by UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy and energy‐dispersive X‐ray analysis. Transmission electron microscopy study suggests that the biosynthesised AuNPs are spherical in shape within a size range of 12–20 nm (mean diameter as 14 nm). The anti‐type II diabetes activity of AuNPs is carried out by testing it in vitro α ‐glucosidase and α ‐amylase enzyme inhibition activity and in vivo postprandial anti‐hyperglycemic activity in sucrose and glucose‐loaded streptozotocin induced diabetic albino Wister rats. AuNPs has shown a significant inhibitory activity of 84.70 and 87.82% with IC50 values of 67.65 and 65.59 μg/mL to α ‐glucosidase and α ‐amylase enzymes, while the diabetic rats have shown significant reduction in the post postprandial blood glucose level by 57.80 and 88.09%, respectively compared with control group after AuNPs treatment at the concentration of 300 and 600 mg/kg body weight. Hence, this biosynthesised AuNPs might be useful in combating type II diabetes mellitus for the betterment of human life.Inspec keywords: gold, nanoparticles, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, diseases, enzymes, nanomedicine, biochemistry, spectrochemical analysisOther keywords: gold nanoparticles, Streptomyces coelicoflavus SRBVIT13, biosynthesis, UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, high‐resolution transmission electron microscopy, energy‐dispersive X‐ray analysis, antitype II diabetes activity, in vitro enzyme inhibition activity, in vivo postprandial antihyperglycemic activity, streptozotocin induced diabetic albino Wister rats, type II diabetes mellitus, Au  相似文献   

2.
The peel of Citrus maxima (C. maxima) is the primary byproducts during the process of fruit or juice in food industries, and it was always considered as biomass waste for further treatments. In this study, the authors reported a simple and eco‐friendly method to synthesise gold nanoparticles (AuNPs) using C. maxima peel extract as reducing and capping agents. The synthesised AuNPs were characterised by UV–visible spectrum, X‐ray diffraction (XRD), transmission electron microscope (TEM) and Fourier‐transform infrared spectroscopy (FTIR). The UV–visible spectrum of the AuNPs colloid showed a characteristic peak at 540 nm. The peaks of XRD analysis at (2θ) 38.30°, 44.28°, 64.62°, 77.57° and 81.75° were assigned to (111), (200), (220), (311) and (222) planes of the face‐centered cubic (fcc) lattice of gold. The TEM images showed that AuNPs were nearly spherical in shape with the size of 8–25 nm. The FTIR spectrum revealed that some bioactive compounds capped the surface of synthesised AuNPs. The biosynthesised AuNPs performed strong catalytic activity in degradation of 4‐nitrophenol to 4‐aminophenol and good antibacterial activity against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) bacterium. The synthesis procedure was proved simple, cost effective and environment friendly.Inspec keywords: gold, nanoparticles, nanofabrication, X‐ray diffraction, ultraviolet spectra, visible spectra, transmission electron microscopy, Fourier transform infrared spectra, crystal structure, catalysis, antibacterial activity, nanobiotechnologyOther keywords: gold nanoparticles, Citrus maxima peel extract, UV–visible spectrum, X‐ray diffraction, transmission electron microscope, Fourier‐transform infrared spectroscopy, XRD analysis, faced centre cubic lattice, TEM images, catalytic activity, 4‐nitrophenol, 4‐aminophenol, antibacterial activity, gram negative bacterium, gram positive bacterium, Au  相似文献   

3.
The present study investigated the synthesis of gold nanoparticles (AuNPs) using mangrove plant extract from Avicennia marina as bioreductant for eco‐friendly bioremediation of 4‐nitrophenol (4‐NP). The AuNPs synthesised were confirmed by UV spectrum, transmission electron microscopy (TEM), X‐ray diffraction, Fourier transmission infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential. The AuNPs were found to be spherical in shape with size ranging from 4 to 13 nm, as evident by TEM and DLS. Further, the AuNPs were encapsulated with sodium alginate in the form of gold nano beads and used as heterogeneous catalyst and degrading agent to reduce 4‐NP. This reduction in 4‐NP into 4‐aminophenol was confirmed by UV and FTIR. The aqueous solution of 4‐NP peaked its absorbance at 320 nm, and shifted to 400 nm, with an intense yellow colour, appeared due to formation of 4‐nitrophenolate ion. After the addition of AuNps, the 4‐NP solution became colourless and peaked at 400 nm and reduced to 290 nm corresponding to the formation of 4‐aminophenol. Hence, the present work suggested the AuNPs as the potent, eco‐friendly bionanocomposite catalyst for bioremediation of 4‐NP.Inspec keywords: gold, nanoparticles, nanobiotechnology, nanofabrication, ultraviolet spectra, transmission electron microscopy, X‐ray diffraction, Fourier transform spectra, infrared spectra, electrokinetic effects, catalysts, nanocomposites, biochemistryOther keywords: biogenic gold nanoparticles, 4‐nitrophenol, 4‐aminophenol, eco‐friendly bioremediation, mangrove plant extract, Avicennia marina, bioreductant, UV spectrum, transmission electron microscopy, TEM, X‐ray diffraction, Fourier transmission infrared spectroscopy, FTIR, dynamic light scattering, DLS, zeta potential, degrading agent, 4‐nitrophenolate, bionanocomposite catalyst, size 4 nm to 13 nm, wavelength 400 nm, wavelength 290 nm, Au  相似文献   

4.
Currently, the use of ‘green’ synthesised nanoparticles with environmentally friendly properties is considered a novel therapeutic approach in medicine. Here, the authors evaluated gold nanoparticles (AuNPs) conjugated with Tragopogon dubius leaf extract and their antibacterial activity in vitro and in vivo. Colour changes from yellow to dark brown and a peak at 560 nm on ultraviolet–visible spectroscopy confirmed the formation of nanoparticles. Additionally, transmission electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy analyses were performed to determine particle sizes and functional groups involved in gold reduction. Moreover, using standard micro‐dilution and disc‐diffusion assays against Klebsiella pneumoniae, Bacillus cereus, Escherichia coli, and Staphylococcus aureus, the antimicrobial properties of synthesised AuNPs were investigated. To confirm antibacterial activity, synthesised AuNPs were applied in a rat model on burn wounds infected with S. aureus, and the nanoparticles were as effective as tetracycline in bacterial reduction and wound healing. In conclusion, the synthesis of AuNPs with aqueous T. dubius extract was rapid, simple, and inexpensive, and the synthesised nanoparticles had significant antibacterial activity in vitro and in vivo.Inspec keywords: transmission electron microscopy, wounds, nanoparticles, ultraviolet spectra, reduction (chemical), particle size, nanofabrication, gold, X‐ray diffraction, antibacterial activity, microorganisms, visible spectra, nanomedicine, biomedical materials, Fourier transform infrared spectraOther keywords: biological activity, gold nanoparticles, antibacterial agent, therapeutic approach, colour changes, ultraviolet–visible spectroscopy, transmission electron microscopy, gold reduction, antimicrobial properties, Fourier transform infrared spectroscopy analyses, disc‐diffusion assay, green synthesis, Tragopogon dubius leaf, in vitro antibacterial activity, in vivo antibacterial activity, X‐ray diffraction, particle sizes, functional groups, standard microdilution assay, burn wounds, S. aureus, tetracycline, bacterial reduction, wound healing, wavelength 560.0 nm  相似文献   

5.
In the present study, a phyto‐mediated synthesis of gold nanoparticles (AuNPs) using an isoflavone, Dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone) isolated from the alcoholic extract of roots of Dalbergia coromandeliana is reported. It is observed that Dalspinosin itself acts both as a reducing and a capping agent in the synthesis of the nanoparticles (NPs). An ultraviolet–visible (UV–Vis) spectral study showed a surface plasmon resonance band at 526 nm confirming the formation of AuNPs. The NPs formed were characterised by UV–Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HR‐TEM) with energy‐dispersive x‐ray spectroscopy (EDX) and dynamic light scattering. HR‐TEM analysis showed the synthesised AuNPs were spherical in shape with a size of 7.5 nm. The AuNPs were found to be stable for seven months when tested by in vitro methods showed good antioxidant and anti‐inflammatory activities. They also showed moderate anti‐microbial activities when tested against Gram positive (Staphylococcus aureus and Streptococcus sp), Gram negative bacterial strains (Klebsiella pneumonia and Klebsiella terrigena) and fungal strain (Candida glabrata). The biosynthesised AuNPs showed significant catalytic activity in the reduction of methylene blue with NaBH4 to leucomethylene blue.Inspec keywords: biomedical materials, catalysis, Fourier transform infrared spectra, gold, light scattering, microorganisms, nanomedicine, nanoparticles, spectrochemical analysis, surface plasmon resonance, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, X‐ray diffractionOther keywords: phyto‐mediated synthesis, biological activity studies, catalytic activity studies, dalspinosin (5,7‐dihydroxy‐6,3′,4′‐trimethoxy isoflavone), alcoholic extract, roots, Dalbergia coromandeliana, ultraviolet‐visible spectral study, surface plasmon resonance band, UV‐Vis spectroscopy, Fourier transform‐infrared spectroscopy, X‐ray diffraction, high‐resolution transmission electron microscopy, EDX analysis, dynamic light scattering, HR‐TEM analysis, antioxidant activities, antiinflammatory activities, antimicrobial activities, Gram positive bacterial strains, Staphylococcus aureus, Streptococcus sp, Gram negative bacterial strains, wavelength 526 nm, size 7.5 nm, time 7 month, Au  相似文献   

6.
In this study, green synthesis of gold nanoparticles (AuNPs) was performed by a sunlight irradiation method using the Borassus flabellifer fruit extract as a reducing agent. 5‐Fluorouracil (5‐FU)‐loaded GG capped AuNPs (5FU‐G‐AuNPs) was prepared. The nanoparticles was further characterised by UV‐visible spectra, particle size analysis, zeta potential, SAED, HRTEM, and XRD. The MTT assay results showed the suitability 5‐FU‐G‐AuNPs. In this study, 5‐FU‐G‐AuNPs exhibited potential cytotoxic and apoptotic effects on (MiaPaCa‐2) cell line.Inspec keywords: gold, biochemistry, X‐ray diffraction, nanofabrication, biomedical materials, transmission electron microscopy, toxicology, electrokinetic effects, particle size, nanoparticles, cancer, visible spectra, cellular biophysics, ultraviolet spectra, nanomedicine, patient treatment, organic compoundsOther keywords: 5FU‐G‐AuNPs, suitability 5‐FU‐G‐AuNPs, human pancreatic cancer cell, green synthesis, sunlight irradiation method, 5‐Fluorouracil‐loaded GG, in vitro treatment, 5 fluorouracil‐loaded biosynthesised gold nanoparticles, borassus flabellifer fruit extract, reducing agent, UV‐visible spectra, particle size analysis, zeta potential, SAED, HRTEM, XRD, MTT assay, apoptotic effects, cytotoxic effects, MiaPaCa‐2 cell line, Au  相似文献   

7.
Biosynthesis of silver nanoparticles (AgNPs) using plant extract is a cheap, easily accessible and natural process in which the phyto‐constituents of the plants act as capping, stabilising and reducing agent. The present study explored the biosynthesis of AgNPs using aqueous leaf extract of Tinospora cordifolia and characterised via various techniques such as Fourier transform infrared, scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X‐ray analysis and X‐ray diffraction. Here, TEM confirmed the spherical morphology with 25–50 nm size of synthesised AgNPs. Further, anticancer efficiency of AgNPs synthesised using T. cordifolia leaves were evaluated against human lung adenocarcinoma cell line A549 by MTT, trypan blue assay, apoptotic morphological changes using Annexin V‐FITC and Propidium iodide (PI), nuclear morphological changes by DAPI (4, 6‐diamidino‐2‐phenylindole dihydrochloride) staining, reactive oxygen species generation and mitochondrial membrane potential determination. Results confirmed the AgNPs synthesised using T. cordifolia leaves are found to be highly toxic against human lung adenocarcinoma cell line A549.Inspec keywords: toxicology, cellular biophysics, cancer, silver, biomembranes, drugs, nanofabrication, nanoparticles, transmission electron microscopy, drug delivery systems, nanomedicine, lung, biomedical materials, antibacterial activity, X‐ray diffraction, Fourier transform infrared spectra, scanning‐transmission electron microscopyOther keywords: cytotoxicity, phytosynthesised silver nanoparticles, A549 cell line, biosynthesis, aqueous leaf, transmission electron microscopy, TEM, X‐ray analysis, X‐ray diffraction, spherical morphology, human lung adenocarcinoma cell line, nuclear morphological changes, 4, 6‐diamidino‐2‐phenylindole dihydrochloride, Tinospora cordifolia leaves, scanning electron microscopy, Fourier transform infrared, energy dispersive X‐ray analysis, Ag, size 25.0 nm to 50.0 nm, anticancer efficiency, trypan blue assay, propidium iodide, Annexin V‐FITC, DAPI staining, reactive oxygen species generation, mitochondrial membrane potential determination  相似文献   

8.
Nanotechnology is one of the promising fields of research and generating new avenues and applications in medicine. Recently, marine floras such as, marine endophytes are gaining the attention of many researchers due to the myriad of bioactive molecules that they possess. In addition, they find applications in many pharmaceutical and cosmetic industries. In this study, they have studied the green synthesis of gold nanoparticles (AuNPs) from Penicillium citrinum (P. citrinum) and its antioxidant activity. P. citrinum was isolated from brown algae. The identity of the fungus was established by comparing its 18S rDNA sequence. AuNPs were synthesised using P. citrinum and were characterised by UV–visible spectrophotometer (UV–vis), field emission scanning electron microscope (FESEM), X‐ray diffraction, Fourier transform infrared spectroscopy and dynamic light scattering (DLS). AuNPs were tested for free radical scavenging activity by 1,1‐diphenyl‐2‐picrylhydrazyl method. The particle sizes of AuNps were determined by FESEM and DLS. The reduction of gold metal ion was confirmed from the UV–vis spectrum. AuNPs showed significant antioxidant potential and the activity was comparable to the standard ascorbic acid. Further, in vitro and in vivo studies on these AuNPs will help in developing an alternative, cost‐effective and acceptable drug for various ailments.Inspec keywords: microorganisms, nanoparticles, gold, nanofabrication, particle size, nanobiotechnology, DNA, molecular biophysics, molecular configurations, ultraviolet spectra, visible spectra, field emission electron microscopy, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectra, light scattering, free radical reactions, biochemistryOther keywords: biofabrication, gold nanoparticles, marine endophytic fungi, Penicillium citrinum, nanotechnology, medicine applications, marine floras, marine endophytes, bioactive molecules, pharmaceutical industries, cosmetic industries, antioxidant activity, brown algae, 18S rDNA sequence, UV‐visible spectrophotometer, field emission scanning electron microscope, FESEM, X‐ray diffraction, Fourier transform infrared spectroscopy, dynamic light scattering, free radical scavenging activity, 1,1‐diphenyl‐2‐picrylhydrazyl method, particle sizes, gold metal ion reduction, antioxidant potential, standard ascorbic acid, drug, ailments, Au  相似文献   

9.
An efficient green method of gold nanoparticles (AuNPs) biosynthesis was achieved by cell‐free extracts of fungus Trichoderma sp. WL‐Go. Based on UV–Vis spectra, AuNPs biosynthesised by cell‐free extracts with 90 mg/l protein exhibited a characteristic absorption band at 556 nm and was stable for 7 days. Transmission electron microscopy images revealed that the as‐synthesised AuNPs were spherical and pseudo‐spherical, and the average size was calculated to be 9.8 nm with a size range of 1–24 nm. The AuNPs illustrated their good catalytic activities for reduction of nitro‐aromatics (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2‐nitroaniline, 3‐nitroaniline) with catalytic rate constants of 7.4 × 10−3 s−1, 10.3 × 10−3 s−1, 4.9 × 10−3 s−1, 5.8 × 10−3 s−1, 15.0 × 10−3 s−1, respectively. Meanwhile, the AuNPs also showed excellent catalytic performance in decolourisation of azo dyes with decolourisation efficiency from 82.2 to 97.5%. This study provided a green gentle method for AuNPs synthesis as well as exhibiting efficient catalytic capability for degradation of aromatic pollutants.Inspec keywords: catalysts, dyes, particle size, reduction (chemical), nanobiotechnology, nanofabrication, ultraviolet spectra, gold, transmission electron microscopy, nanoparticles, proteins, catalysis, visible spectra, pollution control, microorganismsOther keywords: nitro‐aromatics, catalytic rate constants, decolourisation efficiency, green gentle method, efficient green method, gold nanoparticles biosynthesis, cell‐free extracts, UV–Vis spectra, characteristic absorption band, transmission electron microscopy images, as‐synthesised AuNPs, catalytic performance, protein, catalytic activities, efficient catalytic capability, fungus Trichoderma sp. WL‐Go, aromatic pollutants degradation, 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2‐nitroaniline, 3‐nitroaniline, azo dye decolourisation, Au  相似文献   

10.
The present work is emphasised on the bio‐fabrication of silver and gold nanoparticles in a single step by a microwave‐assisted method using the leaf extract of Synedrella nodiflora as both reducing and stabilising agent. The synthesised nanoparticles are highly stable and show surface plasmon resonance peak at 413 and 535 nm, respectively, for silver and gold nanoparticles in UV–Vis spectrum. The functional group responsible for the reduction of metal ions were obtained from Fourier transform infrared spectroscopy. The crystalline nature of nanoparticles with face‐centred cubic geometry was confirmed by the X‐ray diffraction and selected area electron diffraction patterns. The morphology and sizes of the silver and gold nanoparticles were obtained from transmission electron microscopy images. The nanoparticles exhibit effective antimicrobial activities against various pathogenic strains. These antimicrobial properties were analysed by employing agar well diffusion method. The nanoparticles show significant antioxidant properties, and it was determined using 2, 2‐diphenyl‐1‐picrylhydrazyl assay. The nanoparticles also show potent catalytic activity in the degradation of anthropogenic pollutant dyes Congo red and eosin Y by excess NaBH4. Thus, the current study demonstrates the potential use of S. nodiflora as a reducing and stabilising agent for the synthesis of silver and gold nanoparticles and their relevance in the field of biomedicine and catalysis.Inspec keywords: transmission electron microscopy, visible spectra, surface plasmon resonance, nanofabrication, ultraviolet spectra, field emission electron microscopy, reduction (chemical), nanocomposites, microorganisms, nanoparticles, dyes, silver, X‐ray diffraction, nanomedicine, gold, antibacterial activity, electron diffraction, infrared spectra, particle size, Fourier transform spectra, scanning electron microscopy, catalysis, crystal growth from solutionOther keywords: synthesised nanoparticles, gold nanoparticles, catalytic activities, electron diffraction patterns, antimicrobial activities, antioxidant activities, transmission electron microscopy images, X‐ray diffraction, 2,2‐diphenyl‐1‐picrylhydrazyl assay, Synedrella nodiflora, UV–Vis spectrum, silver nanoparticles, biofabrication, surface plasmon resonance, Fourier transform infrared spectroscopy, face‐centred cubic geometry, area electron diffraction patterns, pathogenic strains, agar well diffusion method, anthropogenic pollutant dyes, Congo red, eosin Y, wavelength 413.0 nm, wavelength 535.0 nm, Au, Ag  相似文献   

11.
The biological method for synthesis of silver nanoparticles (AgNPs) using Bacopa monneri leaves and its anti‐proliferation against human lung adenocarcinoma cell line (A549) was studied. The AgNPs synthesis was determined by an ultraviolet–visible spectrum and was confirmed primarily by the colour change and surface plasmon resonance was observed at 450 nm and its reduction of functional groups stretched in AgNPs was identified by Fourier transform infrared and the crystalline nature of AgNPs was confirmed by X‐ray diffraction. The structural morphology of the AgNPs was found to be spherical and polygonal shape and size (> 35 nm) were determined by field emission scanning electron microscopy analysis and its purity was identified by energy dispersive analysis of X‐rays (EDAX). A further, antibacterial activity of biosynthesised AgNPs against Gram negative and Gram positive bacteria was assessed. The cytotoxic effect of synthesised AgNPs was analysed against human lung adenocarcinoma cells by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. The GI50 was found to be 20 µg/ml at 24 h incubation. The apoptosis cells containing condensate and marginalised chromatin stages were analysed by propidium iodide staining and DNA damage was observed in A549 treated cells. The present study strongly emphasised that the bioactive molecule‐coated AgNPs could have potential for biomedical applications and significant anticancer effects against human lung adenocarcinoma cells.Inspec keywords: antibacterial activity, biomedical materials, lung, cancer, oxidation, nanoparticles, silver, nanofabrication, nanomedicine, cellular biophysics, ultraviolet spectra, visible spectra, surface plasmon resonance, Fourier transform infrared spectra, X‐ray diffraction, particle size, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, microorganisms, toxicology, DNA, molecular biophysics, molecular configurationsOther keywords: silver nanoparticles, phytofabrication, Bacopa monnieri leaf extract, antibacterial activity, oxidative stress‐induced apoptosis, biological method, antiproliferation, human lung adenocarcinoma cell line A549, AgNPs synthesis, ultraviolet‐visible spectrum, colour change, surface plasmon resonance, stretched functional groups, Fourier transform infrared spectra, crystalline nature, X‐ray diffraction, geometric spherical shape, polygonal shape, field emission scanning electron microscopy analysis, EDAX, biosynthesised AgNPs, gram negative bacteria, gram positive bacteria, cytotoxic effect, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, incubation, apoptosis cells, condensate, marginalised chromatin stages, propidium iodide staining, DNA damage, A549 treated cells, bioactive molecule‐coated AgNPs, biomedical applications, anticancer effects, time 24 h, Ag  相似文献   

12.
Gold nanoparticles (AuNPs) possess colourful light‐scattering properties due to different composition, size and shape. Their unique physical, optical and chemical properties coupled with advantages, have increased the scope of anisotropic AuNPs in various fields. This study reports a green methodology developed for the synthesis of anisotropic AuNPs. The aqueous extracts of Alternanthera sessilis (PGK), Portulaca oleracea (PAK) and Sterculia foetida (SF) with gold ions produced violet, purple and pink coloured AuNPs, respectively, under sonication and room temperature methods revealing the formation of different shapes of AuNPs. The results of TEM analysis of AuNPs confirmed the formation of triangular plate AuNPs of the size 35 nm for PAK extract. Spherical‐shaped AuNPs (10–20 nm) were obtained using an extract of PGK. SF extract produced rod, hexagon, pentagon‐shaped AuNPs and nanorice gold particles. The cell viability studies of the PGK, PAK and SF‐mediated AuNPs on MCF‐7 cell lines by MTT assay revealed the cytotoxic activity of AuNPs to depend on the size, shape and the nature of capping agents. The synthesised AuNPs significantly inhibited the growth of cancer cells (MCF‐7) in a concentration‐dependent manner. The size and shape of these anisotropic AuNPs also reveal its potency to be used as sensors, catalysis, photothermal and therapeutic agents.Inspec keywords: toxicology, gold, transmission electron microscopy, catalysis, nanofabrication, biomedical materials, nanomedicine, particle size, cellular biophysics, nanoparticles, cancer, biological organsOther keywords: Au, size 10.0 nm to 20.0 nm, temperature 293.0 K to 298.0 K, size 35.0 nm, TEM analysis, Sterculia foetida, Portulaca oleracea, Alternanthera sessilis, chemical properties, colourful light‐scattering properties, anisotropic AuNP, triangular plate AuNP, spherical‐shaped AuNP, SF‐mediated AuNP, cancer cells, MCF‐7 cell lines, cell viability, nanorice gold particles, gold ions, optical properties, breast cancer cell lines, anisotropic gold nanoparticles  相似文献   

13.
The present study is designed to analyse the antibacterial and anticancer effects of silver nanoparticles (AgNPs) synthesised from the Cymbopogon citratus, (lemongrass) (LG‐AgNPs), which is widely used in ayurvedic drugs for treating various diseases. The LG‐AgNPs were synthesised and characterised using ultraviolet (UV) spectroscopy, Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. The characterised LG‐AgNPs was subjected to antimicrobial analysis by disc diffusion method against pathogenic bacteria and fungi. Furthermore, the cytotoxicity and anticancer activity of the LG‐AgNPs were assessed with lung alveolar carcinoma cell line A549. Results depict that UV–visible spectra of LG‐AgNPs showed strong absorption peak at 435 nm. The XRD study exposed LG‐AgNPs crystals, which confirmed with TEM analysis exhibiting particle size ranging between 17 and 25.8 nm. The FTIR spectra recorded peaks at 3347, 2126, 1639, 659, 598 and 553 cm−1. The zone of inhibition study proves the LG‐AgNPs possessed both antibacterial and antifungal activities. 3‐(4, 5‐dimethyl thiazoyl‐2‐yl)‐(2,5‐diphenyltetrazolium bromide) results show the cytotoxicity effect of LG‐AgNPs in lung cancer cells. It also inhibited the cell migration and invasion at the dose of 25 µg ml−1 by increasing the apoptotic gene expression. The results reveal LG‐AgNPs possess anticancer activities, proposing that it may be an alternative drug for allopathic drugs with lots of side effects used in lung cancer treatment.Inspec keywords: particle size, Fourier transform spectra, nanomedicine, cellular biophysics, infrared spectra, X‐ray diffraction, antibacterial activity, microorganisms, diseases, nanoparticles, transmission electron microscopy, lung, cancer, toxicology, drugsOther keywords: anticancer activity, green synthesised AgNPs, LG‐AgNPs crystals, lung carcinoma cell line A549, Cymbopogon citratus  相似文献   

14.
The present investigation aims for the synthesis of copper oxide nanoparticles (CuO NPs) using Nilgirianthus ciliatus plant extract. The obtained CuO NPs were characterised by X‐ray diffraction, Fourier transform infrared spectrum, ultraviolet–visible spectroscopy, photoluminescence, scanning electron microscopy and transmission electron microscopy analysis. Significant bacterial activity was manifested by CuO nanoparticles against both Gram‐positive (Staphylococcus aureus and Staphylococcus mutans) and Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. The synthesised CuO NPs have good cytotoxicity against both human breast cancer cell line (MCF‐7) and lung cancer cell line (A549) with minimum cytotoxic effect on normal L929 (fibroblast) cell lines.Inspec keywords: microorganisms, ultraviolet spectra, nanomedicine, transmission electron microscopy, visible spectra, cellular biophysics, antibacterial activity, nanoparticles, X‐ray diffraction, lung, copper compounds, cancer, toxicology, biomedical materials, scanning electron microscopy, photoluminescence, Fourier transform infrared spectraOther keywords: antibacterial activity, anticancer activity, biosynthesised CuO nanoparticles, copper oxide nanoparticles, Nilgirianthus ciliatus plant, X‐ray diffraction, infrared spectrum, ultraviolet–visible spectroscopy, transmission electron microscopy analysis, bacterial activity, Gram‐negative bacteria, synthesised CuO NPs, human breast cancer cell line, Staphylococcus aureus, Staphylococcus mutans, CuO  相似文献   

15.
The purpose of this study is to measure the concentration of gold nanoparticles (AuNPs) attached to folic acid through cysteamin as the linker (FA‐Cys‐AuNPs) and AuNPs in KB human nasopharyngeal cancer cells using dual‐energy CT (DECT). In this study, nanoparticles with a size of ∼15 nm were synthesized and characterised using UV‐Vis, TEM, FTIR and ICP‐OES analyses. The non‐toxicity of nanoparticles was confirmed by MTT assay under various concentrations (40– 100 µg/ml) and incubation times (6, 12 and 24 h). To develop an algorithm for revealing different concentrations of AuNPs in cells, a corresponding physical phantom filled with 0.5 ml vials containing FA‐Cys‐AuNPs was used. The CT scan was performed at two energy levels (80 and 140 kVp). One feature of DECT is material decomposition, which allows separation and identification of different elements. The values obtained from the DECT algorithm were compared with values quantitatively measured by ICP‐OES. Cells were also incubated with AuNPs and FA‐Cys‐AuNPs at different concentrations and incubation times. Subsequently, by increasing the incubation time in the presence of FA‐Cys‐AuNPs, in comparison with AuNPs, DECT pixels were increased. Thus, FA‐Cys‐AuNPs could be a suitable candidate for targeted contrast agent in DECT molecular imaging of nasopharyngeal cancer cells.Inspec keywords: biomedical materials, phantoms, nanoparticles, computerised tomography, nanomedicine, cancer, toxicology, nanofabrication, gold, cellular biophysics, ultraviolet spectra, visible spectra, transmission electron microscopy, Fourier transform infrared spectraOther keywords: Au, time 24.0 hour, time 12.0 hour, time 6.0 hour, head cancer cells, DECT molecular imaging, DECT algorithm, material decomposition, physical phantom, MTT assay, ICP‐OES analyses, FTIR spectra, TEM, UV‐vis spectrophotometry, cysteamin, folic acid, gold nanoparticle concentration, nasopharyngeal cancer cells, dual‐energy CT imaging, neck cancer cells, KB human nasopharyngeal cancer cells, multifunctional gold nanoparticles  相似文献   

16.
The present investigation reveals the in vitro cytotoxic effect of the biosynthesised metal nanoparticles on the MCF 7 breast cancer cell lines. The gold and silver nanoparticles were synthesised through an environmentally admissible route using the Mukia Maderaspatna plant extract. Initially, the biomolecules present in the plant extract were analysed using phytochemical analysis. Further, these biomolecules reduce the metal ion solution resulting from the formation of metal nanoparticles. The reaction parameters were optimised to control the size of nanoparticles which were confirmed by UV visible spectroscopy. Various instrumental techniques such as Fourier transform‐infrared spectroscopy, high resolution transmission electron microscopy, energy dispersive X‐ray and scanning electron microscopy were employed to characterise the synthesised gold and silver nanoparticles. The synthesised gold and silver nanoparticles were found to be 20–50 nm and were of different shapes including spherical, triangle and hexagonal. MTT and dual staining assays were carried out with different concentrations (1, 10, 25, 50 and 100 µg/ml) of gold and silver nanoparticles. The results show that the nanoparticles exhibited significant cytotoxic effects with IC 50 value of 44.8 µg/g for gold nanoparticles and 51.3 µg/g for silver nanoparticles. The observations in this study show that this can be developed as a promising nanomaterial in pharmaceutical and healthcare sector.Inspec keywords: gold, silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, cancer, cellular biophysics, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, transmission electron microscopy, X‐ray chemical analysis, scanning electron microscopyOther keywords: gold nanoparticle synthesis, silver nanoparticle synthesis, Mukia maderaspatna plant extract, anticancer activity, MCF 7 breast cancer cell line, biomolecule, phytochemical analysis, size 20 nm to 50 nm, healt hcare sector, pharmaceutical sector, nanomaterial, dual staining assay, MTT assay, scanning electron microscopy, energy dispersive X‐ray spectrocopy, high resolution transmission electron microscopy, Fourier transform‐infrared spectroscopy, instrumental technique, ultraviolet‐visible spectroscopy, metal nanoparticle formation, metal ion solution  相似文献   

17.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

18.
The emergence of the huge number of multi‐drug resistant (MDR) bacteria requires an alternative to the drugs. Silver nanoparticles (AgNPs) are a strong candidate for this due to their bactericidal properties, which can be better concluded by understanding their morphology and chemistry. The study hypothesised that AgNPs synthesised using leaves of Syzygium cumini can be used to treat locally emerging MDRs forming biofilms on indwelling medical devices. Synthesised particles were characterised by methods like UV–visible spectroscopy, X‐ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and Zetasizer. Fourier transform infrared spectroscopy, and high‐performance liquid chromatography were used to predict phytochemicals present in the leaves. The shape of particles is revealed to be relatively spherical, with average size to be around 10–100 nm. Phenolic compounds are attributed to the formation of nanoparticles, stability analysis shows particles to be stable, and zeta potential determined the surface charge to be −20.1 mV. Biosynthesised particles are found to possess efficient antibacterial activity MDR bacteria developing biofilms in medical devices; hence, it is concluded that S. cumini based NPs can be used to develop a layer on implant‐related medical devices. Toxicity evaluation against A594 cancer cells portrays AgNPs to be potential tumour reduction agents in a concentration‐dependent manner.Inspec keywords: silver, visible spectra, X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, chromatography, electrokinetic effects, cancer, biomedical materials, reduction (chemical), cellular biophysics, nanofabrication, nanoparticles, antibacterial activity, particle size, drugs, toxicology, nanomedicine, ultraviolet spectra, microorganisms, tumours, Fourier transform infrared spectraOther keywords: Syzygium cumini, biofilms, indwelling medical devices, UV‐visible spectroscopy, X‐ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, high‐performance liquid chromatography, biosynthesised particles, implant‐related medical devices, biosynthesised silver nanoparticles, multidrug resistant biofilm‐forming pathogens, multidrug resistant bacteria, MDR, bactericidal properties, morphology, scanning electron microscopy, s. cumini based NP, A594 cancer cells, tumour reduction, Ag  相似文献   

19.
This study describes ZnO NPs biosynthesis using leaf extracts of Verbena officinalis and Verbena tenuisecta. The extracts serve as natural reducing, capping and stabilization facilitators. Plant extracts phytochemical analysis, revealed that V. officinalis showed higher total phenolic and flavonoid content (22.12 and 6.38 mg g −1 DW) as compared to V. tennuisecta (12.18 and 2.7 mg g −1 DW). ZnO NPs were characterised by ultraviolet–visible spectroscopy, Fourier transform infrared, X‐ray diffraction, scanning electron microscope, transmission electron microscopy (TEM) and energy dispersive X‐ray. TEM analysis of ZnO NPs reveals rod and flower shapes and were in the range of 65–75 and 14–31 nm, for V. tenuisecta and V. officinalis, respectively. Bio‐potential of ZnO NPs was examined through their leishmanicidal potential against Leishmania tropica. ZnO NPs showed potent leishmanicidal activity with 250 µg ml−1 being the most potent concentration. V. officinalis mediated ZnO NPs showed more potent leishmanicidal activity compared to V. tenuisecta mediated ZnO NPs due to their smaller size and increased phenolics doped onto its surface. These results can be a step forward towards the development of novel compounds that can efficiently replace the current medication schemes for leishmaniasis treatment.Inspec keywords: ultraviolet spectra, nanomedicine, nanostructured materials, visible spectra, X‐ray diffraction, antibacterial activity, nanoparticles, zinc compounds, scanning electron microscopy, microorganisms, nanofabrication, drugs, transmission electron microscopy, X‐ray chemical analysis, health and safety, particle size, renewable materials, diseases, Fourier transform infrared spectraOther keywords: flavonoid content, natural reducing stabilisation facilitators, ZnO nanoparticles synthesis, antileishmanial efficacy, Verbena tennuisecta, Verbena officinales, phytochemical analysis, phenolic content, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, energy dispersive X‐ray analysis, particle size, leishmaniasis treatment, leaf extracts, medication scheme, stabilisation facilitator, capping facilitator, size 14.0 nm to 31.0 nm, size 65.0 nm to 75.0 nm, ZnO  相似文献   

20.
Cancer is a major cause of death. Thus, the incidence and mortality rate of cancer is globally important. Regarding vast problems caused by chemotherapy drugs, efforts have progressed to find new anti‐cancer drugs. Pyrazole derivatives are known as components with anti‐cancer properties. In here, Fe3 O4 nanoparticles were first functionalized with (3‐chloropropyl) trimethoxysilane, then 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide (P) was anchored on the surface of magnetic nanoparticles (PL). The synthesized nano‐compounds were characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, and energy‐dispersive x‐ray spectrometry analyses. The cytotoxicity effect was evaluated using MTT assay, apoptosis test by Flow cytometry, cell cycle analysis, Caspase‐3 activity assay and Hoechst staining on MCF‐7 cell line. The high toxicity for tumor cells and low toxicity on normal cells (MCF10A) was considered as an important feature (selectivity index, 10.9). Based on results, the IC50 for P and PL compounds were 157.80 and 131.84 μM/ml respectively. Moreover, apoptosis inducing, nuclear fragmentation, Caspase 3 activity and induction of cell rest in sub‐G1 and S phases, were also observed. The inhibitory effect of PL was significantly higher than P, which could be due to the high penetrability of Fe3 O4 nanoparticles.Inspec keywords: magnetic particles, drugs, nanomedicine, biochemistry, cancer, light scattering, scanning electron microscopy, molecular biophysics, iron compounds, electrokinetic effects, nanofabrication, tumours, X‐ray diffraction, cellular biophysics, nanoparticles, biomedical materials, toxicology, nanomagnetics, Fourier transform infrared spectra, enzymes, X‐ray chemical analysisOther keywords: anticancer properties, Fe3 O4 magnetic nanoparticles, (3‐chloropropyl) trimethoxysilane, energy‐dispersive X‐ray spectrometry, cell cycle analysis, MCF‐7 cell line, tumour cells, human breast cancer MCF‐7 cells, mortality rate, pyrazole derivatives, 2‐((pyrazol‐4‐yl) methylene) hydrazinecarbothioamide, chemotherapy drugs, heterocyclic components, nanocompounds, X‐ray diffraction, scanning electron microscopy, Zeta potential, dynamic light scattering, cytotoxicity effect, MTT assay, apoptosis test, caspase‐3 activity assay, Hoechst staining, MCF10A nontumourigenic cells, cell rest induction, nuclear fragmentation, Fe3 O4   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号