首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is the first to investigate the antileishmanial activities of Nigella sativa oil (NSO) entrapped poly‐ɛ ‐caprolactone (PCL) nanoparticles on Leishmania infantum promastigotes and amastigotes in vitro. NSO molecules with variable initial doses of 50, 100, 150, and 200 mg were successfully encapsulated into PCL nanoparticles identified as formulations NSO1, NSO2, NSO3, and NSO4, respectively. This process was characterised by scanning electron microscope, dynamic light scattering, Fourier transform infrared, encapsulation efficiency measurements, and release profile evaluations. The resulting synthetised nanoparticles had sizes ranging between 200 and 390 nm. PCL nanoparticles encapsulated 98% to 80% of initial doses of NSO and after incubation released approximately 85% of entrapped oil molecules after 288 h. All investigated formulations demonstrated strong antileishmanial effects on L. infantum promastigotes by inhibiting up to 90% of parasites after 192 h. The tested formulations decreased infection indexes of macrophages in a range between 2.4‐ and 4.1‐fold in contrast to control, thus indicating the strong anti‐amastigote activities of NSO encapsulated PCL nanoparticles. Furthermore, NSO‐loaded PCL nanoparticles showed immunomodulatory effects by increasing produced nitric oxide amounts within macrophages by 2–3.5‐fold in contrast to use of free oil. The obtained data showed significant antileishmanial effects of NSO encapsulated PCL nanoparticles on L. infantum promastigotes and amastigotes.Inspec keywords: antibacterial activity, drug delivery systems, nanofabrication, nitrogen compounds, nanomedicine, microorganisms, cellular biophysics, diseases, scanning electron microscopy, oils, polymers, biomedical materials, nanoparticles, encapsulation, Fourier transform infrared spectraOther keywords: encapsulation efficiency measurements, entrapped oil molecules, investigated formulations, NSO‐loaded PCL nanoparticles, Nigella sativa oil entrapped polycaprolactone nanoparticles, antileishmanial activities, poly‐ε‐caprolactone nanoparticles, scanning electron microscope, DLS, Fourier transform infrared, release profile evaluations, Leishmania infantum promastigotes, Leishmania infantum amastigotes, parasites, infection, infection indexes, macrophages, immunomodulatory effects, time 288.0 hour, time 192.0 hour, mass 50.0 mg, mass 100.0 mg, mass 150.0 mg, mass 200.0 mg, size 200.0 nm to 390.0 nm  相似文献   

2.
This study is planned to synthesise new biocompatible, nano antimicrobial formulation against biofilm producing strains. Aqueous root extract of Arctium lappa l. was used to synthesise ceria nanoparticles (CeO2 ‐NPs). The synthesised nanoparticles were encapsulated with nano‐chitosan by sol–gel method and characterised using standard techniques. Gas chromatography‐mass spectrometer of Arctium lappa l. revealed the presence of ethanol, acetone, 1‐ propanol, 2‐methylethane, 1,1‐di‐ethoxy, 1‐Butanol, and oleic acid acted as reducing and surface stabilising agents for tailoring morphology of CeO2 ‐NPs. Erythrocyte integrity after treatment with synthesised nanomaterials was evaluated by spectrophotometer measurement of haemoglobin release having biocompatibility. Scanning electron microscopy revealed the formation of mono dispersed beads shaped particles with mean particle size of 26.2 nm. X‐ray diffractometry revealed cubic crystalline structure having size of 28.0 nm. After encapsulation by nano‐chitosan, the size of CeO2 ‐NPs enhances to 48.8 nm making average coverage of about 22.6 nm. The synthesised nanomaterials were found effective to disrupt biofilm of S. aureus and P. aeruginosa. Interestingly, encapsulated CeO2 ‐NPs revealed powerful antibacterial and biofilm disruption activity examined by fluorescent live/dead staining using confocal laser scanning microscopy. The superior antibacterial activities exposed by encapsulated CeO2 ‐NPs lead to the conclusion that they could be useful for controlling biofilm producing multidrug resistance pathogens.Inspec keywords: particle size, microorganisms, organic compounds, nanomedicine, sol‐gel processing, cellular biophysics, scanning electron microscopy, optical microscopy, nanoparticles, antibacterial activity, fluorescence, biomedical materials, nanofabrication, X‐ray diffraction, chromatography, filled polymers, cerium compoundsOther keywords: microbial biofilms, aqueous root extract, sol–gel method, gas chromatography‐mass spectrometer, 1‐di‐ethoxy, 1‐Butanol, nanomaterial synthesis, mean particle size, antibacterial activities, ethanol, acetone, 1‐ propanol, biocompatible ceria‐nanoparticle encapsulation, nano‐chitosan, Arctium lappa l., oleic acid, erythrocyte integrity, spectrophotometer measurement, haemoglobin release, mono dispersed beads shaped particle formation, X‐ray diffractometry, cubic crystalline structure, fluorescent live/dead staining, confocal laser scanning microscopy, multidrug resistance pathogens, size 26.2 nm, size 28.0 nm, size 48.8 nm, size 22.6 nm, CeO2   相似文献   

3.
This study reports the fabrication of cellulose nanoparticles through electrospraying the solution of cellulose in N,N ‐dimethylacetamide/lithium chloride solvent as well as investigating the effect of electrospraying conditions and molecular weight on the average size of electrosprayed nanoparticles. Electrospraying of cellulose was carried out with the following range for each factor, namely concentration = 1–3 wt%, voltage = 15–23 kV, nozzle–collector distance = 10–25 cm, and feed rate = 0.03–0.0875 ml/h. The smallest nanoparticles had an average size of around 40 nm. Results showed that lowering the solution concentration and feed rate, as well as increasing the nozzle–collector distance and applied voltage led to a decrease in the average size of the electrosprayed cellulose nanoparticles. Fourier transform infrared analysis proved that no chemical change had occurred in the cellulose structure after the electrospraying process. According to X‐ray diffraction (XRD) results, cellulose nanoparticles showed a lower degree of crystallinity in comparison with the raw cellulose powder. XRD results also proved the absence of LiCl salt in the electrosprayed nanoparticles.Inspec keywords: polymers, nanoparticles, nanofabrication, spraying, molecular weight, particle size, Fourier transform infrared spectra, X‐ray diffraction, polymer structureOther keywords: cellulose nanoparticles, electrospraying, N,N‐dimethylacetamide‐lithium chloride solvent, molecular weight, solution concentration, feed rate, nozzle‐collector distance, Fourier transform infrared analysis, X‐ray diffraction, XRD, crystallinity, cellulose powder, voltage 15 kV to 23 kV  相似文献   

4.
In the present study, water‐soluble hybrid selenium‐containing nanocomposites have been synthesised via soft oxidation of selenide‐anions, preliminarily generated from elemental bulk‐selenium in the base‐reduction system ‘N2 H4 –NaOH’. The nanocomposites obtained consist of Se0 NPs (4.6–24.5 nm) stabilised by κ‐carrageenan biocompatible polysaccharide. The structure of these composite nanomaterials has been proven using complementary physical–chemical methods: X‐ray diffraction analysis, transmission electron microscopy, optical spectroscopy, and dynamic light scattering. Optical ranges of ‘emission/excitation’ of aqueous solutions of nanocomposites with Se0 NPs of different sizes are established and the most important parameters of their luminescence are determined. For the obtained nanocomposites, the expressed antiradical activity against free radicals 2,2‐diphenyl‐1‐picrylhydrazyl and 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid has been found, the value of which depends on the size of selenium nanoparticles. It is experimentally revealed that all obtained nanocomposites are low toxic (LD50 >2000 mg/kg). It is also found that small selenium nanoparticles (6.8 nm), in contrast to larger nanoparticles (24.5 nm), are accumulated in organisms to significantly increase the level of selenium in the liver, kidneys, and brain (in lesser amounts) of rats.Inspec keywords: nanobiotechnology, free radical reactions, oxidation, enzymes, selenium, solubility, nanofabrication, transmission electron microscopy, X‐ray diffraction, free radicals, reduction (chemical), biomedical materials, nanoparticles, nanomedicine, light scattering, organic‐inorganic hybrid materials, biochemistry, nanocompositesOther keywords: κ‐carrageenan biocompatible polysaccharide, composite nanomaterials, complementary physical–chemical methods, X‐ray diffraction analysis, transmission electron microscopy, optical spectroscopy, dynamic light scattering, optical ranges, expressed antiradical activity, 2,2‐diphenyl‐1‐picrylhydrazyl, 3‐ethylbenzothiazoline‐6‐sulphonic acid, comparative assessment, toxicity, κ‐carrageenan‐capped selenium nanoparticles, water‐soluble hybrid selenium‐containing nanocomposites, soft oxidation, selenide‐anions, elemental bulk‐selenium, base‐reduction system, free radicals, 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulphonic acid, selenium nanoparticles, nanocomposites, liver, kidneys, brain, luminescence, size 4.6 nm to 24.5 nm  相似文献   

5.
The present study investigated the synthesis of gold nanoparticles (AuNPs) using mangrove plant extract from Avicennia marina as bioreductant for eco‐friendly bioremediation of 4‐nitrophenol (4‐NP). The AuNPs synthesised were confirmed by UV spectrum, transmission electron microscopy (TEM), X‐ray diffraction, Fourier transmission infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential. The AuNPs were found to be spherical in shape with size ranging from 4 to 13 nm, as evident by TEM and DLS. Further, the AuNPs were encapsulated with sodium alginate in the form of gold nano beads and used as heterogeneous catalyst and degrading agent to reduce 4‐NP. This reduction in 4‐NP into 4‐aminophenol was confirmed by UV and FTIR. The aqueous solution of 4‐NP peaked its absorbance at 320 nm, and shifted to 400 nm, with an intense yellow colour, appeared due to formation of 4‐nitrophenolate ion. After the addition of AuNps, the 4‐NP solution became colourless and peaked at 400 nm and reduced to 290 nm corresponding to the formation of 4‐aminophenol. Hence, the present work suggested the AuNPs as the potent, eco‐friendly bionanocomposite catalyst for bioremediation of 4‐NP.Inspec keywords: gold, nanoparticles, nanobiotechnology, nanofabrication, ultraviolet spectra, transmission electron microscopy, X‐ray diffraction, Fourier transform spectra, infrared spectra, electrokinetic effects, catalysts, nanocomposites, biochemistryOther keywords: biogenic gold nanoparticles, 4‐nitrophenol, 4‐aminophenol, eco‐friendly bioremediation, mangrove plant extract, Avicennia marina, bioreductant, UV spectrum, transmission electron microscopy, TEM, X‐ray diffraction, Fourier transmission infrared spectroscopy, FTIR, dynamic light scattering, DLS, zeta potential, degrading agent, 4‐nitrophenolate, bionanocomposite catalyst, size 4 nm to 13 nm, wavelength 400 nm, wavelength 290 nm, Au  相似文献   

6.
Biosynthesis of nanoparticles through plant extracts is gaining attention due to the toxic free synthesis process. The environmental engineering applications of many metal oxide nanoparticles have been reported. In this study, iron oxide nanoparticles (Fe2 O3 ‐Nps) were synthesised using a simple biosynthetic method using a leaf extract of a mangrove plant Rhizophora mucronata through reduction of 0.01 M ferric chloride. Fe2 O3 ‐Np synthesis was revealed by a greenish colour formation with a surface plasmon band observed close to 368 nm. The stable Fe2 O3 ‐Np possessed excitation and emission wavelength of 368.0 and 370.5 nm, respectively. The Fourier‐transform infrared spectral analysis revealed the changes in functional groups during formation of Fe2 O3 ‐Np. Agglomerations of nanoparticles were observed during scanning electron microscopic analysis and energy‐dispersive X‐ray spectroscopic analysis confirmed the ferric oxide nature. The average particle size of Fe2 O3 ‐Np based on dynamic light scattering was 65 nm. Based on transmission electron microscopic analysis, particles were spherical in shape and the crystalline size was confirmed by selected area electron diffraction pattern analysis. The synthesised Fe2 O3 ‐Np exhibited a good photodegradation efficiency with a reduction of 83 and 95% of phenol red and crystal violet under irradiation of sunlight and florescent light, respectively. This report is a facile synthesis method for Fe2 O3 ‐Np with high photodegradation efficiency.Inspec keywords: photochemistry, dyes, nanofabrication, transmission electron microscopy, scanning electron microscopy, nanoparticles, iron compounds, X‐ray diffraction, catalysts, catalysis, particle size, X‐ray chemical analysis, electron diffraction, Fourier transform infrared spectra, surface plasmonsOther keywords: energy‐dispersive X‐ray spectroscopic analysis, ferric oxide nature, transmission electron microscopic analysis, selected area electron diffraction pattern analysis, iron oxide nanoparticles, plant extracts, toxic free synthesis process, metal oxide nanoparticles, metal nanoparticles, nanofiltration, nanobiocides, Rhizophora mucronata Lam, crystalline size, phenol red, crystal violet, sunlight irradiation, florescent light, scanning electron microscopic analysis, Fourier‐transform infrared spectral analysis, surface plasmon, ferric chloride, leaf extract, nanocatalysts, nanoadsorbents, photocatalytic degradation, synthetic dyes, mangrove plant, water remediation, wastewater pollutant, wavelength 370.5 nm, wavelength 368.0 nm, Fe2 O3   相似文献   

7.
In this study, the authors developed pectin‐stabilised selenium nanoparticles (pectin‐SeNPs) for curcumin (Cur) encapsulation and evaluated their physicochemical properties and biological activities. Results showed that pectin‐SeNPs and Cur‐loaded pectin‐SeNPs (pectin‐SeNPs@Cur) exhibited monodisperse and homogeneous spherical structures in aqueous solutions with mean particle sizes of ∼61 and ∼119 nm, respectively. Cur was successfully encapsulated into pectin‐SeNPs through hydrogen bonding interactions with an encapsulation efficiency of ∼60.6%, a loading content of ∼7.4%, and a pH‐dependent and controlled drug release in vitro. After encapsulation was completed, pectin‐SeNPs@Cur showed enhanced water solubility (∼500‐fold), dispersibility, and storage stability compared with those of free Cur. Moreover, pectin‐SeNPs@Cur possessed significant free radical scavenging ability and antioxidant capacity in vitro, which were stronger than those of pectin‐SeNPs. Antitumour activity assay in vitro demonstrated that pectin‐SeNPs@Cur could inhibit the growth of HepG2 cells in a concentration‐dependent manner, and the nanocarrier pectin‐SeNPs exhibited a low cytotoxic activity against HepG2 cells. Therefore, the results suggested that pectin‐SeNPs could function as effective nanovectors for the enhancement of the water solubility, stability, and in vitro bioactivities of hydrophobic Cur.Inspec keywords: hydrogen bonds, selenium, nanoparticles, solubility, drug delivery systems, toxicology, hydrophobicity, free radicals, particle size, nanofabrication, cancer, nanomedicine, drugs, biomedical materials, encapsulation, cellular biophysics, pH, organic compoundsOther keywords: pectin‐decorated selenium nanoparticles, pectin‐stabilised selenium nanoparticles, curcumin encapsulation, Cur‐loaded pectin‐SeNPs, nanocarrier pectin‐SeNPs, physicochemical properties, biological properties, homogeneous spherical structures, monodisperse spherical structures, aqueous solutions, particle size, hydrogen bonding interactions, encapsulation efficiency, loading content, pH‐dependent drug release, in vitro controlled drug release, water solubility, free radical scavenging ability, in vitro antioxidant capacity, in vitro antitumour activity assay, HepG2 cells, cytotoxic activity, in vitro bioactivity, hydrophobic curcumin, Se  相似文献   

8.
The present study deals with the production of 5‐hydroxymethyl furfural (HMF) from fructose by chemo‐conversion method using chemical catalyst, conventionally achieved by microwave‐assisted dehydration process. Five different chemical catalysts, namely oxalic acid, phosphotungstic acid and mesoporous titanium dioxide nanoparticles (TNPs) were compared at constant conditions of which TNPs yielded a maxima of 33.95%. The optimum temperature and catalyst loading were found to be 200°C and 20%, respectively, at a 5% optimum substrate concentration during 15 min optimum reaction time to yield 61.53% HMF. The efficiency of synthesised TNPs was investigated further through reusability studies. TNPs were properly recycled and the catalytic activity recovery was good even after a 14 batch reactions. The specific surface area of the TNP obtained is about 105.46 m2 /g and its pore‐volume is about 0.42 cm3 /g according to single point adsorption. A large accessible surface area combined with a minimal pore size (15.92 nm) obtained with mesoporous TNPs is desirable for better catalyst loading, high‐yield HMF, retention and reduced diffusion constraints.Inspec keywords: mesoporous materials, recycling, production management, dissociation, nanoparticles, nanotechnologyOther keywords: mesoporous titanium dioxide nanocatalyst, recyclable approach, one‐pot synthesis, 5‐hydroxymethyl furfural production, HMF, chemo‐conversion method, chemical catalyst, microwave‐assisted dehydration process, oxalic acid, phosphotungstic acid, mesoporous titanium dioxide nanoparticles, TNP  相似文献   

9.
The authors report the comparative antibacterial activity of silver nanoparticles synthesised by biological (using Fusarium oxysporum) and chemical routes in the presence and absence of pluronic F68 as a stabilising agent. The production of silver nanoparticles was evidenced by UV–visible spectra, with absorbance at about 420 nm in the case of both biological and chemical synthesis. X‐ray diffraction pattern confirmed the presence of face‐centred cubic structure (FCC plane). The nanoparticles characterised by transmission and scanning electron microscopy showed spherical silver nanoparticles with size range of 5–40 and 10–70 nm in the case of biologically and chemically synthesised nanoparticles, respectively. Addition of pluronic F68 showed the stabilisation of silver nanoparticles. Antibacterial efficacy of silver nanoparticles demonstrated different inhibitory activity against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Overall, biologically synthesised silver nanoparticles showed higher activity as compared with chemically synthesised nanoparticles. Silver nanoparticles synthesised in the presence of pluronic F68 by the chemical route exhibited synergism in antibacterial activity as compared with those synthesised without pluronic F68. On the contrary, biogenic silver nanoparticles without pluronic F68 showed higher antibacterial potential.Inspec keywords: antibacterial activity, nanofabrication, silver, X‐ray diffraction, biomedical materials, nanomedicine, transmission electron microscopy, scanning electron microscopy, ultraviolet spectra, visible spectra, materials preparation, nanoparticlesOther keywords: pluronic F68, stabilising agent, comparative antibacterial activity, Fusarium oxysporum, UV‐visible spectra, biological synthesis, chemical synthesis, X‐ray diffraction pattern, face‐centred cubic structure, FCC plane, transmission electron microscopy, scanning electron microscopy, spherical silver nanoparticles, antibacterial efficacy, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, synergism, biogenic silver nanoparticles, wavelength 420 nm, size 10 nm to 70 nm, size 5 nm to 40 nm, Ag  相似文献   

10.
Mastitis is an important economic disease causing production losses in dairy industry. Antibiotics are becoming ineffective in controlling mastitis due to the emergence of resistant strains requiring the development of novel therapeutic agents. In this study, the authors present the phytochemical synthesis of silver nanoparticles (AgNPs) with acetyl‐11‐α‐keto‐β‐boswellic acid and evaluation of their activity in Staphylococcus aureus induced murine mastitis. Boswellic acid mediated AgNP (BANS) were oval, polydispersed (99.8 nm) with an minimum inhibitory concentration of 0.033 µg ml−1 against S. aureus, inhibitory concentration (IC50) of 30.04 µg ml−1 on mouse splenocytes and safe at an in vivo acute oral dose of 3.5 mg kg−1 in mice. Mastitis was induced in lactating mice by inoculating S. aureus (log10 5.60 cfu) and treated 6 h post‐inoculation with BANS (0.12 mg kg−1, intramammary and intraperitoneal), and cefepime (1 mg kg−1, intraperitoneal). S. aureus inoculated mice showed increased bacterial load, neutrophil infiltration in mammary glands and elevated C‐reactive protein (CRP) in serum. Oxidative stress was also observed with elevated malondialdehyde level, superoxide dismutase (SOD) and catalase (CAT) activities. BANS treatment significantly (P  < 0.05) reduced bacterial load, CRP, SOD, CAT activities and neutrophil infiltration in affected mammary glands. BANS could be a potential therapeutic agent for managing bovine mastitis.Inspec keywords: nanomedicine, nanoparticles, silver, antibacterial activity, drugs, diseases, enzymesOther keywords: antibacterial effects, antiinflammatory effects, antioxidant effects, acetyl‐11‐α‐keto‐β‐boswellic acid, mediated silver nanoparticles, experimental murine mastitis, economic disease, dairy industry, resistant strains, phytochemical synthesis, Staphylococcus aureus, minimum inhibitory concentration, inoculating S. aureus, neutrophil infiltration, mammary glands, elevated C‐reactive protein, superoxide dismutase, catalase, bovine mastitis, Ag  相似文献   

11.
L‐theanine is present in tea as a unique, free, non‐protein amino acid. Due to various beneficial effects on brain activity, it is widely used as a nutraceutical. After consumption, it is rapidly absorbed and metabolised followed by excretion through urine. Therefore, the authors developed an L‐theanine delivery system by encapsulating into polymeric nanoparticles to release it slowly and make it available for a longer period of time. Poly(D, L‐lactic acid) nanoparticle (PLANP) was fabricated by the double emulsion method and L‐theanine was encapsulated into it (PLANP‐T). Spherical nanoparticles with a hydrodynamic diameter of 247 and 278 nm and surface charge of −14.5 and −25.7 mV for PLANP and PLANP‐T, respectively, were fabricated. The Fourier transform infrared spectroscopic data indicated encapsulation of L‐theanine into PLANP. The PLANP showed high L‐theanine encapsulation capacity (71.65%) with a sustained release character. The maximum release (66.3%) of L‐theanine was recorded in pH 7.3 at 48 h. The release kinetics followed the Higuchi model and the release mechanism was determined as super case‐II transport (erosion). This slow release will make it available to the target tissue for a longer period of time (sustain release effect) and will also avoid immediate metabolism and clearance from the circulation.Inspec keywords: nanomedicine, pH, polymers, nanofabrication, emulsions, biomedical materials, drug delivery systems, nanoparticles, Fourier transform infrared spectraOther keywords: brain activity, L‐theanine delivery system, polymeric nanoparticles, double emulsion method, spherical nanoparticles, surface charge, L‐theanine encapsulation capacity, poly(D, L‐lactic acid) nanoparticles, nonprotein amino acid, urine, hydrodynamic diameter, Fourier transform infrared spectroscopy, time 48.0 hour, voltage ‐25.7 mV, voltage ‐14.5 mV, size 278.0 nm, size 247.0 nm, target tissue, Higuchi model, pH  相似文献   

12.
Biotinylated chitosan/poly(methyl vinyl ether‐alt ‐maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1 HNMR and Fourier transform infra‐red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX‐loaded biotin‐targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1 HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug‐loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX‐loaded in targeted micelles on HepG2 cell line was about 2.2‐fold compared with free drug.Inspec keywords: biomedical materials, cellular biophysics, dissolving, drug delivery systems, drugs, electrokinetic effects, fluorescence, Fourier transform infrared spectra, particle size, polymer blends, spectrochemical analysis, toxicologyOther keywords: 1 HNMR spectra, biotin‐targeted chitosan‐poly (methyl vinyl ether‐alt‐maleic acid) copolymeric micelles, doxorubicin delivery, amide reaction, structural characterisation, Fourier transform infrared spectra, pyrene, fluorescent probe, direct dissolution method, physicochemical properties, particle size, zeta potential, nanoparticles, irregular factorial design, in vitro cytotoxicity, DOX‐loaded biotin‐targeted micelles, 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay, polydispersity index, drug‐loading efficiency, HepG2 cell line, voltage 9.46 mV  相似文献   

13.
The study describes the synthesis of silver nanoparticles using 21 different plant extracts having medicinal properties. Molecular ultraviolet‐visible spectroscopy shows that the λ max of nanoparticles synthesised by different plant extracts varied and ranged between 400 and 468 nm. The ultraviolet results revealed that although synthesis of nanoparticles occurred by all plant extracts successfully, their size varies, this was further confirmed by differential light scattering. The synthesised nanoparticles were investigated for their antimicrobial properties. The most promising silver nanoparticles Ocimum sanctum and Artemisia annua assisted were further characterised using transmission electron microscopy and energy dispersive X‐ray spectroscopy (EDX). EDX data confirms that synthesised nanoparticles are highly pure. Further these two plant assisted nanoparticles were studied for chemocatalytic and adsorptive properties. The silver nanoparticles from Ocimum sanctum can catalyse the reduction of 4‐nitrophenol (63%) within 20 min in the presence of NaBH4, whereas Artemisia annua assisted silver nanoparticles did not show significant chemocatalytic activity. Both the promising nanoparticles can efficiently adsorb textile dyes from aqueous solutions. These synthesised nanoparticles were also exploited to remove microbial and other contaminants from Yamuna River water. The nanoparticles show excellent antimicrobial properties and can be reused repeatedly.Inspec keywords: antibacterial activity, nanofabrication, silver, dyes, light scattering, visible spectra, microorganisms, X‐ray diffraction, transmission electron microscopy, X‐ray chemical analysis, catalysis, nanoparticles, ultraviolet spectra, adsorption, reduction (chemical)Other keywords: sustainable green synthesised nontoxic silver nanoparticles, silver nitrate, molecular ultraviolet–visible spectroscopy, plant assisted nanoparticles, plant extracts, Ocimum sanctum, Artemisia annua, E. coli, C. albicans, plasmon absorbance, differential light scattering, energy dispersive X‐ray spectroscopy, 4‐nitrophenol, chemocatalytic activity, Yamuna River water, antimicrobial properties, time 20.0 min, time 5.0 min to 240.0 hour, size 1.0 nm to 5.0 nm, size 5.0 nm to 20.0 nm, wavelength 400.0 nm to 468.0 nm, NaBH4 , Ag  相似文献   

14.
The potential of Mentha piperita in the iron nanoparticles (FeNPs) production was evaluated for the first time. The influences of the variables such as incubation time, temperature, and volume ratio of the extract to metal ions on the nanoparticle size were investigated using central composite design. The appearance of SPR bands at 284 nm in UV–Vis spectra of the mixtures verified the nanoparticle formation. Incubating the aqueous extract and metal precursor with 1.5 volume ratio at 50°C for 30 min leads to the formation of the smallest nanoparticles with the narrowest size distribution. At the optimal condition, the nanoparticles were found to be within the range of 35–50 nm. Experimental measurements of the average nanoparticle size were fitted well to the polynomial model satisfactory with R 2 of 0.9078. Among all model terms, the linear term of temperature, the quadratic terms of temperature, and mixing volume ratio have the significant effects on the nanoparticle average size. FeNPs produced at the optimal condition were characterised by transmission electron microscopy, thermogravimetry analysis (TGA), and Fourier‐transform infrared spectroscopy. The observed weight loss in the TGA curve confirms the encapsulation of FeNPs by the biomolecules of the extract which were dissociated by heat.Inspec keywords: thermal analysis, iron, X‐ray chemical analysis, particle size, nanoparticles, X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, nanofabrication, ultraviolet spectra, mixtures, Fourier transform infrared spectraOther keywords: incubation time, metal ions, central composite design, SPR bands, UV–Vis spectra, nanoparticle formation, metal precursor, narrowest size distribution, optimal condition, average nanoparticle size, particle size, mixing volume ratio, green synthesis, zero‐valent iron nanoparticles, mentha piperita, transmission electron microscopy, thermogravimetry analysis, Fourier‐transform infrared spectroscopy, TGA curve, biomolecules, temperature 50.0 degC, time 30.0 min, size 35.0 nm to 50.0 nm, Fe  相似文献   

15.
Biological routes of synthesising metal nanoparticles (NPs) using microbes have been gaining much attention due to their low toxicity and eco‐friendly nature. Pseudomonas aeruginosa JP2 isolated from metal contaminated soil was evaluated towards extracellular synthesis of silver NPs (AgNPs). Cell‐free extract (24 h) of the bacterial isolate was reacted with AgNO3 for 24 h in order to fabricate AgNPs. Preliminary observations were recorded in terms of colour change of the reaction mixture from yellow to greyish black. UV‐visible spectroscopy of the reaction mixture has shown a progressive increase in optical densities that correspond to peaks near 430 nm, depicting reduction of ionic silver (Ag+) to atomic silver (Ag0) thereby synthesising NPs. X‐ray diffraction spectra exhibited the 2θ values to be 38.4577° confirming the crystalline and spherical nature of NPs [9.6 − 26.7 (Ave. = 17.2 nm)]. Transmission electron microscopy finally confirmed the size of the particles varying from 5 to 60 nm. Moreover, rhamnolipids and proteins were identified as stabilising molecules for the AgNPs through Fourier transform‐infrared spectroscopy. Characterisation of bacterial crude and purified protein fractions confirmed the involvement of nitrate reductase (molecular weight 66 kDa and specific activity = 3.8 U/mg) in the Synthesis of AgNPs.Inspec keywords: microorganisms, silver, nanoparticles, enzymes, molecular biophysics, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectra, catalysis, biochemistry, nanobiotechnologyOther keywords: catalytic protein, stabilising agents, Pseudomonas aeruginosa, metal nanoparticles, UV–visible spectroscopy, optical densities, ionic silver, atomic silver, X‐ray diffraction spectra, transmission electron microscopy, nitrate reductase, rhamnolipids, Fourier transform‐infrared spectroscopy, Ag  相似文献   

16.
This work explores the rapid synthesis of silver nanoparticles (AgNPs) from Musa paradisiaca (M. paradisiaca) bract extract. The bio‐reduction of Ag+ ion was recorded using ultraviolet–visible spectroscopy by a surface plasmon resonance extinction peak with an absorbance at 420 nm. The phytoconstituents responsible for the reduction of AgNPs was probed using Fourier transform infrared spectroscopy. The X‐ray diffraction pattern confirmed the formation of crystalline AgNPs that were analogous to selected area electron diffraction patterns. Morphological studies showed that the obtained AgNPs were monodispersed with an average size of 15 nm. The biologically synthesised AgNPs showed higher obstruction against tested phytopathogens. The synthesised AgNPs exhibited higher inhibitory zone against fungal pathogen Alternaria alternata and bacterial pathogen Pseudomonas syringae. Free radical scavenging potential of AgNPs was investigated using 1,1‐diphenyl‐2‐picryl hydroxyl and 2,2‐azinobis (3‐ethylbenzothiazoline)‐6‐sulphonic acid assays which revealed that the synthesised AgNPs act as a potent radical scavenger. The catalytic efficiency of the synthesised AgNPs was investigated for azo dyes, methyl orange (MO), methylene blue (MB) and reduction of o‐nitrophenol to o‐aminophenol. The results portrayed that AgNPs act as an effective nanocatalyst to degrade MO to hydrazine derivatives, MB to leucomethylene blue, and o‐nitro phenol to o‐amino phenolInspec keywords: catalysis, dyes, electron diffraction, nanofabrication, silver, catalysts, surface plasmon resonance, reduction (chemical), free radicals, nanoparticles, transmission electron microscopy, nanobiotechnology, X‐ray diffraction, microorganisms, organic compounds, Fourier transform spectra, nanomedicine, visible spectra, antibacterial activity, infrared spectra, ultraviolet spectraOther keywords: silver nanoparticles, musa paradisiaca, synergistic combating effect, free radical scavenging activity, catalytic efficiency, M. paradisiaca, bio‐reduction, ultraviolet–visible spectroscopy, surface plasmon resonance extinction peak, Fourier transform infrared spectroscopy, X‐ray diffraction pattern, selected area electron diffraction patterns, radical scavenging potential, potent radical scavenger, size 420.0 nm, size 15.0 nm, Ag+   相似文献   

17.
Nanobiotechnology is one of the emerging fields and its interventions in agriculture is been attracting the scientific community. Herein, the authors first to report on control of groundnut bruchid (Caryedon serratus O.) using nanoscale zinc oxide (ZnONPs) particles and nanoscale chitosan (CNPs) particles‐based Azadirachtin formulations. ZnONPs and CNPs were prepared using sol–gel and ion tropic gelation techniques, respectively. Neem seed kernel extract (NSKE) 5% and Neem oil (3000 and 1000 ppm) were encapsulated using the prepared nanoscale materials and characterised using the techniques such as dynamic light scattering, high‐resolution transmission electron microscopy. Spherical‐shaped nanoparticles were formed after encapsulation with the required bio‐materials (ZnONPs 33.1 nm; CNPs 78.8 nm; neem oil encapsulated (3000 ppm) ZnONPs 182.9 nm; NSKE encapsulated ZnONPs 84.9 nm) and observed that the particles are stable (52.3 mV for ZnONPs, −36.2 mV for CNPs, −43.0 mV for neem oil encapsulated (3000 ppm) ZnONPs and −39.4 mV for NSKE encapsulated ZnONPs). NSKE encapsulated CNPs were able to contain groundnut bruchid up to 180 days with 54.61% weight loss compared to other formulations tested. Thus biomaterial encapsulated nanoscale material formulations are proved to be effective in controlling stored grain pests to reduce huge economic losses.Inspec keywords: nanobiotechnology, agricultural products, toxicology, agrochemicals, food safety, sol‐gel processing, food preservation, agriculture, II‐VI semiconductors, storage, nanoparticles, transmission electron microscopy, encapsulation, nanofabrication, zinc compounds, wide band gap semiconductors, food processing industry, light scattering, materials preparation, pest control, nanocompositesOther keywords: voltage ‐36.2 mV, voltage ‐43.0 mV, voltage ‐39.4 mV, voltage 52.3 mV, size 84.9 nm, size 182.9 nm, size 78.8 nm, size 33.1 nm, NSKE, neem seed kernel extract, caryedon serratus O., CNPs, bio‐materials, nanoscale materials, nanoparticle, encapsulation, spherical‐shaped nanoparticles, high‐resolution transmission electron microscopy, neem oil, ion tropic gelation techniques, sol–gel, nanoscale chitosan particles, nanoscale zinc oxide particles, scientific community, groundnut bruchid, Azadirachtin formulations, biomaterial encapsulated nanoscale material formulations  相似文献   

18.
Silver nanoparticles (AgNPs) were synthesised from aqueous Ag nitrate through a simple, competent and eco‐friendly method using the leaf extract of Ipomoea eriocarpa as reducing as well as capping agent. Ultraviolet–visible absorption spectroscopy was used to confirm the formation of AgNPs which displayed the substantiation of surface plasmon bands at 425 nm. The NPs were also characterised using Fourier transformer infrared spectroscopy, X‐ray diffraction method, transmission electron microscope and zeta potential. The characterisation study confirmed the formation of AgNPs, their spherical shape and average diameter of 12.85 ± 8.65 nm. Zeta potential value of −20.5 mV suggested that the AgNPs are stable in the suspension. The aqueous extract and the AgNPs were further screened for in vivo anti‐inflammatory activity using carrageenan‐induced paw edema in male Wistar rats. The study demonstrated that the AgNPs (1 ml kg−1) had a significant (p  < 0.05) anti‐edemic effect and inhibition was observed from the first hour (21.31 ± 1.34) until the sixth hour (52.67 ± 1.41), when the inhibitory effect was greatest and superior to the aqueous extract and the standard, diclofenac.Inspec keywords: silver, nanoparticles, nanofabrication, ultraviolet spectra, visible spectra, absorption coefficients, surface plasmons, Fourier transform infrared spectra, X‐ray diffraction, transmission electron microscopy, suspensions, drugs, nanomedicineOther keywords: biosynthesis, aqueous leaf extract, ipomoea eriocarpa, antiinflammatory effect, carrageenan‐induced paw edema, male Wistar rats, silver nanoparticles, aqueous nitrate, capping agent, ultraviolet‐visible absorption spectroscopy, surface plasmon band, Fourier transformer infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, zeta potential, spherical shape, suspension, aqueous extract, in vivo antiinflammatory activity, antiedemic effect, inhibitory effect, diclofenac, wavelength 425 nm, size 12.85 nm to 8.65 nm, Ag  相似文献   

19.
We report new, eco‐friendly and green method for the synthesis of sulphur nanoparticles using sodium polysulphide in the presence of leaf extracts of four different medicinal plants, which can be used for treatment of bacterial infections. Sodium polysulphide and acidic solution (H2 SO4) in the presence of plant leaf extract developed the yellowish precipitate in solution, which indicated the formation of sulphur nanoparticles. UV–Vis spectrophotometer analysis of reaction mixture showed absorbance spectra in the range of 292–296 nm, which is supposed to be specific for sulphur nanoparticles. Zeta potential study of sulphur nanoparticles synthesized from Catharanthus roseus showed more stability when compared with other medicinal plants. Sulphur nanoparticles synthesized from C. roseus were further characterized by XRD analysis, FTIR analysis, and TEM analysis. The biogenic sulphur nanoparticles were spherical, polydispersed with particle size of 70–80 nm. Evaluation of antibacterial study revealed that synthesized sulphur nanoparticles exhibited better bactericidal efficacy against common pathogenic bacteria Escherichia coli and Staphylococcus aureus with minimum inhibitory concentration of 200 μg/ml with significant activity used in combination with antibiotic. It can be concluded that the synthesized sulphur nanoparticles can be used as antibacterial agents after thorough experimental trials in animals.Inspec keywords: antibacterial activity, biomedical materials, nanoparticles, nanofabrication, sodium compounds, sulphur, ultraviolet spectra, visible spectra, Fourier transform infrared spectra, electrokinetic effects, transmission electron microscopy, X‐ray diffraction, microorganismsOther keywords: bio‐inspired synthesis, sulphur nanoparticles, leaf extract, medicinal plants, antibacterial activity, eco‐friendly, green synthesis, sodium polysulphide, bacterial infections, biological synthesis, UV–visible analysis, nanoparticle tracking analysis, zeta potential analysis, Fourier transform infrared spectroscopy, X‐ray diffraction analysis, transmission electron microscopy analysis, acidic solution, UV–Vis spectrophotometer analysis, pathogenic bacteria, Escherichia coli, Staphylococcus aureus, size 70 nm to 80 nm, wavelength 292 nm to 296 nm, S  相似文献   

20.
Candida albicans (C. albicans) infection shows a growing burden on human health, and it has become challenging to search for treatment. Therefore, this work focused on the antifungal activity, and cytotoxic effect of biosynthesised nanostructures on human ovarian tetracarcinoma cells PA1 and their corresponding mechanism of cell death. Herein, the authors fabricated advanced biosynthesis of uncoated α‐Fe2 O3 and coated α‐Fe2 O3 nanostructures by using the carbohydrate of Spirulina platensis. The physicochemical features of nanostructures were characterised by UV–visible, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The antifungal activity of these nanostructures against C. albicans was studied by the broth dilution method, and examined by 2′, 7′‐dichlorofluorescein diacetate staining. However, their cytotoxic effects against PA1 cell lines were evaluated by MTT and comet assays. Results indicated characteristic rod‐shaped nanostructures, and increasing the average size of α‐Fe2 O3 @ZnO nanocomposite (105.2 nm × 29.1 nm) to five times as compared to α‐Fe2 O3 nanoparticles (20.73nm × 5.25 nm). The surface coating of α‐Fe2 O3 by ZnO has increased its antifungal efficiency against C. albicans. Moreover, the MTT results revealed that α‐Fe2 O3 @ZnO nanocomposite reduces PA1 cell proliferation due to DNA fragmentation (IC50 18.5 μg/ml). Continual advances of green nanotechnology and promising findings of this study are in favour of using the construction of rod‐shaped nanostructures for therapeutic applications.Inspec keywords: nanocomposites, toxicology, nanofabrication, cellular biophysics, X‐ray diffraction, iron compounds, biochemistry, cancer, antibacterial activity, transmission electron microscopy, biomedical materials, wide band gap semiconductors, DNA, II‐VI semiconductors, visible spectra, molecular biophysics, ultraviolet spectra, nanomedicine, zinc compounds, nanoparticles, microorganisms, Fourier transform infrared spectraOther keywords: Spirulina platensis, antifungal activity, α‐Fe2 O3 nanoparticles, antiovarian cancer properties, Candida albicans infection, cytotoxic effect, biosynthesised nanostructures, human ovarian tetracarcinoma cell PA1, cell death, uncoated α‐Fe2 O3 , coated α‐Fe2 O3 nanostructures, α‐Fe2 O3 ‐ZnO nanocomposite, carbohydrate, physicochemical features, UV‐visible spectroscopy, high resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, broth dilution method, 2′, 7′‐dichlorofluorescein diacetate staining, PA1 cell lines, comet assays, MTT assays, rod‐shaped nanostructures, surface coating, PA1 cell proliferation, DNA fragmentation, green nanotechnology, Fe2 O3 ‐ZnO, Fe2 O3   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号