首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以La(NO3)3·6H2O、Sr(NO3)2、Co(NO3)2·6H2O为原料,用EDTA络合溶胶-凝胶法制备La0.8Sr0.2CoO3凝胶,在700℃、800℃、900℃煅烧,制得La0.8Sr0.2CoO3粉体.用DTA、FT-IR、XRD、SEM等手段对制备过程、热分解机理及粉体的性能进行了研究.在700℃焙烧2 h得到La0.8Sr0.2CoO3纯相纳米粉,颗粒呈球形.选取700℃焙烧2 h的La0.8Sr0.2CoO3粉体制成管状传感器,进行NO2敏感性能测试,探讨了相同NO2浓度下,传感器敏感信号与温度的关系.结果表明:纳米La0.8Sr0.2CoO3粉体在450℃时对NO2的敏感信号最大,输出的电动势信号与NO2浓度之间呈线性关系.  相似文献   

2.
制备了高电导的La0.5Sr0.5CoO3块样,其800℃电导率为238S/cm。通过磁控溅射将La0.5Sr0.5CoO3涂覆在Fe-13Cr合金表面,再进行800℃等温氧化100h。SEM分析发现,Fe-13Cr基体中的Cr和Mn向涂层表面外扩散,同时涂层中的La,Sr及Co原子向合金基体内部扩散。电阻测试发现,氧化过程中,形成的反应层并没有显著降低试样的面电阻,800℃等温氧化100h后的面电阻为6mΩ·cm^2。  相似文献   

3.
采用感应熔炼方法制备了A2B7型La0.75Mg0.25Ni3.5-xAlx(x=0,0.02,0.06 0.1,0.3)四元贮氢合金,系统研究了Al元素部分替代Ni对A2B7型La0.75Mg0.25Ni3.5合金相结构及电化学性能的影响。X射线衍射(XRD)分析表明:La0.75Mg0.25Ni3.5由单一La2Ni7相组成:Al元素加入后,开始出现CaCu5型LaNi5相,当x=0.3时,LaNis相成为合金的主相。Rietveld分析表明:随着Al含量的增加,LaNi5相逐渐增多,Al的加入利于CaCu5型LaNi5相的形成。电化学测试表明:Al替代Ni对A2B7型合金La0.75Mg0.25Ni3.5电极活化性能影响不大:而最大放电容量随Al在La0.75Mg0.25Ni3.5-xAlx,合金中替代量的增加而减小。当放电电流密度为1600mA/g时,合金的倍率放电性能由68.8%(x=0)增加到81.16%(x=0.1)然后减小到65.67%(x=0.3)。此外,La0.75Mg0.25Ni3.5-xAlx合金电极循环稳定性先增加而后下降。x=0.06时合金电极容量保持率最大(S100=85.21.%)。  相似文献   

4.
《金属功能材料》2012,(3):63-64
宁波材料工程研究所MinghaoZhang等人以共沉积法制作的(Ni0.25Mn0.75)3O4先驱物为原料,通过微波热处理合成了球形尖晶石LiNi0.5Mn1.5O4。制成锂离子电池的阴极。  相似文献   

5.
采用固相法和EDTA-柠檬酸联合络合法制备了中温固体氧化物燃料电池La0.7Sr0.3Cu1-xFexO3-δ阴极材料,利用直流四探针和交流阻抗技术测试了材料的导电性能和电化学性能,结果表明加入Fe后材料的电导率有所降低,但在高温下仍然具有较高的电导率(〉100 S·cm^-1)。EDTA-柠檬酸联合络合法制备的试样比固相法合成的具有更高的电导率(在800℃时,EDTA-柠檬酸联合络合法制备的试样电导率为255 S·cm^-1,而固相法的为156S·cm^-1。)700℃时的复阻抗测试结果表明Fe的加入降低了La0.7Sr0.3CuO3-δ的极化电阻,其中La0.7Sr0.3Cu0.4Fe0.6O3-δ的极化电阻最小,为2.51Ω·cm^2。  相似文献   

6.
纳米晶La0.8Sr0.2FeO3气敏元器件的制备与乙醇敏感特性   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了纳米晶La0.8Sr0.2FeO3。X射线衍射表明:该样品为正交晶系钙钛矿结构,其平均粒径约为31nm。将La0.8Sr0.2FeO3纳米晶粉体与聚乙烯醇PVA混合固化,然后在400℃下分别退火20min和120min。固化退火120min的元器件电阻随乙醇浓度的增加而增加,元器件具有P型半导体特性。而固化退火20min的元器件电阻随乙醇浓度的增加而减小,该元器件具有n型半导体特点。固化退火120min的La0.8Sr0.2FeO3元器件的气敏灵敏度S=Rg/Ra在80℃下高达100,低工作温度、高灵敏度特性对应用有益。发现La0.8Sr0.2FeO3元器件的电阻R和乙醇浓度C只在较低温区符合指数关系(R≈KC^α)。  相似文献   

7.
La0.5Sr0.5MnO3纳米晶体的制备与电磁性能研究   总被引:5,自引:0,他引:5  
以柠檬酸为络合剂,采用溶胶-凝胶(sol—gel)自燃烧方法制备了La0.5Sr0.5MnO3纳米晶体。使用FT-IR,DSC—TG,XRD,波导方法对反应、反应产物以及反应产物的电磁性能进行了研究。结果表明,在凝胶中,金属离子与柠檬酸以络合物的形式存在。凝胶在273℃基本完成自燃烧反应。生成的La0.5Sr0.5MnO3纳米晶体为钙钛矿结构,随着反应温度的提高,产物的粒径逐渐增大。电磁性能结果表明,La0.5Sr0.5MnO3在8GHz~12GHz的微波范围内具有明显的介电损耗。随着厚度的增加,混合媒质的反射率逐渐增加,反射率吸收峰随着厚度的增加向低频移动。  相似文献   

8.
以Gd2O3、Sm2O3、Yb2O3和ZrOCl2·8H2O为原料,采用化学共沉淀法合成了一种新型的多元稀土锆酸盐(Gd0.4Sm0.5Yb0.1)2Zr2O7陶瓷粉体,在1600℃无压烧结10h合成了致密的陶瓷块体。用X射线衍射仪(XRD)/及场发射扫描电镜(SEM)对粉体和块体的微观结构进行了表征,采用激光闪射法测试了块体的导热性能。结果表明,制备的多元稀土锆酸盐陶瓷粉体具有焦绿石结构,晶粒细小,陶瓷的热导率明显低于一元稀土锆酸盐Sm2Zr2O7的热导率。该研究结果显示(Gd0.4Sm0.5Yb0.1)2Zr2O7,多元稀土锆酸盐陶瓷有可能应用于热障涂层陶瓷层材料。  相似文献   

9.
采用离子束溅射法在氧化钇稳定的氧化锆(YSZ)单晶衬底上生长了RE0.5Sr0.5CoO3-δ(RE=La,Pr,Nd)薄膜。采用X射线衍射(XRD)仪和扫描电镜(SEM)测试了RE0.5Sr0.5CoO3-δ(RESCO)薄膜的微结构和表面形貌。结果表明:RE0.5Sr0.5CoO3-δ系列薄膜沿〈110〉方向择优生长;La0.5Sr0.5CoO3-δ(LSCO)薄膜在550℃热处理后呈现Ostwald生长,具有分散的岛状结构,在热处理温度达到750℃时岛状结构发生靠拢,同时晶粒度增大;Pr0.5Sr0.5CoO3-δ(PSCO)薄膜在750℃热处理后具有长程有序结构,呈现枝晶生长。  相似文献   

10.
以碳酸盐和氧化物为原料,采用微波固相烧结法制备了La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(简称:LSCCF,x=0.05,0.10,0.15和0.20)粉料。用XRD和sEM对LSCCF粉料的晶体结构和颗粒形貌进行了研究。结果表明:微波固相反应在1200℃下烧结0.5h便可以形成密度为5.366g/cm^3,晶粒尺寸小于500nm钙钛矿结构的粉料。而常规固相反应法在1300℃下烧结7h只形成了密度为3.426g/cm^3,晶粒尺寸小于2000nm钙钛矿结构的粉料。电导率测量结果表明:随着烧结温度的升高和Sr^2+含量的增加,LSCCF样品的电导率变大,600℃~800℃范围内微波烧结制备的La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ样品的电导率最小值为672S/cm。且高于常规固相烧结制备的相同组成样品的电导率最小值425S/cm。LSCCF粉料与Ce0.8Sm0.2O2电解质的混合物在800℃下烧结10h后没有新相生成,表明LSCCF粉料与Ce0.8Sm0.2O2电解质具有良好的化学相容性。  相似文献   

11.
12.
利用悬浮熔炼技术,合成了Zr0.5La0.5Ni1.5Fe0.5储氢合金,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDX)分析了热处理前后合金的显微组织。结果表明,Zr0.5La0.5Ni1.5Fe0.5热处理前主要由Zr Ni2、La Ni和少量Zr7Ni10相组成,而热处理后主要由Zr Ni2相和La Ni相组成。在凝固过程中首先从熔液中析出熔点最高Zr7Ni10相,然后析出熔点较高的C15型Laves相Zr Ni2,最后析出熔点较低的La Ni相,由于凝固速度较快,导致成分分配不均匀。热处理后,Zr Ni2相中的La元素减少,La Ni相中La和Ni的含量略有增加,Zr Ni2相晶间的杂相Zr7Ni10消失,合金成分分布更加均匀。  相似文献   

13.
对挤压制备的Mg-0.5%Zn-0.5%Zr-RE合金进行T5、T6热处理后,进行拉伸力学性能测试。结果表明,T6处理的合金屈服强度稍低于T5,抗拉强度达到313 MPa, 高于T5处理的289.5 MPa。金相显微组织观察表明,合金经T5处理仍保留着挤压状态的组织特征;TEM结果表明,合金在T6时的强化主要与2种过渡相β″和β′脱溶并与位错的相互作用有关,520 ℃,2 h固溶+200 ℃时效时,Mg-0.5%Zn-0.5%Zr-2.2%Nd-4.0%Y合金的脱溶序列为:SSSS→β″→β′→β  相似文献   

14.
15.
用分析纯Ba(OH)2·8H2O和Sr(OH)2·8H2O配制电解液(浓度各为0.2 mol/L),采用微弧氧化技术在工业纯钛板(99.5%)表面原位生成BaxSr(1-x)TiO3铁电薄膜.对不同电流密度、电流频率和反应时间条件下获得的薄膜进行表征,研究了各因素对薄膜物相构成、表面形貌和表面粗糙度的影响.结果表明:所得薄膜均主要由四方相Ba0.5Sr0.5TiO3构成;电流密度为20 A/dm2、电流频率为100 Hz、反应时间为10 min时,所得薄膜最平整、致密、表面粗糙度值最小,且微弧氧化孔洞分布最均匀,测得该薄膜在1 kHz条件下的介电常数为411.3.  相似文献   

16.
Point contact Andreev reflection measurements of Co2MnSn1?xGax alloys showed that the spin polarization of L21 ordered quaternary Co2MnSn0.5Ga0.5 compound increased to 0.72 compared to 0.6 for Co2MnSn and Co2MnGa ternary alloys. The L21 Co2MnSn0.5Ga0.5 phase was found to be an intermetallic compound, in which the L21 structure was stable up to the melting temperature. The increase in spin polarization was attributed to the high degree of L21 order as well as an increase in the spin-up density of states near the Fermi level.  相似文献   

17.
在变形温度为300~450 oC、应变速率为0.01~1 s-1的条件下进行热压缩试验,对Mg-5Y-0.5Ce-0.5Zr镁合金的热变形行为进行了研究。结果表明,在热压缩变形过程中,该合金的流变应力随着变形温度和应变速率的变化而变化。在同一应变速率下,流变应力随着变形温度的增高而降低;在同一变形温度下,流变应力随着应变速率的减小而减小。该合金热压缩流变应力的本构方程可采用双曲正弦形式构建,热变形激活能Q为253 kJ/mol。  相似文献   

18.
为了研究具有α-Na Fe O2结构的复杂钴氧化物原子排列规律,采用固相反应合成了Li0.5Na0.5Co O2多晶粉末,并利用X射线衍射(XRD)、扫描电子显微分析(SEM)和透射电子显微分析(TEM)等检测手段对其形貌、晶体结构等进行了表征。结果表明:一般处理状态下,Li0.5Na0.5Co O2为片状,其晶体结构与层状Li Co O2相似,但在某些处理状态下通过TEM观察到沿[0001]带轴衍射花样中出现菱面体晶系中应该消光{10 1 0}的晶面族。这说明Li0.5Na0.5Co O2的晶体结构已经由菱面体结构转变成六方结构。  相似文献   

19.
由于Na,K在高温下容易挥发,因而采用普通陶瓷烧结工艺难以得到致密的碱金属铌酸盐系陶瓷,只能通过热压烧结制备高密度的铌酸钾钠(NaNbO3-KNbO3)系无铅压电陶瓷.本研究采用放电等离子烧结(SparkPlasma Sintering,SPS)技术,通过配料、研磨混料、焙烧、SPS烧结、退火工艺后,制备出白色略带黄色的Na0.5K0.5NbO3压电陶瓷试样.在烧结过程中,没有观察到明显的碱挥发,试样密度随烧结温度的增加而增大,860℃以上温度烧结时,试样的密度达到4.22g/cm3(为理论密度的92%).采用分步极化方法对试样进行极化,即先在高温下用低电压极化,再在低温下用高电压极化,极化后样品的压电常数d33为37pC/N~49pC/N.  相似文献   

20.
Ti50-0.5xNi50-0.5xCux合金的微观组织   总被引:1,自引:0,他引:1  
王剑  金伟  曹名洲  杨锐 《金属学报》2006,42(11):1177-1181
通过对Ti50-0.5xNi50-0.5xCux(x=2,5,10,15)合金微观组织的观察和分析,得出了Cu含量对合金组织的影响规律.当x=2时,合金组织主要是NiTi(B21相,没有CuNiTi相形成;当x=5时,合金组织中开始出现少量的CuNiTi相;当x≥10时,合金组织中有呈网状分布的大尺寸的CuNiTi相.热处理会影响合金的微观组织.当x≥5时,经适当热处理后合金的NiTi相上有大量弥散分布的CuNiTi相析出.CuNiTi相析出促使合金的相变温度向低温方向移动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号