首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AMOP‐H‐OH (sazetidine‐A; 6‐[5‐(azetidin‐2‐ylmethoxy)pyridin‐3‐yl]hex‐5‐yn‐1‐ol) and some sulfur‐bearing analogues were tested for their activities in vitro against human α4β2‐, α4β4‐, α3β4*‐ and α1*‐nicotinic acetylcholine receptors (nAChRs). AMOP‐H‐OH was also assessed in an antidepressant efficacy model. AMOP‐H‐OH and some of its analogues have high potency and selectivity for α4β2‐nAChRs over other nAChR subtypes. Effects are manifested as partial agonism, perhaps reflecting selectivity for high sensitivity (α4)3(β2)2‐nAChRs. More prolonged exposure to AMOP‐H‐OH and its analogues produces inhibition of subsequent responses to acute challenges with full nicotinic agonists, again selectively for α4β2‐nAChRs over other nAChR subtypes. The inhibition is mediated either via antagonism or desensitization of nAChR function, but the degree of inhibition of α4β2‐nAChRs is limited by the partial agonist activity of the drugs. Certain aspects of the in vitro pharmacology suggest that AMOP‐H‐OH and some of its analogues have a set of binding sites on α4β2‐nAChRs that are distinct from those for full agonists. The in vitro pharmacological profile suggests that peripheral side effects of AMOP‐H‐OH or its analogues would be minimal and that their behavioral effects would be dominated by central nAChR actions. AMOP‐H‐OH also has profound and high potency antidepressant‐like effects in the forced swim test. The net action of prolonged exposure to AMOP‐H‐OH or its analogues, as for nicotine, seems to be a selective decrease in α4β2‐nAChR function. Inactivation of nAChRs may be a common neurochemical endpoint for nicotine dependence, its treatment, and some of its manifestations, including relief from depression.  相似文献   

2.
An increasing number of high-resolution structures of membrane-embedded ion channels (or soluble homologues) have emerged during the last couple of years. The most pressing need now is to understand the complex mechanism underlying ion-channel function. Time-resolved photoaffinity labeling is a suitable tool for investigating the molecular function of membrane proteins, especially when high-resolution structures of related proteins are available. However until now this methodology has only been used on the Torpedo nicotinic acetylcholine receptor (nAChR). nAChRs are allosteric cation-selective receptor channels that are activated by the neurotransmitter acetylcholine (ACh) and implicated in numerous physiological and pathological processes. Time-resolved photoaffinity labeling has already enabled local motions of nAChR subdomains (i.e. agonist binding sites, ion channel, subunit interface) to be understood at the molecular level, and has helped to explain how small molecules can exert their physiological effect, an important step toward the development of drug design. Recent analytical and technical improvements should allow the application of this powerful methodology to other membrane proteins in the near future.  相似文献   

3.
α‐Conotoxin MII (α‐CTxMII) is a 16‐residue peptide with the sequence GCCSNPVCHLEHSNLC, containing Cys2–Cys8 and Cys3–Cys16 disulfide bonds. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel–ligand interactions on ligand‐binding affinity, homology models of the heteropentameric α3β2‐nAChR were constructed. The models were created in MODELLER with the aid of experimentally characterized structures of the Torpedo marmorata‐nAChR (Tm‐nAChR, PDB ID: 2BG9) and the Aplysia californica‐acetylcholine binding protein (Ac‐AChBP, PDB ID: 2BR8) as templates for the α3‐ and β2‐subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α‐CTxMII. The nAChR homology models described here bind ACh with binding energies commensurate with those of previously reported systems, and identify critical interactions that facilitate both ACh and α‐CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2‐nAChR for α‐CTxMII with ACh bound to the receptor, and this was confirmed through two‐electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α‐CTxMIIs on nAChRs.  相似文献   

4.
A novel series of 30 symmetric bispyridinium and related N‐heteroaromatic bisquaternary salts with a propane‐1,3‐diyl linker was synthesized and characterized for their binding affinity at the MB327 binding site of nicotinic acetylcholine receptor (nAChR) from Torpedo californica. Compounds targeting this binding site are of particular interest for research into new antidotes against organophosphate poisoning, as therapeutically active 4‐tert‐butyl‐substituted bispyridinium salt MB327 was previously identified as a nAChR re‐sensitizer. Efficient access to the target compounds was provided by newly developed methods enabling N‐alkylation of sterically hindered or electronically deactivated heterocycles exhibiting a wide variety of functional groups. Determination of binding affinities toward the MB327 binding site at the nAChR, using a recently developed mass spectrometry (MS)‐based Binding Assay, revealed that several compounds reached affinities similar to that of MB327 (pKi=4.73±0.03). Notably, the newly prepared lipophilic 4‐tert‐butyl‐3‐phenyl‐substituted bispyridinium salt PTM0022 ( 3 h ) was found to have significantly higher binding affinity, with a pKi value of 5.16±0.07, thus representing considerable progress toward the development of more potent nAChR re‐sensitizers.  相似文献   

5.
A mouse muscle type nAChR model ((α1)2βδγ) was built based on the cryoelectron microscopic structure of intact Torpedo marmorata nAChR and the high resolution crystal structure of nAChR-α1 subunit. The conformation of the pentameric nAChR model was investigated by molecular dynamic simulation. The function of water molecule in the hydrophilic interior was clarified. The reason for Tyr127 showing two alternative conformations was discussed in detail.  相似文献   

6.
A mouse muscle type nAChR model ((α1)2βδδg) was built based on the cryoelectron microscopic structure of intact Torpedo marmorata nAChR and the high resolution crystal structure of nAChR-α1 subunit. The conformation of the pentameric nAChR model was investigated by molecular dynamic simulation. The function of water molecule in the hydrophilic interior was clarified. The reason for Tyr127 showing two alternative conformations was discussed in detail.  相似文献   

7.
Current treatments of Alzheimer's disease include the allosteric potentiation of nicotinic acetylcholine receptor (nAChR) response. The location of the binding site for allosteric potentiating ligands (APLs) within the receptor is not yet fully understood. Based on homology models for the ligand binding domain of human α7, human α4β2, and chicken α7 receptors, as well as blind docking experiments with galanthamine, physostigmine, codeine, and 5HT, we identified T197 as an essential element of the APL binding site at the outer surface of the ligand binding domain (LBD) of nAChR. We also found the previously known galanthamine binding site in the region of K123 at the inside of the receptor funnel, which, however, was shown to not be part of the APL site. Our results are verified by site‐directed mutagenesis and electrophysiological experiments, and suggest that APL and ACh bind to different sites on nicotinic receptors and that allosteric potentiation may arise from a direct interplay between both these sites.  相似文献   

8.
9.
An efficient stereocontrolled synthesis afforded alkoxymethylenephosphonate (MP) analogues of lysophosphatidic acid (LPA) and phosphatidic acid (PA). The pharmacological properties of MP-LPA and MP-PA analogues were characterized for LPA receptor subtype-specific agonist and antagonist activity using Ca(2+)-mobilization assays in RH7777 cells expressing the individual LPA(1)-LPA(3) receptors and CHO cells expressing LPA(4). In addition, activation of a PPARgamma reporter gene construct expressed in CV-1 cells was assessed. These metabolically stabilized LPA analogues exhibited an unexpected pattern of partial agonist/antagonist activity for the LPA G-protein-coupled receptor family and the intracellular LPA receptor PPARgamma. Analogues were compared with 18:1 LPA for activation of downstream signaling in HT-29 colon cancer cells, which exclusively express LPA(2), and both SKOV3 and OVCAR3 ovarian cancer cells, which express LPA(1), LPA(2), and LPA(3). Unexpectedly, reverse phase protein arrays showed that four MP-LPA and MP-PA analogues selectively activated downstream signaling in HT-29 cells with greater potency than LPA. In particular, the oleoyl MP-LPA analogue strongly promoted phosphorylation and activation of AKT, MEK, and pS6 in HT-29 cells in a concentration-dependent manner. In contrast, the four MP-LPA and MP-PA analogues were equipotent with LPA for pathway activation in the SKOV3 and OVCAR3 cells. Taken together, these results suggest that the MP analogues may selectively activate signaling via the LPA(2) receptor subtype, while simultaneously suppressing signaling through the LPA(1) and LPA(3) subtypes.  相似文献   

10.
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an important part of the cholinergic nerve system in the brain. Moreover, it is associated with a cholinergic anti-inflammatory pathway in the termination of the parasympathetic nervous system. Antagonists of α7 nAChR are a wide group represented by conotoxin and bungarotoxin. Even Alzheimer's disease drug memantine acting as an antagonist in its side pathway belongs in this group. Agonists of α7 nAChR are suitable for treatment of multiple cognitive dysfunctions such as Alzheimer's disease or schizophrenia. Inflammation or even sepsis can be ameliorated by the agonistic acting compounds. Preparations RG3487, SEN34625/WYE-103914, SEN12333, ABT-107, Clozapine, GTS-21, CNI-1493, and AR-R17779 are representative examples of the novel compounds with affinity toward the α7 nAChR. Pharmacological, toxicological, and medicinal significance of α7 nAChR are discussed throughout this paper.  相似文献   

11.
The acetylcholine-binding protein (AChBP) is homologous to the ligand-binding domain of the nicotinic acetylcholine receptor (nAChR) and other members of the Cys-loop family of neurotransmitter receptors. The high-resolution X-ray structures of AChBP mean it has been used as a model from which to understand agonist and antagonist binding to nAChRs. We present here a molecular dynamics (MD) study of AChBP with nicotine and carbamylcholine bound. Our results suggest that the ligand imposes rigidity on the binding pocket residues. The simulations also suggest that the protein undergoes breathing motions with respect to the five-fold axis, a motion that has been postulated to be related to gating in the nAChR. We analyzed the behaviour of the water molecules in and around the binding site and found that they occupied five distinct sites within the binding pocket. Water occupied these sites in the absence of ligand, but the presence of ligand increased the probability that a water molecule would be found in these sites. Finally, we demonstrate how the positions of these waters might be used in the design of new ligands by comparing the positions of these sites with other recent structures.  相似文献   

12.
Isoform-selective agonists and antagonists of the lysophosphatidic acid (LPA) G-protein-coupled receptors (GPCRs) have important potential applications in cell biology and therapy. LPA GPCRs regulate cancer cell proliferation, invasion, angiogenesis, and biochemical resistance to chemotherapy- and radiotherapy-induced apoptosis. LPA and its analogues are also feedback inhibitors of the enzyme lysophospholipase D (lysoPLD, also known as autotaxin), a central regulator of invasion and metastasis. For cancer therapy, the ideal therapeutic profile would be a metabolically stabilized pan-LPA receptor antagonist that also inhibits lysoPLD. Herein we describe the synthesis of a series of novel alpha-substituted methylene phosphonate analogues of LPA. Each of these analogues contains a hydrolysis-resistant phosphonate mimic of the labile monophosphate of natural LPA. The pharmacological properties of these phosphono-LPA analogues were characterized in terms of LPA receptor subtype-specific agonist and antagonist activity using Ca(2+) mobilization assays in RH7777 and CHO cells expressing the individual LPA GPCRs. In particular, the methylene phosphonate LPA analogue is a selective LPA(2) agonist, whereas the corresponding alpha-hydroxymethylene phosphonate is a selective LPA(3) agonist. Most importantly, the alpha-bromomethylene and alpha-chloromethylene phosphonates show pan-LPA receptor subtype antagonist activity. The alpha-bromomethylene phosphonates are the first reported antagonists for the LPA(4) GPCR. Each of the alpha-substituted methylene phosphonates inhibits lysoPLD, with the unsubstituted methylene phosphonate showing the most potent inhibition. Finally, unlike many LPA analogues, none of these compounds activate the intracellular LPA receptor PPARgamma.  相似文献   

13.
Resveratrol, a natural stilbene found in grapes and wines exhibits a wide range of pharmacological properties. Resveratrol is also known as a good chemopreventive agent for inhibiting carcinogenesis processes that target kinases, cyclooxygenases, ribonucleotide reductase and DNA polymerases. A total of 19 analogues with an amide moiety were synthesized and the cytotoxic effects of the analogues on a series of human cancer cell lines are reported. Three compounds 6d, 6i and 6n showed potent cytotoxicity against prostate cancer DU-145 (IC50 = 16.68 μM), colon cancer HT-29 (IC50 = 7.51 μM) and breast cancer MCF-7 (IC50 = 21.24 μM), respectively, which are comparable with vinblastine. The resveratrol analogues were synthesized using the Heck method.  相似文献   

14.
15.
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.  相似文献   

16.
Peptide pore blockers and their fluorescent derivatives are useful molecular probes to study the structure and functions of the voltage-gated potassium Kv1.3 channel, which is considered as a pharmacological target in the treatment of autoimmune and neurological disorders. We present Kv1.3 fluorescent ligand, GFP–MgTx, constructed on the basis of green fluorescent protein (GFP) and margatoxin (MgTx), the peptide, which is widely used in physiological studies of Kv1.3. Expression of the fluorescent ligand in E. coli cells resulted in correctly folded and functionally active GFP–MgTx with a yield of 30 mg per 1 L of culture. Complex of GFP–MgTx with the Kv1.3 binding site is reported to have the dissociation constant of 11 ± 2 nM. GFP–MgTx as a component of an analytical system based on the hybrid KcsA–Kv1.3 channel is shown to be applicable to recognize Kv1.3 pore blockers of peptide origin and to evaluate their affinities to Kv1.3. GFP–MgTx can be used in screening and pre-selection of Kv1.3 channel blockers as potential drug candidates.  相似文献   

17.
We explored the structural changes that occur at the acetylcholine binding site of the Torpedo marmorata nicotinic receptor during activation by the tritiated photoactivatable agonist (diazocyclohexadienoylpropyl)trimethylammonium ([(3)H]DCTA). We quantified the incorporation of radioactivity into the receptor subunits as a function of the mixing time of [(3)H]DCTA with the receptor by using a rapid-mixing device adapted with a photochemical quenching system. A saturable increase of the specific photolabeling on the alpha and gamma subunits was observed with a half-time of about 2 minutes. We further analyzed this photoincorporation either after rapid mixing for 500 ms or after equilibration for 50 minutes. Under these conditions, [(3)H]DCTA explored transient state(s) and the stable desensitized state, respectively. Comparative analyses showed that at a probe concentration of 10 microM the relative variation of photoincorporation was more pronounced for the gamma subunit (three- to fourfold) than for the alpha subunit (about twofold). By contrast, the relative distribution of radioactivity among alpha-subunit labeled residues (alphaTyr190, alphaCys192, alphaCysC193, and alphaTyr198) did not change. Altogether, these results reveal that during the course of agonist-induced receptor desensitization, the site-lining peptide loops, which belong to adjacent alpha and gamma subunits, move closer to each other.  相似文献   

18.
The tyrosine kinase activity of the epidermal growth factor receptor (EGFR) is widely involved in signaling pathways and often deregulated in cancer. Its role in the development of prostate cancer is well established, and therapeutic strategies such as blockade of the intracellular tyrosine kinase domain with small-molecule tyrosine kinase inhibitors have been proposed. Herein we describe the synthesis and in vitro pharmacological properties of C6- and C7-substituted 4-anilinoquinazolines, analogues of Iressa and powerful proapoptotic inducers in hormone-independent prostate cancer PC3 cell lines.  相似文献   

19.
A series of fluorescent probes from the 6-chloro-2-phenylimidazo[1,2-a]pyridine-3-yl acetamides ligands featuring the 7-nitro-2-oxa-1,3-diazol-4-yl (NBD) moiety has been synthesized and biologically evaluated for their fluorescence properties and for their binding affinity to the 18-kDa translocator protein (TSPO). Spectroscopic studies including UV/Vis absorption and fluorescence measurements showed that the synthesized fluorescent probes exhibit favorable spectroscopic properties, especially in nonpolar environments. In vitro fluorescence staining in brain sections from lipopolysaccharide (LPS)-injected mice revealed partial colocalization of the probes with the TSPO. The TSPO binding affinity of the probes was measured on crude mitochondrial fractions separated from rat brain homogenates in a [11C]PK11195 radioligand binding assay. All the new fluorescent probes demonstrated moderate to high binding affinity to the TSPO, with affinity (Ki) values ranging from 0.58 nM to 3.28 μM. Taking these data together, we propose that the new fluorescent probes could be used to visualize the TSPO.  相似文献   

20.
The ρ‐containing γ‐aminobutyric acid type A receptors (GABAARs) play an important role in controlling visual signaling. Therefore, ligands that selectively target these GABAARs are of interest. In this study, we demonstrate that the partial GABAAR agonist imidazole‐4‐acetic acid (IAA) is able to penetrate the blood–brain barrier in vivo; we prepared a series of α‐ and N‐alkylated, as well as bicyclic analogues of IAA to explore the structure–activity relationship of this scaffold focusing on the acetic acid side chain of IAA. The compounds were prepared via IAA from l ‐histidine by an efficient minimal‐step synthesis, and their pharmacological properties were characterized at native rat GABAARs in a [3H]muscimol binding assay and at recombinant human α1β2γ2S and ρ1 GABAARs using the FLIPR? membrane potential assay. The (+)‐α‐methyl‐ and α‐cyclopropyl‐substituted IAA analogues ((+)‐ 6 a and 6 c , respectively) were identified as fairly potent antagonists of the ρ1 GABAAR that also displayed significant selectivity for this receptor over the α1β2γ2S GABAAR. Both 6 a and 6 c were shown to inhibit GABA‐induced relaxation of retinal arterioles from porcine eyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号