首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ba6−3 x Nd8+2 x Ti18O54 ceramic powders were synthesized by the modified Pechini method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. A purplish red, molecular-level, homogeneously mixed gel was prepared, and transferred into a porous resin intermediate through charring. Single-phase and well-crystallized Ba6−3 x Nd8+2 x Ti18O54 powders were obtained from pulverized resin at a temperature of 900°C for 3 h, without formation of any intermediate phases. Meanwhile, the molar ratio of EDTA to total metal cation concentration had a significant influence on the crystallization behavior of Ba6−3 x Nd8+2 x Ti18O54. The Ba6−3 x Nd8+2 x Ti18O54 ( x = 2/3) ceramics prepared via EDTA precursor have excellent microwave dielectric characteristics: ɛ= 87, Qf = 8710 GHz.  相似文献   

2.
Modification of the microwave dielectric properties in Ba6−3 x Nd8+2 x Ti18O54 ( x = 0.5) solid solutions by Bi/Sm cosubstitution for Nd was investigated. A large increase in the dielectric constant and near-zero temperature coefficient combined with high Qf values were obtained in modified Ba6−3 x Nd8+2 x Ti18O54 solid solutions where an enlarged solid solution limit of Bi in Ba6−3 x Nd8+2 x Ti18O54 was observed. Excellent microwave dielectric characteristics (ɛ= 105, Qf = 4110 GHz, and very low τf) were achieved in the composition Ba6−3 x (Nd0.7Bi0.18Sm0.12)8+2 x Ti18O54.  相似文献   

3.
Tin (Sn) substitution into the B-site and Nd/Sn cosubstitution into the A- and B-sites were investigated in a Ba 6−3 x Sm8+2 x Ti18O54solid solution ( x = 2/3). A small amount of tin substitution for titanium improved the temperature coefficient of resonant frequency (τf) but led to a decrease of the relative dielectric constant (ɛ) and the quality factor ( Qf ). The Ba6−3 x Sm8+2 x (Ti1− z Snz)18O54-based tungsten-bronze phase became unstable for compositions with a tin content of ≥10 mol%, where BaSm2O4and Sm2(Sn,Ti)2O7appeared, and finally, these phases became the major phases. On the other hand, Nd/Sn cosubstitution led to a good combination of high ɛ, high Qf , and near-zero τf. Excellent microwave dielectric properties were achieved in Ba6−3 x (Sm1− y Nd y )8+2 x (Ti1− z Sn z )18O54ceramics with y = 0.8 and z = 0.05 sintered at 1360°C for 3 h: ɛ= 82, Qf = 10 000 GHz, and calculated τf=+17 ppm/°C. The tolerance factor and electronegativity difference exhibited important effects on the microwave dielectric properties, especially the Qf value. A large tolerance factor and high electronegativity difference generally led to a higher Qf value.  相似文献   

4.
Tin (Sn) substitution for titanium (Ti) was investigated in Ba6−3 x Nd8+2 x Ti18O54 ( x =1/2, 2/3, and 3/4) ceramics. A small amount ( z <0.1) of Sn substitution resulted in Ba6−3 x Nd8+2 x (Ti1− z Sn z )18O54 solid solutions, and some secondary phases were observed with increasing Sn content. A small amount of Sn substitution improved the Q f value significantly, while, due to the formation of secondary phases, the Q f value degraded sharply for larger Sn content. The relative dielectric constant (ɛr) decreased with increasing Sn-content, while the temperature coefficient of resonant frequency (τf) generally decreased, although an obvious fluctuation was observed for x =3/4.  相似文献   

5.
Single-phase polycrystalline microwave dielectric ceramics Ba6Ti1− x Sn x Nb4O18, with x changing from 0 to 1, were synthesized by the solid-state reaction method. All the solid solutions fitted well with A6B5O18 cation-deficient hexagonal perovskite structure. The substitution of Sn for Ti effectively enhanced the quality factor and controlled τf. With increasing Sn content, the dielectric constant decreased from ∼47 to ∼32, and the Q × f value increased significantly from 11 530 to 28 496 GHz, with τf varying from 64 to 0 ppm/°C. A zero τf was realized when Sn was fully replaced by Ti with the composition Ba6SnNb4O18.  相似文献   

6.
K x Ba1− x Ga2− x Ge2+ x O8 (0.6≤ x ≤1) polycrystalline ceramics are potential materials for glass-free low-temperature cofired ceramics (LTCC) substrates. We have made a comprehensive study of the kinetics of the monoclinic-to-monoclinic P 21/ a ⇔ C 2/ m phase transition. The low-temperature-stable P 21/ a phase with a high Q × f value was synthesized using a subsolidus method and was well sintered at the LTCC temperature with a H3BO3 additive. A good combination of low sintering temperature (910°–920°C), high Q × f values (96 700–104 500 GHz), low permittivities (5.6–6.0), and a small temperature coefficient of resonant frequency (∼−20 ppm/°C) was obtained for ceramics with x =0.67 and 0.9 and with 0.1 wt% of H3BO3.  相似文献   

7.
Ba6−3 x Sm8+2 x Ti18O54 ( x =2/3) (BST) was prepared by the solid-state method and the effect of bismuth borate (BB)/LiF on the sinterability, microstructure, and thermal and microwave dielectric properties were studied. BST+3.5 wt% BB+0.5 wt% LiF composite sintered at 1050°C has Q × f =4500 GHz, ɛ=52, and τ f =+6 ppm/°C. Raman spectrum of the composite was compared with that of BST and the structural changes were investigated.  相似文献   

8.
BaTi4O9 and Ba2Ti9O20 precursors were prepared via a sol–gel method, using ethylenediaminetetraacetic acid as a chelating agent. The sol–gel precursors were heated at 700°–1200°C in air, and X-ray diffractometry (XRD) was used to determine the phase transformations as a function of temperature. Single-phase BaTi4O9 could not be obtained, even after heating the precursors at 1200°C for 2 h, whereas single-phase Ba2Ti9O20 (as determined via XRD) was obtained at 1200°C for 2 h. Details of the synthesis and characterization of the resultant products have been given.  相似文献   

9.
Preparation of dense and phase-pure Ba2Ti9O20 is generally difficult using solid-state reaction, since there are several thermodynamically stable compounds in the vicinity of the desired composition and a curvature of Ba2Ti9O20 equilibrium phase boundary in the BaO–TiO2 system at high temperatures. In this study, the effects of B2O3 on the densification, microstructural evolution, and phase stability of Ba2Ti9O20 were investigated. It was found that the densification of Ba2Ti9O20 sintered with B2O3 was promoted by the transient liquid phase formed at 840°C. At sintering temperatures higher than 1100°C, the solid-state sintering became dominant because of the evaporation of B2O3. With the addition of 5 wt% B2O3, the ceramic yielded a pure Ba2Ti9O20 phase at sintering temperatures as low as 900°C, without any solid solution additive such as SnO2 or ZrO2. The facilities of B2O3 addition to the stability of Ba2Ti9O20 are apparently due to the eutectic liquid phase which accelerates the migration of reactant species.  相似文献   

10.
In the course of searching environmental friendly lead-free relaxor ferroelectrics a complete phase diagram of barium zirconate titanate, Ba(Zr x Ti1− x )O3 system with compositions 0.00≤ x ≤1.00 has been developed based on their dielectric behavior. It has been shown that BaZr x Ti1− x O3 system depending on the composition, successively depicts the properties extending from simple dielectric (pure BaZrO3) to polar cluster dielectric, relaxor ferroelectric, second order like diffuse phase transition, ferroelectric with pinched phase transitions and then to a proper ferroelectric (pure BaTiO3). A comprehensive structure–property correlation of BaZr x Ti1− x O3 ceramics has been studied to understand the various ferroelectric phenomena in the whole phase diagram.  相似文献   

11.
The formation process of Ba2La8(SiO4)6O2 was clarified using thermogravimetry–differential thermal analysis (TG-DTA) and a high-temperature powder X-ray diffraction (HT-XRD) method. Phase changes identified from the HT-XRD data surprisingly corresponded to the weight loss and/or endothermic peaks observed in the TG-DTA curves. Raw material with the composition Ba2La8(SiO4)6O2 was completely reacted at 1400°C and produced only an apatite-type compound without a secondary phase. Moreover, the synthesis of Ba2+ x La8− x (SiO4)6O2−δ crystals with x = 0–2 was attempted using a solid-state reaction.  相似文献   

12.
Phase structures of two ceramics of Compositions BaNd2Ti5O14 and Ba3.75Nd9.5Ti18O54, both of which had earlier been reported to be single-phase materials, were investigated using electron microscopy and an electron probe microanalyzer. It was observed that the amount of secondary phases was much lower in ceramics prepared with the latter composition and that the composition of the matrix phase of both samples was near 4BaO·5 Nd2O3·18TiO2. These results indicate that only the composition Ba3.75Nd9.5Ti18O54 is a single-phase composition.  相似文献   

13.
Piezoelectric ceramics Na1− x Ba x Nb1− x Ti x O3 with low BaTiO3 concentrations x have been prepared by the solid-state reaction method, and their ferroelectric and piezoelectric properties have been studied. The ceramics are classic ferroelectrics when x ≤0.10, and the ferroelectric–paraelectric phase transition becomes diffusive when x ≥0.15. A low doping level of BaTiO3 changes the NaNbO3 ceramics from antiferroelectric to ferroelectric. With the increase in BaTiO3 doping level, the Curie temperature of ceramics decreases linearly and the remnant polarization and coercive field also decrease, while their dielectric constant increases. Na0.9Ba0.1Nb0.9Ti0.1O3 ceramics show the largest piezoelectric constant d 33 (147 pC/N) and good sinterability, suggesting that it is a good candidate for lead-free piezoelectric ceramics.  相似文献   

14.
The reoxidation process in highly Ce3+-doped BaTiO3 ceramics was studied using TEM. Samples of two different types of solid solutions, Ba1−XCe3+ X Ti1−X/4( V Ti) X/4 O3 and Ba1−XCe3+ X Ti4+1− X Ti3+ X O3, were prepared by sintering oxide mixtures in air and in a reducing atmosphere, respectively. The solid solutions were reoxidized by annealing in air at high temperatures (1000°—1100°C). As a result of internal oxidation of Ce3+ and Ti3+, fluorite CeO2 and monoclinic Ba6Ti17O40 phases were precipitated in the perovskite matrix. In Ba1−XCe3+ X Ti1−X/4( V Ti)X/4O3 solid solution precipitates nucleate heterogeneously at grain boundaries and at extended defects inside the grains, whereas in Ba1−XCe3+XTi4+1−XTi3+XO3 solid solution precipitates are nucleated mainly homogeneously inside reoxidized perovskite grains. The form of the precipitates and their orientational relationship with the matrix, as well as the mechanism of internal oxidation, are discussed.  相似文献   

15.
A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1− x )Ba3(ZnNb2)O9−( x )Ba3W2O9 system up to 2 mol% substitution ( x =0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1− x x )1/3(Nb1− x W x )2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x =0.006 comprised large ordered domains with a high lattice distortion ( c/a =1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors ( Q × f =1 18 000 at 8 GHz) reported for a niobate-based perovskite.  相似文献   

16.
Samples of composition Ba1− x La x Ti1− x /4O3, x = 0, 0.003, 0.03, and 0.10, were prepared by an alkoxide sol–gel route with final firing of ceramics at 1100°C, 2 h in air. All samples showed bulk insulating behavior with no evidence of semiconductivity caused by either direct donor doping or oxygen loss.  相似文献   

17.
Fresnoite grows at 700° and 800°C, and Ba6Ti7O40 grows at 1200°C with definite orientations, which are determined by X-ray diffraction pole figure analysis. Partially textured fresnoite is formed at higher temperatures. The SiO2 films react with the BaTiO3 crystals, forming the phases Ba2TiSi2O8 (fresnoite) and Ba6Ti17O40. At 700° and 800°C, both phases grow with definite orientations, which are determined by X-ray diffraction pole figure analysis. Partially textured polycrystalline phases are formed at higher temperatures.  相似文献   

18.
Phase relations in the system BaO-TiO2 from 67 to 100 mol% TiO2 were investigated at 1200° to 1450°C in O2. Data were obtained by microstructural, X-ray, and thermal analyses. The existence of the stable compounds Ba6Ti17O40, Ba4Ti13O30, BaTi4O9, and Ba2Ti9O20 was confirmed. The compound BaTi2O5 is unstable and either forms as a reaction intermediate below the solidus or crystallizes from the melt. The compounds Ba6Ti17O40 and Ba4Ti13O30 decompose in peritectic reactions, and BaTiO3 and Ba6Ti17O40 react to form a eutectic. Special conditions are required for the formation of Ba2Ti9O20, which decomposes in a peritectoid reaction at 1420°C. The new phase diagram is presented.  相似文献   

19.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

20.
High-performance Ba2Ti9O20 ceramics are attracting great attention, but their formation mechanism still is somewhat unclear. The present investigation shows that the formation of Ba2Ti9O20 can be promoted strikingly by the participation of Bi2O3 and Al2O3. The effect of Bi2O3 on the formation of Ba2Ti9O20 is attributed to the fact that migration of the involved reactants is accelerated by liquid which forms from the melting of Bi2O3 above 830°C. This migration, however, is not the only rate-limiting factor. A high potential-energy barrier, resulting from stress that arises along the crystal-structured layers, also heavily restricts the formation of Ba2Ti9O20. The participation of Al2O3, on the other hand, can reduce the height of this potential-energy barrier and effectively improve the kinetics of the formation of Ba2Ti9O20 by causing the formation of BaAI2Ti6O16 crystals; these crystals intergrow with Ba2Ti9O20 crystals and result in decreased stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号