首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
采用硬度测试和透射电镜研究Sn对不同Mg/Si比Al-Mg-Si合金时效硬化与析出行为的影响。结果表明:添加Sn虽然增加了低Mg/Si比合金峰值时效的析出相密度,但也降低了β″相的析出速度,从而降低了低Mg/Si比合金峰时效前的硬化速度和峰时效硬度。过时效阶段,含Sn合金的高析出相密度提高了低Mg/Si比合金过时效硬度。对于高Mg/Si比合金,添加Sn不仅增加合金的析出相密度,同时也提高了β″相的析出速度,从而增加了合金的硬化速度和峰时效硬度。  相似文献   

2.
本文采用挤压铸造法制备27%vol-SiC_w/6061Al复合材料,并对该种复合材料在170℃时效的动力学过程进行了研究,结果发现在时效动力学曲线上出现了双硬度峰现象。DSC分析结果表明复合材料中β'相及β相的析出温度与6061合金相对比分别降低56℃和76℃,由此讨论了SiC晶须加入对复合材料脱溶过程的影响,并认为双时效峰现象与材料中的析出由G.P.区向β'相的转化有关,通过TEM观察,发现复合材料时效过程中析出相形貌的变化,在组织结构上提供了确凿的证据。  相似文献   

3.
通过熔炼铸造工艺制备了Cu-Cr和Cu-Cr-Mg合金,评价了Mg元素对Cu-Cr合金硬度、导电和抗软化性能的影响,研究了Mg元素对Cu-Cr合金析出相的细化作用,探讨了Mg元素的迁移行为。结果表明,相比于Cu-Cr二元合金,时效态Cu-Cr-Mg合金具有更高的硬度和软化温度,且保持较高的导电性能。两种合金的主要时效强化相均为纳米Cr析出相,Mg元素的加入抑制了纳米沉淀相的长大和结构转变,峰时效态Cu-Cr-Mg合金的析出相与基体可能仍保持共格界面关系,过时效态合金中出现与Heulser相结构相同的析出相,且峰时效态Cu-Cr-Mg合金经过高温保温处理后,其强化相的尺寸明显小于Cu-Cr合金析出相。EDS的结果表明,在时效初期Mg和Cr共存于析出相内部,而在时效后期析出相内部只有Cr元素存在,Mg元素发生迁移,同时理论估算结果显示,Mg元素可明显降低Cu(fcc)/Cr(bcc)之间的界面能,导致其偏聚于基体/析出相界面处,这可能是Mg元素能够细化析出相和提高合金性能的主要原因。  相似文献   

4.
研究了二次时效Cu-Ni-Si合金的析出与再结晶的交互作用。在预时效过程中,析出发生在再结晶之前,使得合金在二次时效过程中获得有效强化,经450℃×8h预时效处理后的合金二次时效强化效果最为明显。合金在二次时效过程中,可观察到原位再结晶和不连续再结晶同时发生的现象,原位再结晶使得合金微观组织中析出相更加细小,合金保持较高的硬度;而不连续再结晶使合金硬度迅速下降,析出相也快速粗化。  相似文献   

5.
选用挤压铸造法制备Mullite/Al-Mg-Si复合材料,采用用硬度测试(HB)、扫描电镜(SEM)、差示扫描量热仪(DSC)和透射电镜(TEM)等手段,研究了莫来石短纤维增强不同镁硅比(Mg/Si=2,Mg/Si〈2,Mg/Si〉2)成份的Al-Mg-Si复合材料及其基体合金的时效行为。结果表明:复合材料具有和基体舍金相似的时效硬化曲线,相同的析出序列;Mullite纤维的引入提高了基体合金的时效硬度,并一定程度地加速了基体合金的时效硬化过程,但对GP区的抑制不明显;Si或Mg元素的富余都加速了复合材料及其基体合金的时效硬化过程,且两类材料的时效峰明显提前。Mullite短纤维与富余的甄或Mg元素对复合材料的时效硬化过程具有交互促进作用。  相似文献   

6.
27vol%-SiCw/6061Al复合材料170℃时效的双硬度峰现象   总被引:1,自引:0,他引:1       下载免费PDF全文
本文采用挤压铸造法制备27%vol-SiCw/6061Al复合材料,并对该种复合材料在170℃时效的动力学过程进行了研究,结果发现在时效动力学曲线上出现了双硬度峰现象。DSC分析结果表明复合材料中β'相及β相的析出温度与6061合金相对比分别降低56℃和76℃,由此讨论了SiC晶须加入对复合材料脱溶过程的影响,并认为双时效峰现象与材料中的析出由G.P.区向β'相的转化有关,通过TEM观察,发现复合材料时效过程中析出相形貌的变化,在组织结构上提供了确凿的证据。  相似文献   

7.
用显微硬度测试、差示扫描量热法(DSC)和高分辨透射电镜(HRTEM)观察等手段研究了Al-Mg-Si合金人工时效过程中的硬化、组织变化以及早期析出相的演变。结果表明:在170℃时效的合金具有更高的峰值硬度。在时效初期晶内析出高数量密度的溶质原子团簇和GP区,合金的硬度显著提高。在170℃处理4 h后合金的硬度达到峰值,此时晶内析出相以针状β″相为主,β″相与Al基体界面三维共格应变是合金强化的主要原因。同时,晶界析出相呈断续分布状态。随着时效时间的增加β″相开始粗化,晶界析出相的连续程度降低。在过时效阶段晶内析出相的严重粗化和数量密度的降低,使合金的硬度剧烈降低。在时效的初始阶段,合金的析出序列为过饱和固溶体→球形原子团簇→针状GP区→针状β″相。  相似文献   

8.
采用X射线衍射、光学显微镜、透射电子显微镜、显微硬度和拉伸性能测试等手段,研究时效热处理温度对Mg-12Gd-3Y-1Sm-0.5Zr合金组织和性能的影响。结果表明,Mg-12Gd-3Y-1Sm-0.5Zr合金在200,250℃和300℃峰时效时,晶粒大小随时效温度的升高而逐渐增大,晶内颗粒状的第二相数量增多,硬度峰值出现的时间逐渐缩短。合金时效温度在200,250℃时,析出相为β′相,时效温度在300℃时,析出相为β相。合金在250℃峰时效时力学性能最优。在200,250℃峰时效热处理的合金在从室温到200,250℃和300℃拉伸过程中抗拉强度随拉伸温度的升高先升高后降低,出现了抗拉强度反常温度效应,而在300℃峰时效热处理后的合金未出现该反常现象。  相似文献   

9.
用硬度、室温拉伸和电镜观察等方法研究了时效处理对快速凝固 Al-8.23Fe-3.62Ce 合金结构及性能的影响。研究发现,在573K 时效6h,合金中无明显的沉淀析出和相长大.时效30h,其抗张强度不降低。在高于673K 的温度下长期时效,沉淀相很快脱溶并聚集长大,导致合金室温强度降低。  相似文献   

10.
采用OM、XRD等分别研究了850~980℃固溶、350~650℃时效工艺对热轧态QAl10.9-5-5合金的显微组织及力学性能的影响。结果表明:随着固溶温度的升高,热轧态QAl10.9-5-5合金中未溶的α、κ相逐步固溶到高温组织中,并在室温组织中以β′相出现,当固溶温度升至925℃时,合金基本为单一均匀的β′相组织,此时硬度达到最大值;在随后的时效过程中,随着时效温度的升高,原子扩散速率加快,细小的κ相不断从β′相中析出,并产生明显的沉淀强化作用;当时效温度为450℃,保温2h时,合金硬度值可达326HB;继续升高时效温度,合金中开始出现大量的α相,从而导致其硬度随之下降。综合比较,热轧态QAl10.9-5-5合金的较佳热处理工艺为925℃×1h固溶、450℃×2h时效。  相似文献   

11.
The transformation sequence and hardening effects of 400 °C aged Ti47.5Ni50.65Al1.85 and Ti49.5Ni50.13Al0.37 shape memory alloys have been investigated by electrical resistivity tests, internal friction measurements, hardness tests and TEM observations. Both solution hardening and precipitation hardening are found to occur in these alloys. The hardening effects of Ti47.5Ni50.65Al1.85 alloy are obvious and much higher than those of Ti49.5Ni50.13Al0.37 alloy due to the former having the larger Ni/Ti ratio and a higher Al solute content in its matrix. The transformation sequence of 400 °C aged Ti47.5Ni50.65Al1.85 alloy shows B2↔R-phase only for an ageing time of more than 10 h and that of 400°C aged Ti49.5Ni50.13Al0.37 alloy shows the sequence B2↔R-phase↔B19′ or B2↔R-phase with different ageing times. All of these characteristics are associated with Ti11Ni14 precipitates during the ageing process. These aged Ti–Ni–Al alloys exhibit very good shape memory effects, in which the maximal shape recovery occurs at the peak of hardness. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Rapidly solidified (RS) Al–Fe–Ce alloys were prepared by melt spinning. The phases present and the thermal stability, at temperatures up to 500 °C, were then followed by X-ray analysis, chemistry, hardness and thermal analysis techniques. The results obtained indicated that the alloys studied have enhanced mechanical properties compared to commercial aluminium alloys and castings of the same alloy compositions, and the RS alloy also exhibit good stability up to about 300 °C; a result of stable second phase particles. It is suggested that these results indicate that there are two mechanisms responsible for the hardening and stability of the RS alloys: solid solution strengthening at lower temperatures, and semicoherent particles formed from supersaturated solid solution at higher temperature. The maximum hardness, after 2 h ageing occurred at about 300 °C. At higher temperatures the dispersed phase became incoherent with a dramatic loss in hardness.  相似文献   

13.
Mg–Al–Si–Ca and Mg–Zn–Ca base alloys were rapidly solidified bymelt spinning at the cooling rate of about a million K/s. The melt-spun ribbons were aged in the range 100–400%C for 1 h. The effect of additional elements on microstructural change and precipitation hardening after heat treatment was investigated using TEM, XRD and a Vickers microhardness tester. Age hardening occurred after aging at 200%C in the Mg–Al–Si–Caalloys mainly due to the formation of Al2Ca and Mg2Ca phases, whereas in the Mg–Zn–Ca alloys mostly due to the distribution of Mg2Ca. TEM results revealed that spherical Al2Ca precipitate has the coherent interface with the matrix. Considering the total amount of additional elements, Mg–Zn–Ca alloys showed higher hardness and smaller size of precipitates than Mg–Al–Si–Ca alloys. With the increase of Ca content, the hardness values of the aged ribbons were increased. Among the alloys, Mg–6Zn–5Ca alloy showed the maximum value of age hardening peak(Hv:180) after aging at 200%C for 1h.  相似文献   

14.
Hardening mechanisms in Al-Sc alloys   总被引:4,自引:0,他引:4  
The hardening mechanism in Al-Sc alloys with scandium content of 0.11 and 0.19 at% is studied. Applying theoretical results due to the yield stress and work hardening of two phase alloys as a function of volume fraction and precipitate particle size, it is shown that after ageing at above 300° C the Orowan mechanism operates in these alloys. Using the experimental results, the volume fraction and average radius of the precipitate particles are determined.  相似文献   

15.
Mg–Al–Si–Ca and Mg–Zn–Ca base alloys were rapidly solidified by melt spinning at the cooling rate of about a million K/s. The melt-spun ribbons were aged in the range 100–400°C for 1 h. The effect of additional elements on microstructural change and precipitation hardening after heat treatment was investigated using TEM, XRD and a Vickers microhardness tester. Age hardening occurred after aging at 200°C in the Mg–Al–Si–Ca alloys mainly due to the formation of Al2Ca and Mg2Ca phases, whereas in the Mg–Zn–Ca alloys mostly due to the distribution of Mg2Ca. TEM results revealed that spherical Al2Ca precipitate has the coherent interface with the matrix. Considering the total amount of additional elements, Mg–Zn–Ca alloys showed higher hardness and smaller size of precipitates than Mg–Al–Si–Ca alloys. With the increase of Ca content, the hardness values of the aged ribbons were increased. Among the alloys, Mg–6Zn–5Ca alloy showed the maximum value of age hardening peak(Hv:180) after aging at 200°C for 1 h.  相似文献   

16.
The effect of magnesium addition to the AlSi9Cu3.5 alloy on the hardening and precipitates morphology during ageing at RT, 160°C or two stage ageing (TSA) was studied using TEM and XSAS methods. It was found that only alloys with Mg addition harden during RT ageing and they also attain the highest hardness maximum at 160°C or during TSA. Two types of precipitates (starting from 0.4 and 1.2 nm) were identified during ageing at RT using XSAS method. They cause streaks in the electron diffraction patterns. In alloys aged at 160°C with Mg addition the S′ phase was identified using lattice imaging technique in addition to the θ′ plates formed during ageing of the ternary AlSiCu alloy.  相似文献   

17.
This study investigated the effects of cooling rate, heat treatment as well as additions of Mn and Sr on hardness and hardening characteristics in Al–11Si–2.5Cu–Mg alloys. The results of scanning electron microscopy reveal that the age-hardening behaviour is related to the precipitation sequence of alloy. An energy dispersive spectroscopy analysis was used to identify the precipitated phases. The results also show that the hardness of the solution heat-treated samples is higher in air-cooled alloys than in furnace-cooled ones. Furthermore, the hardness observed in solution heat-treated samples is higher than in as-cast samples for air-cooled alloys, with the highest hardness level in the non-modified alloys. The highest hardness levels among the artificially aged samples were observed in the non-modified, air-cooled alloys. These levels occur after aging for longer times at lower temperatures (e.g. 30 h at 155 °C). The alloys studied did not display any softening after 44 h at 155 °C, whereas at 180 °C, softening was noted to occur after 10–15 h. At short aging times of 5–10 h, high hardness values may be obtained by aging at 180 °C. At aging temperatures of 200 °C, 220 °C and 240 °C, softening began after 2 h had elapsed. The cooling rate during solidification does not appear to have any significant effect on the precipitation characteristics and hardness of the Sr-modified alloys at certain aging temperatures. On the other hand, the effects of cooling rate may be clearly observed in the non-modified alloys. Manganese has a minimal effect on the hardness of the aged samples as it diminishes the potential action of age-hardening, while strontium lessens the hardness of the artificially aged samples. The effect of strontium, however, is more pronounced in the air-cooled alloys than in the furnace-cooled alloys. Strontium also has a noticeable effect on the reduction of hardness in aged Mg-containing Al–Si–Cu alloys, in that it affects the precipitates containing Cu and Mg.  相似文献   

18.
Cold worked Cu-Fe-Cr alloys   总被引:10,自引:0,他引:10  
The aim of this project was to investigate the properties of copper rich Cu-Fe-Cr alloys for the purpose of developing a new cost effective, high-strength, high-conductivity copper alloy. This paper reports on the influence of cold work. The age hardening response of the Cu-0.7%Cr-2.0%Fe alloy was minimal, but the resistance to softening was superior to that reported for any commercial high-strength, high-conductivity (HSHC) copper alloy with comparable mechanical and electrical properties. For example, an excess of 85% of the original hardness of the 40% cold worked alloy is retained after holding at 700°C for 1 hour, whereas commercial HSHC Cu-Fe-P alloys have been reported to soften significantly after 1 hours exposure at less than 500°C. The Cu-0.7Cr-2.0Fe alloy would therefore be expected to be more suitable for applications with a significant risk of exposure to elevated temperatures. Optical microscope examination of cold worked and aged microstructures confirmed the high resistance to recrystallization for Cu-0.7%Cr-2.0%Fe. The Zener-Smith drag term, predicting the pinning effect of second phase particles on dislocations in cold worked microstructures, was calculated using the precipitate characteristics obtained from TEM, WDS and resistivity measurements. The pinning effect of the precipitate dispersions in the peak-aged condition was determined to be essentially equivalent for the Cu-0.7%Cr-0.3%Fe and Cu-0.7%Cr-2.0%Fe alloys. A lower recrystallisation temperature in the Cu-0.7%Cr-0.3%Fe alloy was therefore attributed to faster coarsening kinetics of the secondary precipitates resulting from a higher Cr concentration in the precipitates at lower iron content.  相似文献   

19.
Ageing Effect on Hardness and Microstructureof Al-Zn-Mg Alloys   总被引:1,自引:0,他引:1  
1. IntroductionALZn-Mg alloys are among the strongest of theage hardenable Al base alloysll'2]. These alloys havewide applications in aerospace and transport industries because of good mechanical properties especiallyexcellent strength to weight ratio which results ingreater fuel saving. Mechanical properties are affectedby various phases caused by heat treatment. Amountof solute (Zn+Mg) content and Zn/Mg ratio play animportant role in the precipitation of differeds phases,i.e., G.P. zones…  相似文献   

20.
The precipitation hardening of a Al-Zn-Mg-Al2O3(p) composite is explored. It is found that the peak hardness achieved is almost double that of precipitation hardening of Al-Zn-Mg alloy or dispersion strengthening of Al-Zn-Mg with 5% Al2O3(p). Toughness is marginally improved and tensile strength is one and half times that of precipitation hardened Al-Zn-Mg alloys. The ageing time for peak hardness is reduced due to acceleration of formation of precipitate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号