首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three variants of physical models of crack growth during corrosion fatigue destruction of steel are proposed: energy model, model of hydrogen embrittlement, and model of anodic dissolution of metal in crack tip. It is mentioned that the anodic model is more preferable for quantitative analysis. Using variant calculations, good agreement of this model with experimental results is demonstrated. The dominating role of local anodic dissolution is revealed as the main mechanism activating fatigue destruction of moderate strength carbon and low alloy steels in an aqueous corrosion medium.  相似文献   

2.
Acoustic emission signals were continuously monitored during fatigue crack propagation for LY12CZ and 7075-T6 aluminum alloys in laboratory air and 3.5% NaCl solution. The results showed that the acoustic emission count rate was as a linear function of crack propagation rate during fatigue and corrosion fatigue. The acoustic emission activity for LY12CZ was smaller in solution than that in air; but for 7075-T6, greater in solution than that in air. The acoustic emission waveform parameter, the frequency centroid ratio, was tried to use as a criterion to distinguish the corrosion fatigue crack propagation mechanism for anodic dissolution of LY12CZ and hydrogen embrittlement of 7075-T6.  相似文献   

3.
THE GROWTH OF SMALL CORROSION FATIGUE CRACKS IN ALLOY 2024   总被引:4,自引:0,他引:4  
Abstract— The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminium alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by: (1) crack initiation at constituent particle pits, (2) intergranular microcracking for a≤100μm, and (3) transgranular small crack growth for a≥100μm. In aqueous 1% NaCl and at a constant anodic potential of −700 mVSCE, small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of Δ K (< 1 MPa√m) below the long crack Δ K th value. When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Similar small and long crack growth behavior at various levels of R suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks for a≥100 μm. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for alloy 2024 exposed to salt water.  相似文献   

4.
基于慢应变速率拉伸实验(SSRT),采用恒电流极化、电化学噪声(ECN)与电化学阻抗(EIS)等方法,研究7A04铝合金在3.5%(质量分数)NaCl水溶液中的应力腐蚀开裂(SCC)行为以及Ce~(3+)对其SCC的缓蚀作用,探讨Ce~(3+)对裂纹孕育与发展过程的抑制机理。结果表明:无论是阳极还是阴极极化,均会促进7A04的SCC倾向,前者增加了裂尖的阳极溶解,后者则加速了裂尖的氢脆效应。Ce~(3+)的加入能延缓7A04的SCC断裂时间,但其有效性仅限于裂纹的萌生阶段。由于Ce~(3+)能够抑制铝合金表面的亚稳态点蚀发育和长大,因而使裂纹的孕育时间显著延长,降低了SCC的敏感性。不过一旦裂纹进入扩展阶段或者试样表面有预裂纹,则由于Ce~(3+)很难迁移到裂纹尖端或在裂尖区难以成膜,不能对裂纹的生长起到有效抑制作用,因而无法降低7A04的SCC发展速率。SEM分析表明7A04铝合金光滑试样SCC主要源于亚稳态或稳态点蚀的诱导作用。  相似文献   

5.
Quasi-static tensile tests in air and slow strain rate tests (SSRTs) in a 3.5% NaCl solution were conducted in an ultra-high-strength P/M Al–Zn–Mg alloy fabricated through powder metallurgy. Attention is also paid to fatigue strength and fatigue crack growth behavior in laboratory air and in a 3.5% NaCl solution. The alloy has extremely high strength of about 800 MPa. However, elongation at break remains small, at about 1.3%. The final fracture occurs by a macroscopically flat crack normal to the tensile axis, with little reduction in area and little shear lip on the periphery of a smooth sample. However, it fails microscopically in a ductile manner, with dimples. Dimple size is less than 1 μm, because the grain size of the alloy is extremely small. Strengthening mechanisms operating in the alloy are: small grains, sufficient metastable η′ phase in a matrix, and intermetallic compound acting as a fiber reinforcement. The SSRT strength in a 3.5% NaCl solution decreases slightly at a very low strain rate, that is smaller than those observed in aluminum alloys sensitive to stress corrosion. This means that the crack initiation resistance to stress corrosion is superior. However, under cyclic loading, the corrosion fatigue strength becomes lower than that conducted in air, because pitting corrosion on a sample surface acts as a stress concentrator. Crack initiation site of quasi-static and fatigue failure of the alloy is at inclusions, and hence, it is essential to decrease inclusions in the alloy for the improvement of the mechanical properties. Fatigue crack resistance of the alloy is inferior to conventional Al–Zn–Mg alloys fabricated by ingot metallurgy, because the fatigue fracture toughness, or ductility, of the alloy is inferior to other Al alloys, and intergranular cracking promotes crack growth. However, no influence of 3.5% NaCl solution on corrosion fatigue crack growth is observed, although an investigation is required into whether stress corrosion crack growth occurs or not, and at the same time, and of corrosion fatigue crack growth behavior at lower stress intensity. The fracture surface and crack initiation sites are closely examined using a high-resolution field emission type scanning electron microscope, and the fracture mechanisms of the alloy are discussed.  相似文献   

6.
The effect of an aqueous chloride environment upon the development and growth of short fatigue cracks from smooth specimen surfaces has been studied under fully reversed torsional fatigue loading conditions. Crack initiation and growth has been monitored using a plastic replication technique enabling a full history of cracking characteristics to be recorded. Corrosion fatigue conditions were achieved by complete immersion in a 0.6 M NaCl solution, of nominal pH value 6.0, with specimens corroding at the free corrosion potential. Variations to these conditions were obtained by the addition of concentrated hydrochloric acid enabling test solution pH values to be altered, typically pH values of 3.5 and 2.0 were obtained. Further information regarding the effects of the environment on the early stages of crack development were obtained by conducting two stage alternate immersion type testing conditions. Evaluation of these effects through previously established Elastic-Plastic Fracture Mechanics models shows that the environment plays a major role during the early stages of microstructure-dominated crack growth particularly as cracks approach major barriers to propagation and at decreasing levels of applied shear stress.  相似文献   

7.
The effect of microstructures on resistance to corrosion fatigue cracking and fracture surface morphology for age-hardened steels were investigated in a 3.5% NaCl aqueous solution under a cathodic potential of –0.85 V (Ag/AgCl). The free corrosion was about –0.63 V (Ag/AgCl). The resistance to corrosion fatigue cracking of materials containing coherent precipitates in the matrix (underaged conditions) was less than that of materials containing incoherent precipitates (reheated conditions) at equal strength levels. Accelerated fatigue crack growth rates of the underaged material in the aqueous solution were followed by cracking along prior-austenite grain boundaries, due to hydrogen embrittlement, while the overaged material did not show accelerated fatigue crack growth rates and had fracture surfaces similar to those in air. The difference in the fracture surfaces of both materials in air and in the aqueous solution was considered to depend on the ease of diffusion of hydrogen to the prior-austenite grain boundaries. It is concluded that incoherent precipitates in the matrix made hydrogen accumulation at prior-austenite grain boundaries much slower than for coherent precipitates.  相似文献   

8.
Published data are examined on how various factors affect fatigue crack growth rates. Basic diagrams have been constructed for the cyclic cracking resistance in Ti-6AI-4V and Ti-6AI-6V-2Sn alloys in air, distilled water, and 3.5% NaCl for use in working-life calculations. Appropriate heat treatment can produce two microstructures in a titanium alloy, one of which has the largest cyclic cracking resistance, while in the second, the cracks grow at the lowest rate. The cyclic corrosion cracking resistance for a titanium alloy should be determined in relation to the state of stress and strain and to the electrochemical conditions at the corrosion fatigue crack tip, while the variations in fatigue crack growth rate for a given stress intensity factor in a corrosive medium are due to differing electrochemical conditions at the crack tip during the testing on different specimens. Basic diagrams can be derived for titanium alloys by using a physically sound methodology developed previously for steels, which is based on invariant diagrams for cyclic cracking resistance in air and in the corresponding medium, which can be constructed in relation to extremal working and electrochemical conditions at corrosion-fatigue crack tips.Translated from Problemy Prochnosti, No. 12, pp. 3–11, December, 1993.  相似文献   

9.
The corrosion-fatigue behaviour of 7075-T651 aluminum alloy subjected to periodic overloads was examined. This aluminum alloy is typically used in aerospace structural components such as the wing spars of aircraft. Axial fatigue specimens were subjected to a loading spectrum that consisted of a fully reversed periodic overload of near-yield magnitude followed by 200 smaller cycles at high R-ratio. The specimens were fatigue tested while they were fully immersed in an aerated and recirculated 3.5 wt% NaCl simulated seawater solution.The results for the corrosion-fatigue testing were compared to data obtained for the same overload spectrum applied in laboratory air. A damage analysis showed that the presence of the corrosive environment accelerated the damage accumulation rate to a greater extent than that observed in air, particularly at low stress ranges. This resulted in a reduction in the fatigue strength of the material when it was simultaneously subjected to overloads and a corrosive environment. It is believed that the reduced fatigue life was due primarily to corrosion pit formation and a combination of anodic dissolution at the crack tip and hydrogen embrittlement. For practical purposes, the endurance-limit of the material disappears under these conditions.  相似文献   

10.
The corrosion resistance of 2024 Al and SiC particle reinforced 2024 Al metal matrix composite(SiCp/2024Al MMC) in 3.5% NaCl solution was investigated with electrochemical method and immersion test, and the corrosion protection of sulfuric acid anodized coatings on both materials was evaluated by electrochemical impedance spectroscopy.The results showed that the SiCp/2024AlMMC is more susceptible to corrosion than its matrix alloy in 3.5% NaCl.For 2024Al,the anodized coating provides excellent corrosion resistance to 3.5%NaCl.The anodized coating on the SiCp/2024Al provides satisfactory corrosion protection,but it is not as effective as that for 2024Al because the structure of the anodized layer is affected by the SiC particulates.  相似文献   

11.
王池权  熊峻江 《工程力学》2017,34(11):225-230
腐蚀环境下的疲劳性能是航空金属结构疲劳寿命设计的重要前提,为此,试验测定了2种航空铝合金材料(2E12-T3、7050-T7451)的光滑试样和缺口试样在干燥大气和3.5%NaCl腐蚀环境下的疲劳性能,在试验数据的基础上进行性能对比,并对试样断口进行扫描电镜(SEM)分析,研究了3.5%NaCl腐蚀环境与载荷联合作用对腐蚀疲劳性能的影响机理,研究结果表明:3.5%NaCl腐蚀环境对2种铝合金材料的疲劳性能均产生不利影响,且腐蚀与疲劳载荷的交互作用随着应力水平的降低而增强,疲劳性能下降更明显;与光滑试样相比,腐蚀环境对铝合金2E12-T3缺口试样疲劳性能的影响更大,但对铝合金7050-T7451缺口试样疲劳性能的影响却变小;在腐蚀环境下,裂纹尖端易发生电化学反应产生腐蚀产物和[H]离子,腐蚀产物的存在会阻碍裂纹闭合,同时,[H]离子导致裂纹尖端的氢脆效应,加快裂纹扩展,使疲劳性能降低。  相似文献   

12.
通过拉伸性能测试、C环应力腐蚀试验、金相分析、扫描电镜和透射电镜观察等研究了7055铝合金T型型材的应力腐蚀开裂(SCC)行为.结果表明:7055铝合金T型型材纵向试样的抗拉强度、屈服强度、伸长率及断面收缩率均大于横向试样的;在间浸腐蚀和恒温恒湿环境下,纵向C环试样的开裂时间均长于横向试样的.型材纵向截面晶粒变形特征明...  相似文献   

13.
2024铝合金阳极氧化膜的结构和耐蚀性能   总被引:5,自引:2,他引:3  
为促进2024铝合金的进一步应用,用动电位阳极极化和电化学阻抗方法研究了2024 Al合金阳极氧化膜的结构及其在3.5% NaCl水溶液中的耐蚀性.结果表明,经硫酸阳极氧化的2024 Al合金较未处理基体的腐蚀速度降低了2个数量级以上,表现出相当好的保护性能;用光学显微镜、扫描电镜和透射电镜对阳极氧化膜的形貌观察发现,氧化膜表面平整,孔隙分布均匀,每个孔隙周围多含6个孔隙,也有5和7个孔隙结构,其孔隙尺寸细小,大小在10~30 nm之间.  相似文献   

14.
Summary Tests have been done on cyclic corrosion cracking resistance in 34KhN1M steel used for making steam turbine disks in distilled water with the addition of 1.2 mg/liter of NaCl and KOH. to pH 9.3 with loading frequency f of 0.017-1 Hz and temperatures of 293–368 K under constant electrochemical conditions at the crack vertices or with allowance for changes occurring there. Measurements have been made on the trends in the electrochemical characteristics at the vertices of static and growing cracks during corrosion cracking tests. The extremal working and electrochemical conditions have been determined and a quantitative evaluation is given for the extents of the local anodic dissolution and hydrogen embrittlement occurring at the vertices of static and growing cracks.Translated from Fiziko-khimicheskaya Mekhanika Materialov, Vol. 26, No. 5, pp. 40–47, September–October, 1990.  相似文献   

15.
LC4高强铝合金的慢应变速率拉伸试验   总被引:16,自引:0,他引:16  
采用慢应变速率拉伸 (SSRT)技术测试了LC4铝合金在空气和质量分数为 3.5 %的NaCl溶液中的应力腐蚀断裂 (SCC)行为 .研究了应变速率对铝合金SCC行为的影响和氢在LC4高强铝合金应力腐蚀断裂过程中的作用 .试验结果表明 ,LC4合金具有SCC敏感性 ,在潮湿空气中发生应力腐蚀断裂 ,而在干燥空气中不发生应力腐蚀断裂 .对于长横取向的LC4铝合金试样 ,在应变速率为 1.331× 10 6s 1时 ,其SCC敏感性比应变速率为 6 .6 5 5× 10 6s 1时的敏感性大 .在潮湿空气和阳极极化条件下 ,铝合金的应力腐蚀断裂机理是以阳极溶解为主 ,氢几乎不起作用 .在预渗氢或阴极极化条件下 ,氢脆起主要作用 ,预渗氢时间延长可加速LC4合金的应力腐蚀断裂 .  相似文献   

16.
The acoustic emission(AE)characteristicsfrom the fatigue crack propagation in SM50B-Zcsteel were strongly affected by the environment me-dium.The AE feature from the fatigue process bothin air and in 3.5% NaCl aqueous solution mani-fested a periodicity which indicated the fatigue ex-tension was discontinuous.The fatigue striationand secondary cracking were the main AE sourcesduring the fatigue crack growth in air.In contrast,AE during the fatigue crack propagation in 3.5%NaCl solution was released from the intergranularfracture and quasicleavage cracking.  相似文献   

17.
18.
Slow strain rate tests were performed on longitudinal tensile specimens of 8090-T81 sheet under permanent immersion conditions in various synthetic environments. Strain rates were in the range 10−7−10−4 s−1. Environmentally assisted cracking is observed in aqueous chloride-carbonate-hydrogencarbonate solutions. Near neutral 3.5% NaCl solution and also 3% NaCl solution with hydrogen peroxide added do not promote stress corrosion cracking with 8090-T81 alloy sheet. The degradation of ductility found with tensile specimens immersed in the latter corrosive environments is caused by localized corrosion independent of stress. Fracture energy data obtained from slow strain rate tests in substitute ocean water reveal a large scatter. Again, the deterioration observed is not related to stress corrosion cracking. Slow strain rate tests were also carried out with longitudinal tensile specimens of 2091-T8X and 2091 CPHK-T8X alloy sheet using an aqueous solution of 3% NaCl + 0.3% H2O2. For the alloy 2091 CPHK-T8X, similar results were obtained to those with 8090-T81, whereas 2091-T8X sheet is prone to environment-induced cracking in the aqueous chloride-peroxide solution.  相似文献   

19.
20.
Abstract— Single-pitted specimens of an HSLA steel, were tested in laboratory air and in 1 M NaCl solution to study the influence of a corrosive environment on its fatigue life.
The growth of fatigue cracks and the partitioning of the fatigue life into fatigue crack initiation and fatigue crack propagation were studied by photographing the pit and the cracks developing on it periodically during testing. Non-propagating or dormant surface cracks were not observed in this study. Fractography using SEM showed the locations of fatigue crack initiation. The mechanisms of corrosion fatigue were studied by performing tests in 1 M NaCl at different test frequencies. Corrosion pits proved to be crack initiation sites. Hydrogen embrittlement was found to be unimportant in the corrosion fatigue of HSLA steel in this study. The 1 M NaCl corrosive environment appeared to reduce the fatigue life of this material by a dissolution mechanism. The effect of pit depth was studied by testing specimens having various pit depths. An effect of pit size was apparent. Fatigue life decreased with increasing pit depth. Pit depth, rather than the ratio of pit depth to pit diameter, influenced fatigue behaviour. A non-damaging pit depth was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号