首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
The receptors for retinoic acid (RA) and for 1 alpha,25-dihydroxyvitamin D3 (VD), RAR, RXR, and VDR are ligand-inducible members of the nuclear receptor superfamily. These receptors mediate their regulatory effects by binding as dimeric complexes to response elements located in regulatory regions of hormone target genes. Sequence scanning of the tumor necrosis factor-alpha type 1 receptor (TNF alpha RI) gene identified a 3' enhancer region composed of two directly repeated hexameric core motifs spaced by 2 nucleotides (DR2). On this novel DR2-type sequence, but not on a DR5-type RA response element, VD was shown to act through its receptor, the vitamin D receptor (VDR), as a repressor of retinoid signalling. The repression appears to be mediated by competitive protein-protein interactions between VDR, RAR, RXR, and possibly their cofactors. This VDR-mediated transrepression of retinoid signaling suggests a novel mechanism for the complex regulatory interaction between retinoids and VD.  相似文献   

6.
HL60 cells differentiate to monocytes or neutrophils in response to 1 alpha,25(OH)2-vitamin D3 (D3) and retinoids respectively. D3 and retinoid actions converge since their receptors (VDR, RAR) heterodimerise with a common partner, RXR, which also interacts with thyroid hormone (T3) receptors (T3R). HL60 cells were treated with combinations of D3 and retinoids to induce differentiation and to investigate whether increased VDR or RAR expression correlated with monocyte or neutrophil differentiation and whether altered receptor concentrations affected DNA-binding specificity. As assessed by Western blotting, VDR and RXR expression was unchanged in monocytes relative to controls but levels of RAR and T3R were reduced. In contrast, only VDR expression was reduced in neutrophils. T3 did not promote differentiation or influence its induction by D3 or retinoids and did not affect expression of any receptor. Gel mobility-shift analysis revealed that nuclear extracts from undifferentiated cells, monocytes and neutrophils interacted differently with VDRE-, RARE- and RXRE-binding sites. Monocyte nuclear protein/DNA complexes contain readily detectable VDR and RXR whereas neutrophil complexes contain RAR and RXR. Thus hormone-induced changes in receptor stoichiometry favour either VDR/RXR or RAR/RXR heterodimerisation and correlate with hormone-induced differentiation of HL60 cells to monocytes or neutrophils respectively.  相似文献   

7.
8.
9.
The nuclear signaling pathways for retinoids and vitamin D differ in the specificity of the respective receptors for response elements. Two pathways for the action of both retinoic acid receptors (RARs) and vitamin D receptors (VDRs) have been identified, one being retinoid X receptor (RXR)-dependent and the other being RXR-independent. Moreover, RXRs were found to function as homodimers. In several steps we converted the retinoid specific response element of the human retinoic acid receptor beta promoter into the vitamin D/retinoic acid response element of the human osteocalcin promoter. We found that VDR homodimers only bind to the motif RGGTGA. The extended osteocalcin element also contains an imperfect direct repeat based on the motif RGGTGA spaced by three nucleotides, which is bound by RXR homodimers and activated by 9-cis-retinoic acid. The responsiveness of the osteocalcin element to all-trans-retinoic acid is mediated neither by RAR homodimers nor by RAR-RXR heterodimers. However, a VDR-RAR heterodimer binds to the osteocalcin response element and mediates activation by all-trans-retinoic acid. This heterodimer also binds to pure retinoid response elements, but it does not mediate activation by vitamin D alone. In combination with all-trans-retinoic acid, however, vitamin D enhances VDR-RAR heterodimer-mediated gene expression. This finding suggests a direct interaction between nuclear signaling by retinoic acid and vitamin D increasing the combinatorial possibilities for gene regulation by the nuclear receptors involved.  相似文献   

10.
11.
12.
The novel uracil analog, 6-chloro-5-(2-propenyl)uracil (TI90), inhibited the growth of myeloid leukemia cells and induced morphologic and functional differentiation of the cells. Although TI90 was a weak inducer of differentiation, it greatly enhanced the growth inhibition and differentiation of the leukemia cells previously induced by 1alpha,25-dihydroxyvitamin D3 (VD3) or all-trans retinoic acid (ATRA). TI90 cooperated with VD3 much more effectively than with ATRA in inhibiting cell growth and inducing differentiation. It also decreased the effective concentration of VD3 to the 10(-10) M level. On the other hand, there was no significant synergy between VD3 and the other uracil analogs. TI90 did not affect VD3 metabolism or the number and affinity of VD3 receptors (VDR) in HL-60 cells. Signals from VD3 are predominantly mediated by VDR and the ligand-activated binding of VDR to vitamin D-responsive element (VDRE) as a heterodimer with the retinoid X receptor (RXR). According to the results of a gel shift assay, TI90 enhanced the intensity of the retarded band with synthetic VDRE oligomer in the presence of VD3, suggesting that TI90 increases the number of phosphorylated receptors by inhibiting phosphatase activity, and also stimulates the formation of a functional complex of VDR with RXR.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号