首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TiC颗粒增强钛基复合材料的形变   总被引:2,自引:0,他引:2  
研究了TiC颗粒增强钛基复合材料增强颗料和基体之间的不均匀形变,得出颗粒和基体之间的形变过程中产生形变摩擦阻力,通过弹塑性力学计算出的TiC/Ti界面上颗粒阻碍基体变形力为TiC强度的0.6倍,阻碍基体中滑移的进行,使基体得到强化。另一方面,当界面上的形变应力同基体的某个晶面形成位错源时,可放出位错环,使应力得到释放,同时增加基体的位错密度,位错互相缠绕形成胞状亚结构,强化基体。  相似文献   

2.
TiC颗粒增强钛基复合材料的制备及其微观组织   总被引:8,自引:1,他引:8  
采用直接加入TiC粉的方法制备了原位自生TiC增强钛基复合材料,此法与国内研究者常用的加入石墨粉的方法相比,制备的复合材料成分准确,易于控制。制备的复合材料由Ti和TiC相组成,其中TiC为初生树枝状和短棒状共晶组成。TEM研究发现:还存在0.3-0.6μm的规则块状TiC,多分布在晶界上;TiC颗粒与基体界面干净、无反应层,基体中存在较多的位错,且位错线上存在析出物。  相似文献   

3.
利用X射线衍射技术测试了TiC颗粒增强钛基复合材料Ti-6Al-4V 7%TiC(质量分数,下同)(T64),Ti-3Al-2.5V 7%TiC(T32)和Ti-6Al-2.5Sn-4Zr-0.5Mo-1Nb-0.45Si 3%TiC(T650)的内应力。发现该复合材料在800℃左右存在一个应力性质转变点,即在800℃以上处理,钛基体感生残余拉应力,增强TiC颗粒感生残余压应力;在800℃以下处理,应力性质相反。并且内应力随处理温度升高而增加,由Eshelby模型得出,该转变点和钛合金基体的相变点有关。  相似文献   

4.
《铸造技术》2016,(4):642-646
从颗粒增强铝基复合材料流变应力行为、热变形过程中显微组织的变化以及热加工图三个方面,对颗粒增强铝基复合材料的热变形行为进行了概括。同时介绍近年来国内外研究人员针对颗粒增强铝基复合材料热变形方面所展开的探索和研究,最后对颗粒增强铝基复合材料今后的研究应用进行了展望。  相似文献   

5.
TiC颗粒增强钛基复合材料的形变断裂   总被引:9,自引:1,他引:8  
通过对TiC颗粒增强钛基复合材料断裂研究表明:TiC颗粒的缺陷比例对复合材料的断裂裂纹扩展速率有较大影响。形状规则且无缺陷的粒子在受力的初期不易破断,可较大提高裂纹扩展所需。反之,易破碎的粒子则增加了裂纹尖端的扩展应力,提高了裂纹扩展速率。适当的热处理可提高裂纹扩展所需塑性功,从而在一定范围内改善复合材料塑性。  相似文献   

6.
颗粒增强钛基复合材料若要在高温环境下得到应用,研究其蠕变性能是极其重要的,但这方面的研究未见有详细的报道。以下给出一些研究人员的研究结果。540℃下,Ti-6-4/15%TiCp(体积分数,下同)的蠕变断裂时间比基体的要长1个数量级。在500℃~650℃,230MPa和700MPa下,TiB2强化的Ti-6-4基复合材料的糯变应变速率比基体的低2个数量级,而TiC强化的Ti-6-4基复合材料比基体的低1个数量级.500℃和600℃下,RSPTiB/Ti-7.5Al-4V的蠕变速率比基体合金的低1个数量级。有人采用压缩法研究Ti、Ti-Ti2C和Ti-TiB-Ti2C的…  相似文献   

7.
在Gleeble-1500热模拟实验机上对原位生成TiC颗粒增强钛基复合材料进行热压缩实验,研究变形温度为700~950 ℃、温度间隔为50 ℃,应变速率为10-3~1 s-1条件下的热变形行为,采用XRD、DSC、SEM、OM等实验手段对复合材料的相变点及变形后的显微组织等进行分析和测定.结果表明:流变应力随变形温度的升高和应变速率的降低而减小;在高应变速率条件下,绝热温升对流变应力的影响较为明显;动态再结晶是TiC钛基复合材料热变形的重要机制,变形温度越高,再结晶越易进行,变形速率越高,应变量越大,再结晶晶粒越细小.  相似文献   

8.
TiCp颗粒增强钛基复合材料的强化机理研究   总被引:4,自引:0,他引:4  
利用SEM,TEM对TiC粒子增强的钛基复合材料的强化方式进行研究,得出:当反应界面厚度控制在0.5μm~2μm时,界面将起到良好的传递载荷的作用,使粒子承载。当粒子的粒度较小(dp〈μm),Orowan强化机制将参与材料强化,而当粒子较大时(dp〉1μm),阻碍位错滑移。由于两相之间的不均匀变形,在界面形成较高的应力集中,阻碍形变,并可产生形变位错源,使基体中位错增殖,形成位错胞,强化基体。当扩展裂纹遇到TiC粒子,使扩展路径发生偏转,增加裂纹扩展能量,提高了材料的强度。  相似文献   

9.
与纤维增强钛基复合材料(FTMCS)相比,颗粒增强钛基复合材料(PTMCs)白于制造工艺简单、价格较便宜、工程化应用前景更好而成为近年研究热点.PTMCS的制造方法主要有熔铸法和粉末冶金法.如根据增强体的加人或生成方式,又可分为外加法和内部反应生成法两种.对于外加法来说  相似文献   

10.
TiC颗粒增强钛基复合材料的静动态力学性能   总被引:1,自引:1,他引:0  
利用伺服式疲劳实验机和杆一杆型冲击拉伸实验机对TiC颗粒增强钛基复合材料TP650和基体钛合金的静动态力学性能进行研究,得到不同应变率下复合材料的应力一应变曲线.结果表明,复合材料和基体材料的屈服应力均随应变率的增加而提高,属于应变率敏感材料;TP650的破坏形式以颗粒附近基体的撕裂以及颗粒与基体合金的脱粘为主,几乎没有发生颗粒破碎现象.假设复合材料的微观结构为非均质单胞在空间的周期性重复排列,利用有限元软件对钛基复合材料的静动态力学性能进行数值模拟研究,计算结果与实验结果吻合良好.进一步通过数值模拟预测了颗粒形状和颗粒体积分数的变化对TiC颗粒增强钛基复合材料静动态力学性能的影响.  相似文献   

11.
采用粉末冶金方法,通过Ti与Cr3C2反应原位生成TiC颗粒增强钛基复合材料。利用X射线衍射(XRD)、透射电镜(TEM)等手段对其相组成和显微组织进行了研究。结果表明:通过Ti与Cr3C2反应能够原位生成TiC颗粒,生成的TiC颗粒呈多角状,粒度在几十纳米到50μm范围内;Cr3C2中的Cr固溶在Ti基体中,使基体由α+β两相合金转变成为亚稳态β型钛合金。  相似文献   

12.
以Ti3SiC2和TiC粉为原料,采用热压烧结方法,在外加应力25MPa,烧结温度1300℃条件下,制备了Ti3SiC2/TiC陶瓷复合材料,并研究了复合材料的高温压缩性能。实验结果表明,复合材料在恒应变速率下出现了明显的屈服现象,并呈现塑性变形特征;复合材料在低于韧脆转变温度时其断裂方式主要是脆性断裂,当变形温度达到韧脆转变温度后,复合材料产生大量塑性变形,同时材料的强度明显降低。  相似文献   

13.
TiC颗粒增强钛基复合材料细观动态力学性能   总被引:1,自引:0,他引:1  
基于不动点迭代法提出宏细观多尺度计算方法对颗粒增强钛基复合材料的静动态力学性能进行研究。采用该多尺度计算方法可以将复合材料的宏观力学性能与材料的微观结构相联系,通过迭代法从宏观角度为单胞模型提供真实的物理边界条件,将该边界条件施加到单胞有限元模型,对其进行有限元分析可最终获得复合材料的宏观力学性能。在与试验结果比较的基础上,预测颗粒形状、颗粒的体积分数、颗粒大小以及界面强度对TiC颗粒增强钛基复合材料静动态力学性能的影响,为颗粒增强钛基复合材料力学性能的优化设计提供依据。  相似文献   

14.
在Gleeble-1500热模拟试验机上进行热压缩试验.研究了变形温度为900~1150℃、应变速率为0.001~10 s~(-1)时TiC颗粒增强钛基复合材料的热变形行为,根据所得应力应变曲线分析了该合金的热变形特征,并采用双曲正弦模型建立了该钛基复合材料的本构关系.计算了α+β区域的平均变形激活能为691 kJ/mol,β区域平均变形激活能为202 kJ/mol.  相似文献   

15.
研究了(TiB+TiC)/Ti6242基复合材料在550℃,600℃和650℃空气中恒温氧化行为。用X射线衍射仪(XRD)和配有能谱仪(EDS)的扫描电子显微镜(SEM)对氧化层表面的相组成、形貌以及氧化层剖面的显微结构进行了分析,并分析了各元素对钛基复合材料氧化动力学行为的影响。结果表明:(TiB+TiC)/Ti6242基复合材料的氧化层由一系列薄层组成:增强体TiB提高抗氧化性优于TiC,加工可以提高其抗氧化性;氧化动力学曲线主要为抛物线类型。  相似文献   

16.
利用Gleeb-1500热模拟力学试验机对40%AlNp/LY12铝基复合材料进行高温压缩试验.研究表明,AlNp/LY12复合材料的高温压缩行为主要受变形温度、应变速率等的影响,其中以变形温度的影响最为显著;随变形温度的升高,变形抗力逐渐下降;随变形速率的增加,变形抗力呈上升趋势.在试验范围内,该复合材料高温压缩变形的最佳温度为500℃,且在应变速率为0.014 s-1时临界应变量最大.  相似文献   

17.
TiC颗粒强化钛基复合材料的强度评估   总被引:6,自引:0,他引:6  
根据TiC颗粒强化钛基复合材料的显微组织,观察,按照复相材料的强化理论估计了TiC增加体粒子的加入对钛基体的模量强化和基体强化作用,按材料屈服准则估计了复合材料的屈服强度并同试验结果进行了比较。  相似文献   

18.
采用液相烧结法(LPS)制备了TiC/Ti复合材料,借助X射线衍射(XRD)分析了复合材料的相构成。对TiCFFi复合材料进行了高温压缩和高温挤压实验,利用扫描电镜(SEM)和光学显微镜(OM)分析了复合材料高温变形前后的微观组织。实验结果表明:基体Ti与烧结助剂中的Cu发生反应生成玻璃相TiCu2。在高温塑性变形过程中,由于液相TiCu2的存在,使复合材料表现出良好的高温塑性变形能力,压缩率达到72.9%,挤压比为16:1:复合材料高温塑性变形后,材料中的孔洞明显减少,致密度得到提高,组织成分保持稳定:处于液相状态的TiCu2高温挤压后,细化成尺寸为1μm~2μm的小颗粒,均匀分布于基体Ti颗粒的周围。  相似文献   

19.
Ti3Al基合金的热变形行为及加工图   总被引:1,自引:0,他引:1  
采用THERMECMASTER-Z热模拟试验机对Ti3Al基合金进行等温恒应变速率压缩试验,基于动态材料模型的加工图技术研究该合金在950~1350 ℃和0.001~10 s-1范围内的高温变形特性,并优化出其适宜的高温变形参数范围。结果表明,在应变速率较高(≥0.05 s-1)时,变形多处于失稳区域。在变形温度为950~1100 ℃,应变速率为0.05~10 s-1区域,发生了绝热剪切和局部流动现象;在变形温度为1100~1350 ℃,应变速率为0.1~10 s-1区域发生了β组织的不均匀变形。在变形温度为1250~1350 ℃,应变速率低于0.01 s-1时,变形组织粗大,其变形机制为动态回复。在变形温度为1100~1180 ℃,应变速率为0.001~0.015 s-1时,功率耗散效率多大于0.55,变形组织中出现了亚晶;在温度为970~1010 ℃,应变速率为0.001~0.01 s-1时,功率耗散系数大于0.5,其变形机制可能为超塑性成形,这2个区域为Ti3Al基合金适宜的热变形工艺参数范围  相似文献   

20.
本文借助Gleeble-3800热模拟试验机系统地研究了铸态粗晶Ti-5553合金在温度700 ℃~1100 ℃、应变速率为0.001 s-1~10 s-1条件下的高温变形行为。研究结果表明合金的流变应力对变形温度和速率都有强敏感性,流变软化过程也随变形参数的改变呈现出不同的模式。通过经典的动力学模型,建立了合金高温变形的本构关系和激活能分布图,进一步基于动态材料模型构建了合金的热加工图并实现了对不同加工区间变形机制的识别。合金在低温区(700 ℃)和高速率区( 1 s-1)均展现出失稳变形的特征,包括外部开裂、绝热剪切带、局部流变等机制,在实际加工中应对这些加工区域进行规避。合金在800 ℃及中低速率( 0.1 s-1)变形下的主导机制为α相的动态析出,在中高温(900 ℃-1100 ℃)及中低速率变形下的主导机制为动态回复与动态再结晶的结合。此外,合金在高温较低应变速率(1100 ℃/0.01 s-1)条件的变形中表现出大范围动态再结晶的行为特点并伴随稳定的流变软化,因此此条件附近的参数区间被认定为该合金的最优加工窗口,应在实际加工中给予优先考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号