首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contour plots were developed for the compression stress (at 20% deformation) of single-component, mixed and filled protein gels. Samples were made by heating and acidification from skim milk powder, SMP (0–20% TS), whey protein isolate, WPI (0–10% TS), and recombined cream, within pH 3.6–3.9, 4.6–4.8 and 5.1–5.3. At higher pH, WPI gels were stronger than SMP gels. WPI had a reinforcing effect on SMP gels, while small additions of SMP to WPI gels resulted in weaker mixed gels. Filled gels containing cream had higher compression strengths than mixed gels. Micrographs showed linking of casein chains by WPI strands in mixed gels and compatibility of fat globules with casein micelles in the protein network of filled gels.  相似文献   

2.
Milk protein solutions [10% protein, 40/60 whey protein/casein ratio containing whey protein concentrate (WPC) and low-heat or high-heat milk protein concentrate (MPC)] containing fat (4% or 14%) and 70–80% water, form gels with interesting textural and functional properties if heated at high temperatures (90 °C, 15 min; 110 °C, 20 min) without stirring. Adjustment of pH before heating (HCl or glucono-δ-lactone) produces soft, spoonable gels at pH 6.25–6.6, but very firm, cuttable gels at pH 5.25–6.0. Gels made with low-heat MPC, WPC and low fat gave some syneresis; high-fat gels were slightly firmer than low-fat gels. Citrate markedly reduced gel firmness; adding calcium had little effect on firmness, but increased syneresis of low-heat MPC/WPC gels. The gels showed resistance to melting, and could be boiled or fried without flowing. Microstructural analysis indicated a network structure of casein micelles and fat globules interlinked by denatured whey proteins.  相似文献   

3.
The homogenisation pressure and the order of heating and homogenisation were varied in the preparation of recombined whole milks. The fat globule sizes decreased from ∼2 to 0.2 μm as the homogenisation pressure increased from 50 to 850 bar for samples heated before (HEHO) or after (HOHE) homogenisation. For acid gels prepared from the milks, small increases in elastic modulus of the set gels were observed with decreasing fat globule size. The yield strain of the acid gels increased linearly with decreasing fat globule size, and HOHE gels had higher yield strains than HEHO gels. The yield stress of the set gels increased with decreasing fat globule size, and the yield stress for HOHE gels were higher than the HEHO gels. Confocal micrographs of the gels revealed an almost continuous protein network structure without pores for gels from milks treated at low homogenisation pressures, and the large fat globules did not actively interact with the strands in the gel network. In contrast, a porous protein network structure with distinct strands was observed for the samples treated at high homogenisation pressures, and the small fat globules were intimately involved in the strands in the network structure. The HOHE gels had a more porous protein network with thicker strands than the HEHO gels. The size of the fat globules and their incorporation in the protein network during acidification is proposed to affect the acid gel structure and properties.  相似文献   

4.
Whey protein concentrates (WPC) are low-cost protein ingredients, but their application in transparent ready-to-drink beverages is limited due to turbidity caused by fat globules and heat instability. In this work, fat globules were removed from WPC 34% (WPC-34) to prepare heat-stable ingredients via the Maillard reaction. The removal of fat globules by acid precipitation and centrifugation was observed to be the most complete at pH 4.0, and the loss of protein was caused by micrometer-sized fat globules and protein aggregates. Spray-dried powder prepared from the transparent supernatant was glycated at 130°C for 20 and 30 min or 60°C for 24 and 48 h. The 2 groups of samples had comparable heat stability and degree of glycation, evaluated by free amino content and analytical ultracentrifugation, but high-temperature, short-time treatment reduced the color formation during glycation. Therefore, WPC-34 can be processed for application in transparent beverages.  相似文献   

5.
6.
The effects of concentration and droplet size of anhydrous butterfat globules on the microstructure of heat-induced whey protein isolate gels (pH 4.60) were studied by scanning and transmission electron microscopy (TEM). All fat globules were emulsified with whey protein isolate and incorporated into the system prior to gelation. Protein aggregates became more closely packed as whey protein concentration was increased from 8 to 15% by weight in gels without added fat. There was no notable change in overall gel microstructure upon addition of fat globules, up to 25% by weight, when viewed by scanning electron microscopy. However, it appeared fat globules were intimately associated with the gel protein matrix. A twofold difference in fat globule size was obvious by TEM. Clusters of droplets became more predominant as butterfat content increased.  相似文献   

7.
The storage modulus G' of rennet and acid milk gels filled with milk fat globules was measured as a function of the fat globule surface composition (native milk fat globule membrane, caseins and whey proteins, or a mixture of the three due to mechanical treatments) and surface area (i.e., the fat globule size). By different technological procedures, it was possible to obtain fat globules of constant surface composition but various sizes, and vice-versa, which had never been done. For both rennet and acid gels, a critical fraction of the fat globule surface covered by caseins and whey proteins was identified (approximately 40%), beyond which G' increased. Below this threshold, the gel viscoelasticity was unaffected by mechanical treatments. When the diameter of native milk fat globules decreased, the G' of rennet gels increased slightly, whereas that of acid gels decreased sharply. For both types of gels, G' increased when the diameter of partially disrupted fat globules decreased. For recombined globules completely covered with caseins and few whey proteins, G' increased with fat globule surface area for rennet gels whereas it decreased for acid gels. With the help of confocal microscopy and in the light of general structural differences between rennet and acid gels, a mechanism is proposed for the effect of fat globule damage and diameter on G', depending on the interactions the globules can undergo with the casein network.  相似文献   

8.
陈海华  薛长湖 《食品科学》2010,31(11):25-30
采用质构分析法、扫描电子显微镜等方法研究乳清浓缩蛋白对竹荚鱼鱼糜凝胶劣化的抑制作用。结果表明:添加乳清浓缩蛋白(WPC)能显著改善竹荚鱼鱼糜在30℃凝胶化时的凝胶特性,并且添加量为5%(质量分数),加热时间为5h时,竹荚鱼鱼糜的凝胶特性最佳;添加WPC能显著抑制竹荚鱼鱼糜在50℃凝胶劣化现象,WPC的添加量为5%时,抑制效果显著,添加量为10%时,抑制效果最佳;WPC的添加量低于0.5%时,对竹荚鱼鱼糜凝胶色泽的影响不明显;添加量超过1%时,竹荚鱼鱼糜凝胶的白度显著降低。微观结构的观察表明,添加WPC使鱼糜凝胶的结构变得更加致密,因而能增强竹荚鱼鱼糜的凝胶强度。  相似文献   

9.
ABSTRACT: The effect of residual fat hydrolysis upon the gelation of whey protein concentrate (WPC) was studied. Gelling properties of a commercial WPC and lipase-treated WPC were evaluated on the basis of least concentration endpoint gelation, penetration test, texture profile analysis and water-holding capacity. Heat treatment of lipase-treated WPC led to gels with the highest hardness, springiness, cohesiveness and water retention. Such transformed WPC could be advantageously used to help improve texture in formulated meat, bakery, and confectionery products.  相似文献   

10.
Reconstituted skim milk formed by a gel by acidification to < pH 5.2 and heating to 60°C. The gel compressive stress (σc) was influenced by the heating process, increased with milk-nonfat-solids (MNFS) and reached a maximum at pH 4.0. The addition of emulsified fat facilitated gelation, increase gel σc and shear modulus, and decreased gel deformability. At an equal fat concentration, emulsions containing small-sized fat globules (i.e., more globules) reinforced the gels more markedly than emulsions comprised of large globules reflecting the importance of number of globules in the gels. Electron micrographs revealed crosslinkages between fat globules and casein particles in the gel network, which may have caused reinforcement of milk gels by milkfat.  相似文献   

11.
Microstructure of gels formed at 71°C from different mixtures of beef myofibril protein (BMP; 6.1% protein) and whey protein (WP) were studied by transmission electron microscopy (TEM). At a ratio of30:10 (w/w) of whey protein concentrate (WPC; 79.5% protein) to BMP, WP formed a network of aggregated clusters in which beef myofibril proteins were embedded. WP apparently acts as a filler and possibly as a cementing agent for the meat pieces. At a lower ratio of 10:30 (wl w), the WP aggregates occupied and increased the interstitial spaces between the myofibril protein and reinforced the network. The location of WP in the interstitial spaces might explain its water binding ability in beef patties formulated with WP and water. WP protected the beef myofibril protein structure during heating as less disintegration in the Z-line was observed in gels with WP compared to the control. Low-fat (10% fat) ground beef patties with added 10% water and 1–4% whey protein concentrate (WPC), cooked to three different internal temperatures (60, 70 and 80°C), were evaluated for their cooking characteristics and examined by TEM. For all levels of addition, WPC improved the cooking yield compared to a non-formulated control of 10% fat. Fat retention was also improved at the highest level of WPC addition. The increased cooking yield was shown to be caused principally by the better water retention. The textural parameters, hardness and chewiness, were not affected by WPC addition but increased with increasing cooking temperature. These temperature-induced changes were matched by marked changes to the ultrastructure of the meat products.  相似文献   

12.
Ice cream was manufactured on a pilot plant and the structure of the emulsion was estimated in terms of droplet size distribution and protein composition of the aqueous phase after homogenization (two stages: 19 MPa + 3 MPa, 70°C) and after ageing ( 18 h, 4°C). Four different factors were studied: the nature of the milk protein [skim milk powder (SMP), skim milk replacer (SMR) or whey protein concentrate ( WPC) ], the nature of the emulsifier (saturated monoglycerides or Sugin Fl50, which is apolysorbate 80-based emulsifier) and its concentration (0.17–0.67% w/w for Sugin F150; 0.20–0.54% wlw for saturated monoglycerides), and the amount of butter oil (8–12% wlw). Freshly homogenized mixes containing either SMP or an SMR were stable during the ageing stage, irrespective of the nature and the concentration of the emulsifier. WPC-based mixes, however, were destabilized after homogenization: this destabilization was found to be flocculation only, which shows that whey proteins are efficient against coalescence. The quantity of adsorbed protein per surface unit was systematically higher for SMP mix than for both SMR and WPC. After the ageing stage, the structure of the mixes containing monoglycerides or WPC + polysorbate 80 remained unchanged. However, polysorbate 80 used in combination with both SMP and SMR led to a destabilization of the mix during the ageing stage: this destabilization was found to depend upon the mass/surface ratio of polysorbate 80 to butteroil.  相似文献   

13.
Protein stabilised emulsions have been prepared in a valve homogeniser incorporated into a recirculating emulsification system, where the power input and number of passes have been varied. The food proteins studied were a soy-bean protein isolate, a whey protein concentrate (WPC) and a sodium caseinate. The emulsions obtained were characterized in terms of particle size distribution and amount of protein adsorbed on to the fat surface (protein load). Generally, the final fat surface area of the emulsions obtained increases more as a function of power input than as a function of number of passes. Distribution width, cs, decreases mostly with increasing power supply and number of passes, but at the highest power input cs increases. The protein load on the fat globules is largely determined by the fat surface area and by the type of protein adsorbed. The soy proteins give a high protein load and the caseinates give a low protein adsorption at small fat surface areas created. This relation is reversed at large surface areas of the fat globules. The relation between percentage protein adsorbed from bulk as a function of surface area suggests that the caseinates mainly cover the newly created interface by adsorption from the bulk, whereas the soy proteins fulfil this task mostly by spreading at the interface. Salt addition to 0.2M-NaCl enhances protein adsorption at the fat globule interface in the case of soy protein and caseinate, but for the whey proteins protein load is higher in distilled water.  相似文献   

14.
Extraction of membrane proteins from milk fat globules by GuHCl or by MgCl2 made the lipids more accessible to lipolysis by added lipoprotein lipase. The increase in lipolysis paralleled the loss of membrane proteins and was continuous up to 2.5 M GuHCl, which was the highest concentration used. About twice as much protein was extracted with 2.5 M GuHCl as with buffer only. The amount of protein lost was about 50% of total milk fat globule protein. Lipolysis of milk fat globules was inhibited by addition of the extracted protein. The extracted proteins also reduced lipolysis when added to whole milk. More protein was needed to inhibit lipolysis of milk fat globules treated with GuHCl compared with globules treated with buffer only. The inhibition by a given amount of protein decreased if more milk fat globules were used. Protein extracted with MgCl2 had similar effects as those extracted with GuHCl. The major components extracted with MgCl2 migrated in the 40 to 50-kdalton region on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By gel filtration chromatography, two protein fractions were obtained, which inhibited lipolysis more efficiently than the total extract. As has previously been found for inhibition of lipolysis by skim milk, the amount of extracted protein needed to inhibit lipolysis varied between preparations of milk fat globules. Milk with propensity to cold-induced ("spontaneous") lipolysis was normalized by addition of extracted proteins.  相似文献   

15.
Properties of gels prepared from five whey protein concentrates (WPC) with protein solubilities ranging from 27.5% to 98.1% in 0.1M NaCl, pH 7.0, chicken breast salt-soluble protein (SSP), or a combination of SSP and WPC at pH 6.0, 7.0 or 8.0 were compared. WPC did not form gels when heated to 65°C. SSP gels heated to 65°C were harder than those heated to 90°C at all pHs and hardness decreased as pH was increased. Hardness of combination gels heated to 65°C increased as WPC solubility decreased at all pHs; however, the opposite trend was observed at 90°C. Combination gels of the same WPC solubility at 65°C were more deformable than those heated to 90°C.  相似文献   

16.
Structural properties of stirred yoghurt as influenced by whey proteins   总被引:1,自引:0,他引:1  
The effect of whey protein addition on structural properties of stirred yoghurt systems at different protein and fat content was studied using laser diffraction spectroscopy, rheology and confocal laser scanning microscopy (CLSM). The composition of heated milk systems affected micro- and macroscopic properties of yoghurt gels. Particle size increased as a function of increasing whey protein content and decreased as a function of increased fat level. Firmness (elastic modulus) and apparent viscosity of manufactured yoghurt samples increased as a function of increased interparticle interactions, mainly caused by self-aggregation of whey proteins or aggregated whey protein-coated fat globules, respectively. The resistance towards shear-induced disruption of yoghurt gels increased with an increasing proportion of casein protein in the protein mixture, whereas products with high whey protein level revealed lower resistance behaviour towards shear-forces. CLSM images illustrated that the presence of large whey protein aggregates and lower number of fat globules lead to the formation of an interrupted and coarse gel microstructure characterised by large interstitial spaces. The higher the casein fraction and/or the fat level, the less interspaced voids in the network were observed. However, it is evident that the addition of whey proteins reinforces firmness properties of low-fat yoghurts comparable to characteristics of full-fat yoghurt.  相似文献   

17.
The behavior of casein and whey proteins at the oil-water interface was studied using a dynamic drop tensiometer (DDT). The dilational modulus of the interface was measured for aqueous solutions of skim milk powder (SMP) and whey protein concentrate (WPC) with various additions (salt, calcium, lactose) and (order of) various processing steps. Acidification or heating was performed before or after creation of the interface. The elastic properties of oil-water interfaces with adsorbed milk proteins could partly determine the rate of partial coalescence and resulting product instability.For WPC, preacidification slows down the adsorption, but the modulus is not affected. This is probably because, although the whey proteins change conformation more slowly at the interface, still a homogeneous film is formed. If postacidification is applied, coarsening of the protein film leads to loss of interfacial rigidity. Preheating of the aqueous phase with WPC leads to denaturation and aggregation, but the aggregates formed are still surface active and give high moduli. If preheating of a WPC solution is followed by postacidification, the resulting modulus is high (approximately 60 mN/m).The oil-water interfacial properties of SMP are only minimally affected by preheating or by choice of powder (low, medium, or high heat). At low pH, however, aggregates are formed that are less surface active, and interfacial moduli are lower.If measurements are performed at high temperature (i.e., if postheating is applied), for both SMP and WPC systems, moduli became much lower (approximately 10 mN/m). This is probably because of accelerated rearrangements, leading to the formation of inhomogeneous film structures.  相似文献   

18.
Structural and functional properties of whey protein concentrate (WPC) gels with different honey and wheat flour contents, prepared at pHs 3.75, 4.2 and 7.0, were analysed. Gel structure was observed by scanning electron microscopy. The apparent transition temperatures for protein denaturation and starch gelatinization were determined by differential scanning calorimetry. Gels were characterised through solubility assays in different extraction solutions and polyacrylamide gel electrophoresis of the soluble protein components. The firmness, elasticity, relaxation time, adhesivity and cohesiveness of gels were determined, and the water-holding capacity and superficial colour of gels were also studied. Results suggest that wheat flour could interact with whey proteins, and produces a decrease in the protein solubility of WPC gels, and in the temperature of whey protein denaturation. The effect of wheat flour on the functional properties of WPC gels was different at acidic than at neutral pH: the presence of wheat flour produced an increase in the relaxation time and in the cohesiveness of gels prepared at pH 3.75, whereas at neutral pH a decrease in both properties was observed. Honey and flour content increased the water-holding capacity and browning of WPC gels.  相似文献   

19.
Influence of dialyzable compounds on the Theological properties (shear stress and shear strain at failure) of heat-induced whey protein concentrate (WPC) and whey protein isolate (WPI) gels was examined. Dialyzing WPC and WPI suspensions prior to gelation increased the stress of two of three WPC gels and a WPI gel. Dialysis also significantly increased the strain of the same two WPC gels, normalizing all strain values. Replacement of calcium lost through dialysis did not significantly change gel rheology. However, chelating calcium caused a significant decrease in the stress of all gels: a minimum amount of calcium and/or a calcium complex appears to have a major role in whey protein gelation.  相似文献   

20.
Addition of whey protein concentrate (WPC), whey protein isolate (WPI) or soy protein isolate (SPI) to salt-soluble muscle proteins (SSP) decreased the gel strength. WPI:SSP gels had higher water-holding capacity than SSP, SSP:WPC or SSP:SPI gels. Myosin heavy chain was a principal contributor to gel network formation in SSP, SSP:WPC, SSP:WPI and SSP:SPI systems. The characteristic fibrous network formed by SSP was the dominant feature of the microstructure of SSP:WPC and SSP:WPI gels. SSP:SPI gels had a more aggregated appearance due to the occurrence of clusters of SPI throughout the gel matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号