首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
王刚  高金森  徐春明 《石油化工》2004,33(Z1):1472-1474
以华北常压渣油掺减压蜡油为原料油,在高低并列式提升管催化裂化中试装置上着重考察了剂油短接触催化裂化过程对催化裂化产品分布的影响.实验结果表明,剂油接触时间是控制催化裂化反应过程中干气与焦炭产率的关键因素,缩短剂油接触时间可以有效地减少干气和焦炭产率,适当提高反应温度和剂油比,可以在较高转化率条件下,维持最佳焦炭产率,同时大幅度降低干气产率,获得更高轻质油收率.  相似文献   

2.
分析了中国石油玉门油田公司炼油化工总厂80万t/a两段提升管催化裂化装置运行过程中存在的一段提升管反应温度偏低、两段提升管待生剂挂焦不均的问题的原因,结果表明,这是由于第1再生斜管推动力不足及两段提升管进料性质差异大所致。通过优化进料系统,使二段提升管实现新鲜原料进料,一段提升管反应温度由476℃提高至507℃,二段提升管回炼比由0.78下降至0.48,焦炭收率降低1.23个百分点,干气收率降低0.80个百分点,轻质油收率上升5.06个百分点,总液体收率上升0.63个百分点,加工能力提高至84万t/a,装置总能耗降低10 kg/t(以标准油计)。  相似文献   

3.
采用中国石油独山子石化分公司催化裂化装置的哈国蜡油原料和平衡催化剂,在实验室提升管试验装置上开展试验,考察反应温度、剂油比、反应时间对产品分布的影响,根据汽、柴油收率情况,确定汽油生产方案的条件为:反应温度470℃;剂油比7,并进行了优化试验。提升管试验结果与工业装置相比,液化石油气收率高10.22百分点,汽油收率低6.47百分点,干气收率比工业装置低不到2百分点,柴油、重油、焦炭收率及转化率提升管试验结果与工业装置相差小于1百分点。  相似文献   

4.
重油催化裂化MZCC技术的工艺基础研究   总被引:1,自引:1,他引:0  
建立在多区协同控制新理念基础上的重油催化裂化MZCC(A Milti.Zone Cascade.Controlled FCC Process)技术,以优化油剂混合热量为工艺基础,提出了进料强返混、反应平流推进、产物超快分离及化学汽提的分区强化新方法。为了实施该技术,采用连续反应-再生提升管催化裂化中型试验装置,考察了强化油剂混合条件对重油催化裂化反应过程产物分布的影响规律,对MZCC技术的工艺基础进行了详细的研究。研究结果表明,降低再生催化剂温度,提高剂油比,在减少再生催化剂与原料接触温差的条件下提供适当的油剂混合热量,有利于提高提升管反应器内催化剂活性中心与原料的可接近性,强化烃分子与催化剂之间的热量和物质传递,从而更加有效地实现对大分子烃类的裂化反应,在相同转化率下可大幅度减少干气的产率,获得更高的轻质油收率和液体产品收率。  相似文献   

5.
催化裂化汽油催化改质降烯烃反应规律的试验研究   总被引:11,自引:1,他引:10  
利用催化裂化催化剂在小型提升管催化裂化装置上对催化裂化汽油催化改质降烯烃过程的反应规律进行了试验研究,详细考察了反应温度、剂油比、反应时间、催化剂活性以及催化剂类型对催化裂化汽油改质降烯烃过程的影响。试验结果表明,随着反应温度、剂油比、反应时间以及催化剂活性的增加,改质汽油烯烃含量降低的幅度增加。催化裂化汽油改质后,烯烃含量大幅下降,异构烷烃和芳烃含量有较大幅度的增加,烯烃含量可以降低到汽油新标准的要求,辛烷值基本维持不变,并且汽油收率高,液体收率维持在98.5%以上,(干气 焦炭)产率损失小。  相似文献   

6.
重油乳化原料催化裂化工艺的探讨   总被引:4,自引:0,他引:4  
提出将乳化技术应用于重油催化裂化原料的乳化。乳化原料进入提升管反应器可发生“爆破雾化” ,使进料的雾化效果大为改善 ,有利于反应的进行 ,轻质油品收率提高 ,产品分布得到改善。抚顺石油学院催化裂化课题组的大量实验数据表明 ,重油经乳化后作为进料 ,催化裂化轻质油品收率提高 1.0~ 5.0个百分点 ,干气产率降低0 .5~ 1.5个百分点 ,焦炭产率降低 1.0~ 1.5个百分点。论述了乳化原料催化裂化技术的优点。根据“爆破雾化”和“分子聚集与解聚”理论分析了重油乳化原料催化裂化技术应用于工业中的可行性。  相似文献   

7.
高温、短接触时间催化裂化的主要改进已由Mobil公司工业化.在FCC反应器使用密闭旋风分离系统能降低提升管后的非选择性热裂化,从而可降低干气收率,提高汽油和馏分油收率及汽油辛烷值,同时降低重油收率. FCC提升管反应器在某些方面尚能改进.提高效率的主要方面之一是减少反应器中的热裂化.热裂化的活化能大约比FCC高4倍(60/15),故热裂化对提高温度很敏感.在高温、短接触时间的FCC反应中,提升管后的热裂化对像甲烷和乙烷类化合物收率的贡献,超过一半.  相似文献   

8.
在固定流化床反应器上,采用 LCC-200型多产低碳烯烃催化剂,以大庆常压渣油为原料,考察了反应温度、重时空速、催化剂与原料油的质量比(剂油比)、水蒸气与原料油的质量比(水油比)对催化裂解产物分布的影响,并与提升管反应器的催化裂解实验结果进行了对比。实验结果表明,反应温度和剂油比对低碳烯烃收率的影响较大,重时空速和水油比的影响相对较小;较高的反应温度有利于多产低碳烯烃,低碳烯烃收率随剂油比的增大存在最佳。值在620℃、剂油比4、重时空速10 h~(-1)、水油比0.10的优化反应条件下,丙烯收率约为18%,乙烯、丙烯和丁烯的总收率约为35%。在相似的操作条件下,采用固定流化床反应器时,干气、液化石油气、汽油和焦炭的收率比提升管反应器离,而油浆和柴油的收率低;同时,乙烯、丙烯和丁烯的总收率也低。  相似文献   

9.
本文通过胜利蜡油在小型提升管催化裂化装置上试验,考察了超稳 Y(USY)型催化剂再生后碳含量对催化裂化性能的影响,结果表明:USY 催化剂再生后焦炭主要分布在USY 分子筛的酸性中心上,引起裂化活性下降;随着再生剂碳含量降低,汽油产率提高,干气及焦炭产率下降,汽油辛烷值损失不大。USY 再生剂碳主要影响活性及选择性,对产品性质影响较小,所以,工业生产使用 USY 催化剂时,一定要完全再生,尽可能使再生剂碳含量小于0.05m%,从而提高汽油辛烷值桶,增加装置的经济效益。  相似文献   

10.
催化裂化汽油改质降烯烃反应过程规律的研究   总被引:11,自引:4,他引:7  
利用裂化催化剂在微反-色谱联合装置、小型固定流化床试验装置和小型提升管催化裂化试验装置上,对催化裂化汽油改质降烯烃过程的反应规律进行了研究。结果表明,催化裂化汽油改质降烯烃过程的产物分布与烯烃含量的降低幅度(烯烃转化率)存在着较好的关联性,说明无论在何种反应条件下采用何种催化剂,只要催化裂化汽油改质后烯烃含量降低,就要付出产生一定量的干气和焦炭的代价,且两者存在着基本对应的关系。随着烯烃转化率的提高,催化裂化汽油改质后烯烃含量降低的幅度增加,C3 液体收率及汽油收率降低,说明C3 液体收率及汽油收率与汽油烯烃降低幅度是相互制约的。在同样的反应条件下,高碳数烯烃的反应活性要高于低碳数烯烃的反应活性。  相似文献   

11.
在分析两段提升管催化裂解多产丙烯工艺特点的基础上研制出两段提升管催化裂解专用LCC-300催化剂。使用LCC-300催化剂,以大庆常压渣油为原料,在单段提升管反应装置上进行模拟两段提升管试验。结果表明,在丙烯收率22.27%的情况下,总液体收率为80.08%,所产汽油的烯烃含量低、芳烃含量高,为高辛烷值汽油调和组分。在TMP工业试验装置上使用配套LCC-300催化剂,一段提升管采用混合C4与大庆常压渣油组合进料,二段提升管为回炼轻汽油、回炼油和回炼油浆组合进料,装置标定结果表明,在丙烯收率20.38%的情况下,总液体收率为82.95%,干气和焦炭收率之和仅为13.99%,说明LCC-300催化剂在多产丙烯、减少干气和焦炭生成方面具有优势。  相似文献   

12.
在中型提升管催化裂化装置中,以含硫质量分数为0.610%的减压渣油与减压蜡油混合物(二者质量比为3∶7)为原料,LDO-70 S为催化剂,在反应温度500℃,反应时间为2 s的条件下,可制备含硫质量分数为0.027%的催化裂化汽油。结果表明,随着原料含硫质量分数的提高,汽油含硫质量分数提高,其中后者是前者的8%~9%。随着反应温度的升高,干气、液化气和焦炭质量分数增加,汽油、柴油、重油和汽油含硫质量分数降低。随着催化剂/原料油(质量比)的增加,干气、液化气、焦炭和汽油中含硫质量分数提高,汽油、柴油和重油质量分数降低。  相似文献   

13.
采用MLC-500催化剂,大庆VGO在小型试验装置上进行试验,试验结果表明,在较低的转化率下,采用提高反应温度的方法来提高转化率较适宜,在较高的转化率下,采用增加剂油比的方法来提高转化率较适宜。中型试验结果验证了小型试验结果,当再生催化剂温度由7200C降低到6100C,剂油比由5增加到5.5时,在相同转化率下,干气下降幅度达16.20%,焦炭下降幅度达16.81%,开发降低干气和焦炭产率的MIP工艺技术关键在于如何降低再生催化剂的温度以及控制合理的再生催化剂的温度和剂油比。  相似文献   

14.
催化裂化汽油裂解制备低碳烯烃   总被引:11,自引:1,他引:10  
在小型提升管催化裂化实验装置上研究了催化裂化(FCC)汽油催化裂解生产低碳烯烃的反应规律。实验结果表明,催化剂类型、反应温度、停留时间及水蒸气用量对乙烯、丙烯的产率均有显著的影响。高温、大剂油比、长停留时间及提高水蒸气用量都可促进汽油的裂解,增加低碳烯烃的产率。在实验室条件下,以ZC-7300为催化剂,多产低碳烯烃的最佳条件:反应温度580℃,停留时间1.6s左右,剂油质量比为11,水蒸气与汽油的质量比为0.20。对不同催化剂进行了对比实验得知,自制催化剂A的催化效果最好,汽油转化率达到40%以上,乙烯+丙烯的产率达到20%以上,焦炭和干气(不含乙烯)的产率不大于5%。  相似文献   

15.
催化剂的预分配状况对提升管内气固接触效率、轻质油收率、焦炭和干气产率等起着重要的作用。文中结合气固两相在提升管内的流动特点,从气固流动规律、结构形式、预提升介质等方面对近年来国内外普遍使用的催化裂化提升管预提升段的结构特点、预提升效果等进行了分析,阐述了近年来预提升结构的研究进展。  相似文献   

16.
在模拟汽提实验装置上,对两段提升管催化裂化工业装置不同提升管内的待生剂进行了汽提实验研究。结果表明,汽提温度和汽提蒸汽流量均存在最佳值。当汽提温度为510℃时,两种待生剂的汽提效率达到最大值。继续提高汽提温度,一段待生剂汽提的产物分布和焦炭组成无明显变化;而二段待生剂的焦炭产率略有增加,且焦炭由可溶性焦炭向不可溶焦炭转变。汽提蒸汽的流量对两种待生剂汽提过程的影响趋势相似,但是二段待生剂达到最大汽提效率所需的蒸汽流量高于一段待生剂。汽提后待生剂的可溶性焦炭分析表明,二段待生剂可溶性焦炭的缩合度高于一段待生剂,且二段待生剂表面和孔道内沉积的可溶性焦炭的组成差别较小。  相似文献   

17.
催化裂化C4烃组合回炼催化裂解增产丙烯研究   总被引:1,自引:0,他引:1  
 在实验室小型提升管装置上研究了C4烃催化裂解增产丙烯的可行性以及C4烃与不同重质原料油组合进料时对干气收率的抑制。结果表明,反应温度和反应时间对C4烃裂解的影响较大,适宜的高温、短反应时间有利于C4烃催化裂解生产丙烯,降低干气、焦炭收率,降低氢转移反应,提高丙烯收率及选择性。当反应温度为600 ℃、反应时间为0.3 s时,C4烃单独反应的丙烯收率达到18.25%,干气收率在5.76%左右;在反应温度为600 ℃时,C4与重质油组合进料的丙烯收率可达13.05%~17.41%,干气收率下降至3.81%~5.28%。  相似文献   

18.
基于催化裂化反应化学,探讨降低干气和焦炭产率的催化裂化新技术(MIP-DCR)开发的原理;采用小型实验装置对该技术的可能操作模式进行探索;在中国石化九江分公司对该技术进行了工业应用,并采用CFD软件探讨了MIP-DCR工业试验装置的预提升混合器冷、热催化剂的可能混合方式。小型实验结果表明,在高活性、低剂油比的操作模式下干气和焦炭产率较低;工业应用结果表明:采用MIP-DCR技术通过减少热裂化和质子化裂化反应可以分别降低干气和焦炭15.48%和4.10%,增加液化气和汽油产率,同时降低能耗;MIP-DCR工艺打破热平衡限制,使剂油比成为独立变量,具有更多、更灵活的操作模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号