首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a colorimetric procedure, we assessed the HCN-p of black cherry leaves (Prunus serotina) ingested by the eastern tent caterpillar, Malacosoma americanum, and the cyanide content of the bolus as it passed thorough the caterpillar's digestive tract and into the detritus pool. The mean HCN-p of leaves in our study area was 1902 ± 174 (SE) ppm. Young leaves found at the tips of growing branches, which the caterpillars preferred, had a significantly higher HCN-p (3032 ± 258 ppm) than older leaves found at the middle (1542 ± 243 ppm) or base of the shoot (1131 ± 159 ppm). Following a bout of overnight feeding on young leaves, the cyanide content of the foregut and midgut boluses of early sixth-instar caterpillars averaged 631 ± 161 ppm, and 14 ± 3 ppm, respectively, indicating that host-derived cyanide is rapidly depleted as the bolus transits the gut. Some cyanide, however, remains. In three studies, the mean cyanide content of fresh fecal pellets ranged from approximately 20 to 38 ppm, while the dried, compacted pellets ranged from 63 to 85 ppm. Food in the foreguts of mature caterpillars dispersing over the ground in search of pupation sites had 417 ± 99 ppm cyanide. The potential impact of this egested and caterpillar-transported cyanide on the consumer and detritivore communities is discussed.  相似文献   

2.
The effect of volatiles related to feeding activity of nonprey caterpillars, Spodoptera exigua, on the olfactory response of the predatory mites Phytoseiulus persimilis was examined in a Y-tube olfactometer. At a low caterpillar density (20 caterpillars on 10 Lima bean leaves), the predators were significantly more attracted to volatiles from infested leaves on which the caterpillars and their products were present or from infested leaves from which the caterpillars and their products had been removed when compared to volatiles from uninfested leaves. The predators, however, significantly avoided odors from 20 caterpillars and their products (mainly feces) removed from bean leaves. In contrast, at a higher caterpillar density (100 caterpillars on 10 Lima bean leaves), the predators avoided volatiles from caterpillar-infested bean leaves. Volatiles from infested leaves from which the caterpillars and their products had been removed were not preferred over volatiles from uninfested leaves. Volatiles from feces collected from 100 caterpillars were strongly avoided by the predators, while the behavior of the predatory mites was not affected by volatiles from 100 caterpillars removed from a plant. The data show that carnivorous arthropods may avoid nonprofitable herbivores. This avoidance seems to result from an interference of volatiles from herbivore products with the attraction to herbivore-induced plant volatiles.  相似文献   

3.
Induced plant responses to attack by chewing insects have been intensively studied, but little is known about plant responses to nonchewing insects or to attack by multiple herbivores with different feeding habits. We examined volatile emissions by tobacco, Nicotiana tabacum, in response to feeding by the piercing–sucking insect western flower thrips (WFT), Frankliniella occidentalis, the chewing herbivore Heliothis virescens, and both herbivores simultaneously. In addition, we examined the effects of herbivore-induced plant defenses on host-plant selection by WFT. Plants responded to thrips feeding by consistently releasing five compounds. Simultaneous feeding by WFT and H. virescens elicited the same 11 compounds emitted in response to caterpillar feeding alone; however, two compounds, α-humulene and caryophyllene oxide, were produced in greater amounts in response to simultaneous herbivory. In choice tests, thrips consistently preferred uninduced plants over all other treatments and preferred plants damaged by caterpillars and those treated with caterpillar saliva over those treated with caterpillar regurgitant. The results are consistent with a previous finding that caterpillar regurgitant induces the release of significantly more volatile nicotine than plants damaged by caterpillars or plants treated with caterpillar saliva. A repellent effect of nicotine on WFT was confirmed by encircling unwounded plants with septa releasing volatile nicotine. Our results provide the first direct evidence that thrips feeding induces volatile responses and indicates that simultaneous herbivory by insects with different feeding habits can alter volatile emissions. In addition, the findings demonstrate that induced plant responses influence host-plant selection by WFT and suggest that the induction of volatile nicotine may play a role in this process.  相似文献   

4.
The caterpillars of Gloveria sp. mark trails with a pheromone they deposit by dragging the ventral surface of the tip of the abdomen along branch pathways as they move between their communal nest and distance feeding sites. The threshold sensitivity of the caterpillar for an extract prepared from the secretory site was approximately 0.5 × 10–3 caterpillar equivalents/cm of trail. Bioassays show that Gloveria follows neither authentic trails of Malacosoma americanum nor artificial trails prepared from 5-cholestane-3-one, a chemical previously reported to elicit trail following from other social caterpillars. Although our observations show that fed caterpillars mark heavily as they return to their nest, we found no evidence that individual caterpillars are able to recruit hungry nestmates to new food finds. In this species, recruitment to food occurs only after many caterpillars have reinforced a trail to a newly discovered food source. In contrast, hungry caterpillars of the confamilial species M. americanum, tested under identical conditions, responded strongly to the postprandial trails of individual caterpillars and rapidly abandoned depleted sites in favor of new food finds. We postulate that the difference in the efficiency with which these two species recruit nestmates to food evolved in response to differences in the spatial distribution of their food supplies.  相似文献   

5.
Although caterpillars of Thaumetopoea pityocampa may mark their pathways with silk, this study shows that the material is essential to neither the elicitation nor maintenance of trail-following or processionary behavior. Trail following is dependent upon a pheromone the caterpillars deposit by brushing the ventral surfaces of the tips of their abdomens against the substrate. Earlier instars are strongly bound to their trail system; in the laboratory, caterpillars followed circular trails continuously for as long as 12 hr before breaking away from them. The trail pheromone is long-lived and soluble in nonpolar solvents, but its volatilization or degradation allows the caterpillars to distinguish new from aged trails. In contrast to trail following, processionary behavior, the head-to-tail, single-file movement of the caterpillars is dependent on neither silk nor the trail pheromone. Stimuli associated with setae found on the tip of the abdomen of the precedent caterpillar serve to hold processions together, and such stimuli take priority over those associated with either the trail pheromone or silk. Although the caterpillars discern trail strength and choose stronger over weaker trails, the trail marking system of the processionary caterpillar appears less sophisticated than those of other, previously studied species of social caterpillars, and colonies are relatively inefficient in abandoning exhausted feeding sites in favor of new food finds. In laboratory studies, females were more likely to lead processions than males, and leaders, regardless of gender, expended more energy in locomotion than followers.  相似文献   

6.
Do Caterpillars Secrete “Oral Secretions”?   总被引:1,自引:0,他引:1  
The oral secretions or regurgitant of caterpillars contain potent elicitors of plant induced responses. These elicitors are recognized by host plants to differentiate between simple mechanical injury and the presence of herbivores. In some cases, this level of recognition is highly specific. Despite the in-depth chemical characterization of these elicitors, little is known about the amounts delivered in regurgitant during feeding. In this study, we use a fluorescent dye to label regurgitant in order to visualize caterpillar regurgitation during feeding. The procedure is highly sensitive and allows us to visualize nanoliter amounts of regurgitant. We examined the propensity of larval Helicoverpa zea, Heliothis virescens, Spodoptera exigua, Spodoptera frugiperda, and Manduca sexta to regurgitate on various host plants. These species were selected because they have been among the most intensely studied in terms of elicitors. Our results indicate that most larvae did not regurgitate following a brief feeding bout (∼10 min) during which they ate ca. 0.40 cm2 of leaf. When larvae did regurgitate, it was typically less than 10 nl. This is several orders of magnitude less than is typically used in most studies on oral secretions. The frequency of regurgitation appears to vary depending upon the host plant. Larval H. zea are less likely to regurgitate when feeding on tomato leaves compared to corn mid-whorl tissue. Our results have importance in understanding the role of oral secretions in plant recognition of herbivory. Because caterpillars did not routinely regurgitate during feeding, it is likely that they avoid the elicitation of some plant defensive responses during most feeding bouts.  相似文献   

7.
It is predicted that enemies of insect herbivores may influence the effects of herbivores on their host plants by affecting the choice of plant genotypes. To examine the effect of predators, we conducted two experiments, each with a different caterpillar species (Junonia coenia and Pyrrharctia isabella). Under seminatural conditions, we provided a choice between two genotypes of plantain (Plantago lanceolata) with different levels of iridoid glycosides and used Podisus maculiventris stinkbugs as predators. There were four treatments: no herbivores and no predators, low density of herbivores and no predators, high density of herbivores and no predators, and high density of herbivores plus predators. The caterpillars had little effect on plant growth but did influence the iridoid glycoside concentration. For the Junonia experiment, the concentration of iridoid glycosides was less for plots with a low density of caterpillars (with no predators) compared to the other treatments of caterpillar density. In the Pyrrharctia experiment, catalpol was induced by a high density of caterpillars (with no predators). There were no increases in total iridoid glycosides associated with either herbivore species. The presence of predators had no effect on plant growth or total iridoid glycoside pattern. The lack of effect by predators seems to reflect the relatively large variation in iridoid glycoside concentration among leaf ages, and the herbivores ability to respond to that variation, such that the difference in iridoid glycoside concentrations in the plant genotypes was less important.  相似文献   

8.
Induction of plant defense in response to herbivory includes the emission of synomones that attract the natural enemies of herbivores. We investigated whether mechanical damage to Brussels sprouts leaves (Brassica oleracea var.gemmifera) is sufficient to obtain attraction of the parasitoidCotesia glomerata or whether feeding byPieris brassicae caterpillars elicits the release of synomones not produced by mechanically damaged leaves. The response of the parasitoidCotesia glomerata to different types of simulated herbivory was observed. Flight-chamber dual-choice tests showed that mechanically damaged cabbage leaves were less attractive than herbivore-damaged leaves and mechanically damaged leaves treated with larval regurgitant. Chemical analysis of the headspace of undamaged, artificially damaged, caterpillar-infested, and caterpillar regurgitant-treated leaves showed that the plant responds to damage with an increased release of volatiles. Greenleaf volatiles and several terpenoids are the major components of cabbage leaf headspace. Terpenoids are emitted in analogous amounts in all treatments, including undamaged leaves. On the other hand, if the plant is infested by caterpillars or if caterpillar regurgitant is applied to damaged leaves, the emission of green-leaf volatiles is highly enhanced. Our data are in contrast with the induction of more specific synomones in other plant species, such as Lima bean and corn.  相似文献   

9.
Systemically Induced Plant Volatiles Emitted at the Time of “Danger”   总被引:8,自引:0,他引:8  
Feeding by Pieris brassicae caterpillars on the lower leaves of Brussels sprouts (Brassica oleracea var. gemmifera) plants triggers the release of volatiles from upper leaves. The volatiles are attractive for a natural antagonist of the herbivore, the parasitoid Cotesia glomerata. Parasitoids are attracted only if additional damage is inflicted on the systemically induced upper leaves and only after at least three days of herbivore feeding on the lower leaves. Upon termination of caterpillar feeding, the systemic signal is emitted for a maximum of one more day. Systemic induction did not occur at low levels of herbivore infestation. Systemically induced leaves emitted green leaf volatiles, cyclic monoterpenoids, and sesquiterpenes. GC-MS profiles of systemically induced and herbivore-infested leaves did not differ for most compounds, although herbivore infested plants did emit higher amounts of green leaf volatiles. Emission of systemically induced volatiles in Brussels sprouts might function as an induced defense that is activated only when needed, i.e., at the time of caterpillar attack. This way, plants may adopt a flexible management of inducible defensive resources to minimize costs of defense and to maximize fitness in response to unpredictable herbivore attack.  相似文献   

10.
Exploratory trails deposited on paper strips by the forest tent caterpillar (FTC),Malacosoma disstria Hubner, and the eastern tent caterpillar (ETC),M. americanum (Fabricius), as well as extracts of these trails, readily elicited interspecific trail-following behavior. In 2-choice tests involving simple Y mazes constructed from these paper strips, the caterpillars of both species preferred by approximately 31 the trails of the FTC. Studies involving whole colonies of the ETC maintained under nearnatural conditions in the laboratory, however, indicated that the trails deposited by successful foragers of the ETC as they returned to their tent from feeding sites were more attractive than the exploratory trails of either the ETC or FTC. The pronounced interspecific response of these congeners to each other's trails suggests that they utilize either qualitatively similar or identical trail-marking chemicals. Both species preferred their own trails to those ofArchips cerasivoranus (Fitch) (Tortricidae), providing the first evidence that more distantly related lepidopterous larvae utilize distinct trails.  相似文献   

11.
Interactions between butterflies and caterpillars in the genus Pieris and plants in the family Brassicaceae are among the best explored in the field of insect–plant biology. However, we report here for the first time that Pieris brassicae, commonly assumed to be a typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather than on their leaves. First- and second-instar caterpillars were observed to feed primarily on leaves, whereas late second and early third instars migrated via the small leaves of the flower branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding was observed. We investigated growth rates of caterpillars having access exclusively to either leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the final (fifth) instar, after which they entered into the wandering stage, leaving the plant in search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf feeding. Flowers contained levels of glucosinolates up to five times higher than those of leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethylglucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were present at significantly higher levels in flowers than in leaves. In response to caterpillar feeding, sinigrin levels in both leaves and flowers were significantly higher than in undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were lower. Our results show that feeding on flower tissues, containing higher concentrations of glucosinolates, provides P. brassicae with a nutritional benefit in terms of higher growth rate. This preference appears to be in contrast to published negative effects of volatile glucosinolate breakdown products on the closely related Pieris rapae.  相似文献   

12.
Butterfly caterpillars in the lycaenid subfamily Miletinae are predators of ant-tended Homoptera, yet they lack specialized secretory and call-production organs crucial to ant association in other lycaenids. Here, we address the question of how miletine caterpillars have invaded the ant–Homoptera symbiosis through a study of the only New World miletine, Feniseca tarquinius, a predator of the wooly aphid Prociphilus tesselatus. Previous interpretations have suggested that F. tarquinius and other miletine caterpillars avoid ant aggression by concealing themselves under silken webs. In contrast, our field data indicate that F. tarquinius caterpillars are less likely to be concealed in the presence of the ants Camponotus pennsylvanicus and Formica obscuriventris than in the absence of ants, although caterpillar and ant behaviors vary between years. Chemical analysis and behavioral assays suggest that chemical camouflage, not physical concealment, is responsible for the ants’ failure to detect and remove F. tarquinius caterpillars from aphid colonies. Analyses by gas chromatography indicate that the cuticular lipid composition of caterpillars are similar to that of their aphid prey, although it varies with prey species. Behavioral assays confirm that solvent extracts of F. tarquinius caterpillars and P. tesselatus aphids evoke similar behavioral responses in C. pennsylvanicus ants. Chemical camouflage is well known in social parasites of ants, but the present study represents one of a few documented cases where chemical deceit is important to interactions with ants outside the nest.  相似文献   

13.
Plant volatiles influence host selection of herbivorous insects. Since volatiles often vary in space and time, herbivores (especially polyphagous ones) may be able to use these compounds as cues to track variation in host plant quality based on their innate abilities and previous experience. We investigated the behavioral response of naïve (fed on artificial diet) and experienced (fed on poplar) gypsy moth (Lymantria dispar) caterpillars, a polyphagous species, towards constitutive and herbivore-induced black poplar (Populus nigra) volatiles at different stages of herbivore attack. In Y-tube olfactometer assays, both naïve and experienced caterpillars were attracted to constitutive volatiles and volatiles released after short-term herbivory (up to 6 hr). Naïve caterpillars also were attracted to volatiles released after longer-term herbivory (24–30 hr), but experienced caterpillars preferred the odor of undamaged foliage. A multivariate statistical analysis comparing the volatile emission of undamaged plants vs. plants after short and longer-term herbivory, suggested various compounds as being responsible for distinguishing between the odors of these plants. Ten compounds were selected for individual testing of caterpillar behavioral responses in a four-arm olfactometer. Naïve caterpillars spent more time in arms containing (Z)-3-hexenol and (Z)-3-hexenyl acetate than in solvent permeated arms, while avoiding benzyl cyanide and salicyl aldehyde. Experienced caterpillars avoided benzyl cyanide and preferred (Z)-3-hexenyl acetate and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) over solvent. Only responses to DMNT were significantly different when comparing experienced and naïve caterpillars. The results show that gypsy moth caterpillars display an innate behavioral response towards constitutive and herbivore-induced plant volatiles, but also that larval behavior is plastic and can be modulated by previous feeding experience.  相似文献   

14.
Herbivore feeding induces plants to emit volatiles that are detectable and reliable cues for foraging parasitoids, which allows them to perform oriented host searching. We investigated whether these plant volatiles play a role in avoiding parasitoid competition by discriminating parasitized from unparasitized hosts in flight. In a wind tunnel set-up, we used mechanically damaged plants treated with regurgitant containing elicitors to simulate and standardize herbivore feeding. The solitary parasitoid Cotesia rubecula discriminated among volatile blends from Brussels sprouts plants treated with regurgitant of unparasitized Pieris rapae or P. brassicae caterpillars over blends emitted by plants treated with regurgitant of parasitized caterpillars. The gregarious Cotesia glomerata discriminated between volatiles induced by regurgitant from parasitized and unparasitized caterpillars of its major host species, P. brassicae. Gas chromatography-mass spectrometry analysis of headspace odors revealed that cabbage plants treated with regurgitant of parasitized P. brassicae caterpillars emitted lower amounts of volatiles than plants treated with unparasitized caterpillars. We demonstrate (1) that parasitoids can detect, in flight, whether their hosts contain competitors, and (2) that plants reduce the production of specific herbivore-induced volatiles after a successful recruitment of their bodyguards. As the induced volatiles bear biosynthetic and ecological costs to plants, downregulation of their production has adaptive value. These findings add a new level of intricacy to plant–parasitoid interactions.  相似文献   

15.
Sensitivity of caterpillars of Heliothis virescens, a generalist, and H. subflexa, a specialist, to eight different plant secondary compounds was examined behaviorally. The compounds were nicotine hydrogen tartrate, hordenine, caffeine, sinigrin, linamarin, arbutin, chlorogenic acid, and salicin. All compounds deterred feeding, at least at the higher concentrations, but the generalist was less affected than the specialist. Thus the hypothesis that specialists have greater sensitivity to deterrents than generalists was supported. In most cases deterrence occurred on first encounter, indicating that the response was sensory; in some cases short-term postingestive effects also appeared to play a role. The larger quantities of deterrent-containing food ingested by H. virescens sometimes resulted in measurable postingestive effects during the second control test. This did not occur in H. subflexa, which more commonly rejected the deterrent-containing food on first contact. The contrast between the species is discussed in relation to tradeoffs involved in different diet breadths.  相似文献   

16.
Cyanide production has been reported from over 2500 plant species, including some members of the Brassicaceae. We report that the important invasive plant, Alliaria petiolata, produces levels of cyanide in its tissues that can reach 100 ppm fresh weight (FW), a level considered toxic to many vertebrates. In a comparative study, levels of cyanide in leaves of young first-year plants were 25 times higher than in leaves of young Arabidopsis thaliana plants and over 150 times higher than in leaves of young Brassica kaber, B. rapa, and B. napus. In first-year plants, cyanide levels were highest in young leaves of seedlings and declined with leaf age on individual plants. Leaves of young plants infested with green peach aphids (Myzus persicae) produced just over half as much cyanide as leaves of healthy plants, suggesting that aphid feeding led to loss of cyanide from intact tissues before analysis, or that aphid feeding inhibited cyanide precursor production. In a developmental study, levels of cyanide in the youngest and oldest leaf of young garlic mustard plants were four times lower than in the youngest and oldest leaf of young Sorghum sudanense (cv. Cadan 97) plants, but cyanide levels did not decline in these leaves with plant age as in S. sudanense. Different populations of garlic mustard varied moderately in the constitutive and inducible expression of cyanide in leaves, but no populations studied were acyanogenic. Although cyanide production could result from breakdown products of glucosinolates, no cyanide was detected in vitro from decomposition of sinigrin, the major glucosinolate of garlic mustard. These studies indicate that cyanide produced from an as yet unidentified cyanogenic compound is a part of the battery of chemical defenses expressed by garlic mustard.  相似文献   

17.
The vast majority of studies of plant indirect defense strategies have considered simple tritrophic systems that involve plant responses to attack by a single herbivore species. However, responses by predators and parasitoids to specific, herbivore-induced, volatile blends could be compromised when two or more different herbivores are feeding on the same plant. In Y-tube olfactometer studies, we investigated the responses of an aphid parasitoid, Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae), to odors from cabbage plants infested with the peach-potato aphid Myzus persicae (Sulzer) (Homoptera: Aphididae), in both the presence and absence of a lepidopteran caterpillar, Plutella xylostella L. (Lepidoptera: Plutellidae). Female parasitoids chose aphid-infested plants over uninfested plants but did not distinguish between caterpillar-infested and uninfested plants. When given a choice between odors from an aphid-infested plant and those from a plant infested with diamondback moth larvae, they significantly chose the former. Furthermore, the parasitoids responded equally to odors from a plant infested with aphids only and those from a plant infested with both aphids and caterpillars. The results support the hypothesis that the aphid and the caterpillar induce different changes in the volatile profile of cabbage plants and that D. rapae females readily distinguish between the two. Furthermore, the changes to the plant volatile profile induced by the caterpillar damage did not hinder the responses of the parasitoid to aphid-induced signals.  相似文献   

18.
Maize plants under attack by caterpillars emit a specific blend of volatiles that is highly attractive to parasitic wasps. The release of these signals is induced by elicitors in the caterpillar regurgitant. Studies suggest that plants respond differently to different herbivore species and even to different herbivore stages, thus providing parasitoids and predators with specific signals. We tested if this is the case for different larval instars of the noctuid moth Spodoptera littoralis when they feed on maize plants. Cut maize plants were incubated in diluted regurgitant from second, third, or fifth instar caterpillars. There were no differences in total amount released after these treatments, but there were small differences in the release of the minor compounds phenethyl acetate and -humulene. Regurgitant of all three instars contained the elicitor volicitin. To test the effect of actual feeding by the larvae, potted plants were infested with caterpillars of one of the three instars, and volatiles were collected the following day. The intensity of the emissions was correlated with the number of larvae feeding on a plant, and with the amount of damage inflicted, but was independent of the instar that caused the damage. We also used artificial damage to mimic the manner of feeding of each instar to test the importance of physical aspects of damages for the odor emission. The emission was highly variable, but no differences were found among the different types of damage. In olfactometer tests, Microplitis rufiventris, a parasitoid that can only successfully parasitize second and early third instar S. littoralis, did not differentiate among the odors of maize plants attacked by different instar larvae. The odor analyses as well as the parasitoid's responses indicate that maize odors induced by S. littoralis provide parasitoids with poor information on the larval developmental stage. We discuss the results in the context of variability and lack of specificity in odorous plant signals.  相似文献   

19.
The ant social parasite, Maculinea rebeli shows high levels of host specificity at a regional scale. While 68-88% of caterpillars in the field are adopted by nonhost Myrmica ants, 95-100% of the butterflies emerge from the natural host M. schencki the following year. While retrieval of preadoption caterpillars is specific to the genus Myrmica, it does not explain differential survival with different Myrmica species. We present survival data with host and nonhost Myrmica species suggesting that, with nonhosts (M. sabuleti and M. rubra), survival depends on the physiological state of the colony. We also compared the similarities of the epicuticular surface hydrocarbon signatures of caterpillars that were reared by host and nonhost Myrmica for 3 weeks with those from tending workers. Counterintuitively, the hydrocarbons of postadoption caterpillars were more similar (78%, 73%) to the ant colony profiles of the nonhost species than were caterpillars reared in colonies of M. schencki (42% similarity). However, caterpillars from M. schencki nests that were then isolated for 4 additional days showed unchanged chemical profiles, whereas the similarities of those from nonhost colonies fell to 52 and 56%, respectively. Six compounds, presumably newly synthesized, were detected on the isolated caterpillars that could not have been acquired from M. sabuleti and M. rubra (nor occurred on preadoption caterpillars), five of which were found on the natural host M. schencki. These new compounds may relate to the high rank the caterpillars attain within the hierarchy of M. schencki societies. The same compounds would identify the caterpillars as intruders in non-schencki colonies, where their synthesis appeared to be largely suppressed. The ability to synthesize or suppress additional compounds once adopted explains the pattern of mortalities found among fully integrated caterpillars in Myrmica colonies of different species and physiological states.  相似文献   

20.
Phenolic compounds are generally believed to be key components of the oxidative defenses of plants against pathogens and herbivores. However, phenolic oxidation in the gut fluids of insect herbivores has rarely been demonstrated, and some phenolics could act as antioxidants rather than prooxidants. We compared the overall activities of the phenolic compounds in red oak (Quercus rubra) and sugar maple (Acer saccharum) leaves in the midgut fluids of two caterpillar species, Malacosoma disstria (phenolic-sensitive) and Orgyia leucostigma (phenolic-tolerant). Three hypotheses were examined: (1) ingested sugar maple leaves produce higher levels of semiquinone radicals (from phenolic oxidation) in caterpillar midgut fluids than do red oak leaves; (2) O. leucostigma maintains lower levels of phenolic oxidation in its midgut fluids than does M. disstria; and (3) phenolic compounds in tree leaves have overall prooxidant activities in the midgut fluids of caterpillars. Sugar maple leaves had significantly lower ascorbate:phenolic ratios than did red oak leaves, suggesting that phenolics in maple would oxidize more readily than those in oak. As expected, semiquinone radicals were at higher steady-state levels in the midgut fluids of both caterpillar species when they fed on sugar maple than on red oak, consistent with the first hypothesis. Higher semiquinone radical levels were also found in M. disstria than in O. leucostigma, consistent with the second hypothesis. Finally, semiquinone radical formation was positively associated with two markers of oxidation (protein carbonyls and total peroxides). These results suggest that the complex mixtures of phenolics in red oak and sugar maple leaves have overall prooxidant activities in the midgut fluids of M. disstria and O. leucostigma caterpillars. We conclude that the oxidative defenses of trees vary substantially between species, with those in sugar maple leaves being especially active, even in phenolic-tolerant herbivore species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号