首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the molecular basis of the hypertrophic action of angiotensin II (AII) in vascular smooth muscle cells (SMC), we have examined the ability of the hormone to regulate the function of the translational repressor 4E-binding protein 1 (4E-BP1). Addition of AII to quiescent aortic SMC potently increased the phosphorylation of 4E-BP1 as revealed by a decreased electrophoretic mobility and an increased phosphate content of the protein. The stimulation of 4E-BP1 phosphorylation was maximal at 15 min and persisted up to 120 min. Results from affinity chromatography on m7GTP-agarose demonstrated that AII-induced phosphorylation of 4E-BP1 promotes its dissociation from eIF4E in target cells. Further characterization of 4E-BP1 phosphorylation by phosphoamino acid analysis and phosphopeptide mapping revealed that 4E-BP1 is phosphorylated on eight distinct peptides containing serine and threonine residues in AII-treated cells. The combination of results obtained from kinetics experiments, phosphopeptide analysis of in vitro and in vivo phosphorylated 4E-BP1, and pharmacological studies with the MAP kinase kinase inhibitor PD 98059 provided strong evidence that the MAP kinases ERK1/ERK2 are not involved in the regulation of 4E-BP1 phosphorylation in aortic SMC. Together, our results demonstrate that AII treatment of vascular SMC leads to hyperphosphorylation of the translational regulator 4E-BP1 and to its dissociation from eIF4E by a MAP kinase-independent mechanism.  相似文献   

2.
The coat protein of bacteriophage MS2 functions as a symmetric dimer to bind an asymmetric RNA hairpin. This implies the existence of two equivalent RNA binding sites related to one another by a 2-fold symmetry axis. In this view the symmetric binding site defined by mutations conferring the repressor-defective phenotype is a composite picture of these two asymmetric sites. In order to determine whether the RNA ligand interacts with amino acid residues on both subunits of the dimer and in the hope of constructing a functional map of the RNA binding site, we performed heterodimer complementation experiments. Taking advantage of the physical proximity of their N- and C-termini, the two subunits of the dimer were genetically fused, producing a duplicated coat protein which folds normally and allows the construction of the functional equivalent of obligatory heterodimers containing all possible pairwise combinations of the repressor-defective mutations. The restoration of repressor function in certain heterodimers shows that a single RNA molecule interacts with both subunits of the dimer and allows the construction of a functional map of the binding site.  相似文献   

3.
Although it is essential for protein synthesis to be highly accurate, a number of cases of directed ribosomal frameshifting have been reported in RNA viruses, as well as in procaryotic and eucaryotic genes. Changes in the efficiency of ribosomal frameshifting can have major effects on the ability of cells to propagate viruses which use this mechanism. Furthermore, studies of this process can illuminate the mechanisms involved in the maintenance of the normal translation reading frame. The yeast Saccharomyces cerevisiae killer virus system uses programmed -1 ribosomal frameshifting to synthesize its gene products. Strains harboring the mof2-1 allele demonstrated a fivefold increase in frameshifting and prevented killer virus propagation. In this report, we present the results of the cloning and characterization of the wild-type MOF2 gene. mof2-1 is a novel allele of SUI1, a gene previously shown to play a role in translation initiation start site selection. Strains harboring the mof2-1 allele demonstrated a mutant start site selection phenotype and increased efficiency of programmed -1 ribosomal frameshifting and conferred paromomycin sensitivity. The increased frameshifting observed in vivo was reproduced in extracts prepared from mof2-1 cells. Addition of purified wild-type Mof2p/Sui1p reduced frameshifting efficiencies to wild-type levels. Expression of the human SUI1 homolog in yeast corrects all of the mof2-1 phenotypes, demonstrating that the function of this protein is conserved throughout evolution. Taken together, these results suggest that Mof2p/Sui1p functions as a general modulator of accuracy at both the initiation and elongation phases of translation.  相似文献   

4.
The translation of ferritin and erythroid 5-aminolevulinate synthase mRNAs is regulated via a specific high-affinity interaction between an iron-responsive element in the 5' untranslated region of ferritin and erythroid 5-aminolevulinate synthase mRNAs and a 98-kDa cytoplasmic protein, the iron-regulatory factor. Iron-regulatory factor was expressed in vaccinia-virus-infected HeLa cells (hIRFvac) and in Escherichia coli (hIRFeco). An N-terminal histidine tag allowed a rapid one-step purification of large quantities of soluble recombinant protein. Both hIRFvac and hIRFeco bound specifically to iron-responsive elements and were immunoprecipitated by iron-regulatory-factor antibodies. Using in-vitro-transcribed chloramphenicol-acetyltransferase mRNAs bearing an iron-responsive element in the 5' untranslated region, specific repression of chloramphenicol-acetyltransferase translation by hIRFvac and hIRFeco was demonstrated in wheat-germ extract. In addition, hIRFvac and hIRFeco were shown to display aconitase activity. Treatment of hIRFvac and hIRFeco with FeSO4 resulted in a drastic reduction in iron-responsive-element-binding of iron-regulatory factor, but caused a strong stimulation of its aconitase activity. The results establish that recombinant iron-regulatory factor is a bifunctional protein; after purification, it binds to iron-responsive elements and represses translation in vitro. Following iron treatment, iron-responsive-element binding is lost and aconitase activity is gained. No eukaryotic co-factor seems to be required for the conversion of the iron-responsive-element binding to the aconitase form of the protein.  相似文献   

5.
Electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS) has been used to study noncovalent interactions between the trp apo-repressor (TrpR), its co-repressor tryptophan and its specific operator DNA. In 5 mM ammonium acetate, TrpR was detected as a partially unfolded monomer. In the presence of a 21-base-pair DNA possessing the two symmetrically arranged CTAG consensus sequences required for specific TrpR binding, a homodimer-dsDNA complex with a 1:1 stoichiometry was observed. Co-repressor was not needed for the complex to form under our experimental conditions. Collision induced dissociation (CID-MS) revealed that this complex was very stable in the gas phase since dissociation was achieved only at energies that also broke covalent bonds. We saw no evidence for the presence of the six water molecules that mediate the interaction between the protein and the DNA in the crystal structure. To check the binding specificity of the TrpR for its target DNA, a competitive experiment was undertaken: the protein was mixed with an equimolar amount of three different DNAs in which the two CTAG sequences were separated by 2, 4, and 6 bp, respectively. Only the DNA with the correct consensus spacing of 4 bp was able to form stable interactions with TrpR. This experiment demonstrates the potential of ESI-MS to test the sequence-specificity of protein-DNA complexes. The interactions between the TrpR-DNA complex and 5-methyl-, L- and D-tryptophan were also investigated. Two molecules of 5-methyl- or L-tryptophan were bound with high affinity to the TrpR-DNA complex. On the other hand, D-tryptophan appeared to bind to the complex with poor specificity and poor affinity.  相似文献   

6.
In bacteriophage T4, the terminase complex constituted by the large subunit gp17 (69 kDa) and the small subunit gp16 (18 kDa) is a critical component of the ATP-driven DNA-packaging pump that translocates DNA into an empty capsid shell. Evidence suggests that the large subunit gp17 is the critical component and consists of a number of the functional sites required for DNA-packaging. It exhibits a terminase activity that introduces non-specific cuts into DNA, a portal vertex binding site that allows linkage of cleaved DNA to an empty prohead, an in vitro DNA-packaging activity, and an ATPase activity. In addition, a consensus metal-binding motif and two consensus ATP-binding sites have been identified by sequence analysis. In order to understand the mechanism of action of the multifunctional gp17, we developed an expression-based selection strategy to select for mutants that are defective in terminase function. Characterization of one of the mutants revealed a unique phenotype in which a single H436R mutation resulted in a dramatic loss of both the terminase and the DNA-packaging functions. Indeed, in vivo substitution of H436 with any of the 12 amino acids for which a suppressor is available was lethal to T4 development. According to one hypothesis, H436 is part of a metal-binding motif that is essential for gp17 function. This hypothesis was tested by introducing mutations at each of the three histidine pairs, the H382-X2-H385 pair, the H411-X2-H414 pair and the H430-X5-H436 pair, which constitute the histidine-rich region near the C terminus of gp17. A mutation at either the H411 pair or the H430 pair resulted in a loss of gp17 function, whereas a mutation at the H382 pair had no effect. In addition to the putative metal-binding motif, substitutions at residue K166 within the putative N terminus-proximal ATP-binding site also resulted in a loss of gp17 function. We propose that a metal-binding motif involving the histidine residues within the sequence H411-X2-H414-X15-H430-X5-H436 is essential for gp17 function. Metal-terminase interactions may be required for structural alignment and stabilization of functional sites in phage T4 terminase and other double-stranded DNA phage terminases.  相似文献   

7.
8.
The rate of initiation of protein synthesis in rabbit reticulocyte lysates is regulated by a translational inhibitor protein which is activated in the absence of added haemin. The effects of this inhibitor on amino acid incorporation are overcome by the protein synthesis initiation factor IF-MP which binds Met-tRNAf in a ternary complex with GTP and which can transfer this complex to small ribosomal subunits. Addition of this factor to haemin-deficient lysates prevents loss of polysomes and regenerates polysomes from 80-S single ribosomes, thus confirming an effect at the level of polypeptide initiation. The ability of the initiation factor to overcome the effects of various concentrations of the translational inhibitor suggests that the inhibitor inactivates the factor catalytically rather than stoichiometrically. In a system in vitro consisting of salt-washed 40-S ribosomal subunits, initiator Met-tRNAf and GTP, the initiation factor IF-MP transfers Met-tRNAf to the subunits in the absence of any other factor or mRNA. Equilibrium buoyant density gradient analysis in CsCl shows that formaldehyde-fixed subunits carrying Met-tRNAf bound under these conditions have a buoyant density approximately 0.02 g/cm3 lower than the bulk of salt-washed subunits, suggesting that approximately 100000 daltons of additional protein are associated with these subunits. This is in marked contrast to the amounts of protein bound to subunits incubated with Met-tRNAf and GTP in the presence of a crude ribosomal salt-wash fraction. The translational inhibitor has no effect on formation of the ternary complex IF-MP-Met-tRNAf-GTP but does impair the factor-catalysed transfer of Met-tRNAf to washed subunits. The possible mechanisms of action of the inhibitor on polypeptide chain initiation are reviewed in the light of these results.  相似文献   

9.
10.
It is generally believed that protein phosphorylation is an important mechanism through which the functions of voltage- and ligand-gated channels are modulated. The intracellular carboxyl terminus of P2X2 receptor contains several consensus phosphorylation sites for cyclic AMP (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC), suggesting that the function of the P2X2 purinoceptor could be regulated by the protein phosphorylation. Whole-cell voltage-clamp recording was used to record ATP-evoked cationic currents from human embryonic kidney (HEK) 293 cells stably transfected with the cDNA encoding the rat P2X2 receptor. Dialyzing HEK 293 cells with phorbol 12-myristate 13-acetate, a PKC activator, failed to affect the amplitude and kinetics of the ATP-induced cationic current. The role of PKA phosphorylation in modulating the function of the P2X2 receptor was investigated by internally perfusing HEK 293 cells with 8-bromo-cAMP or the purified catalytic subunit of PKA. Both 8-bromo-cAMP and PKA catalytic subunit caused a reduction in the magnitude of the ATP-activated current without affecting the inactivation kinetics and the value of reversal potential. Site-directed mutagenesis was also performed to replace the intracellular PKA consensus phosphorylation site (Ser431) with a cysteine residue. In HEK 293 cells expressing (S431C) mutant P2X2 receptors, intracellular perfusion of 8-bromo-cAMP or purified PKA catalytic subunit did not affect the amplitude of the ATP-evoked current. These results suggest that as with other ligand-gated ion channels, protein phosphorylation by PKA could play an important role in regulating the function of the P2X2 receptor and ATP-mediated physiological effects in the nervous system.  相似文献   

11.
12.
Pax proteins, characterized by the presence of a paired domain, play key regulatory roles during development. The paired domain is a bipartite DNA-binding domain that contains two helix-turn-helix domains joined by a linker region. Each of the subdomains, the PAI and RED domains, has been shown to be a distinct DNA-binding domain. The PAI domain is the most critical, but in specific circumstances, the RED domain is involved in DNA recognition. We describe a Pax protein, originally called Lune, that is the product of the Drosophila eye gone gene (eyg). It is unique among Pax proteins, because it contains only the RED domain. eyg seems to play a role both in the organogenesis of the salivary gland during embryogenesis and in the development of the eye. A high-affinity binding site for the Eyg RED domain was identified by using systematic evolution of ligands by exponential enrichment techniques. This binding site is related to a binding site previously identified for the RED domain of the Pax-6 5a isoform. Eyg also contains another DNA-binding domain, a Prd-class homeodomain (HD), whose palindromic binding site is similar to other Prd-class HDs. The ability of Pax proteins to use the PAI, RED, and HD, or combinations thereof, may be one mechanism that allows them to be used at different stages of development to regulate various developmental processes through the activation of specific target genes.  相似文献   

13.
The binding of Mg2+ to calmodulin (CaM) and the effect of Mg2+ on the binding of Ca2+-CaM to target peptides were examined using two-dimensional nuclear magnetic resonance and fluorescence spectroscopic techniques. We found that Mg2+ preferentially binds to Ca2+-binding sites I and IV of CaM in the absence of Ca2+ and that Ca2+-binding site III displays the lowest affinity for Mg2+. In contrast to the marked structural transitions induced by Ca2+ binding, Mg2+ binding causes only localized conformational changes within the four Ca2+-binding loops of CaM. Therefore, Mg2+ does not seem to be able to cause significant structural effects required for the interaction of CaM with target proteins. The presence of excess Mg2+ (up to 10 mM) does not change the order and cooperativity of Ca2+ binding to CaM, and as expected, the structure of Ca2+-saturated CaM is not affected by the presence of Mg2+. However, we found that the binding of Ca2+-saturated CaM to target peptides is affected by Mg2+ with the binding affinity decreasing as the Mg2+ concentration increases. Three different peptides, corresponding to the CaM binding domain of skeletal muscle myosin light-chain kinase (MLCK), CaM-dependent cyclic nucleotide phosphodiesterase (PDE), and smooth muscle caldesmon (CaD), were examined and show different reductions in their affinities toward CaM. The CaM-binding affinity of the MLCK peptide in the presence of 50 mM Mg2+ is approximately 40-fold lower than that seen in the absence of Mg2+, and a similar response was observed for the PDE peptide. The affinity of the CaD peptide for CaM also shows a Mg2+ dependence, though to a much lower magnitude. The Mg2+-dependent decrease in the affinities between CaM and its target peptides is an intrinsic property of Mg2+ rather than a nonspecific ionic effect, as other metal ions such as Na+ do not completely replicate the effect of Mg2+. The inhibitory effect of Mg2+ on the formation of complexes between CaM and its targets may contribute to the specificity of CaM in target activation in response to cellular Ca2+ concentration fluctuations.  相似文献   

14.
HGP-30, a 30-amino acid synthetic peptide analog of HIV-1SF2 p17 (aa 86-115), was used to immunize both mice and humans. Since the amino acid sequence of HGP-30 is relatively conserved among different HIV-1 strains and clades, experiments were carried out to determine if antisera obtained by immunizing animals and humans can recognize HGP-30-related peptide consensus sequences belonging to different clades. Results show that antisera from mice immunized with HGP-30 can recognize clade B and C and to a lesser degree clade A and E consensus sequences of HIV-1, in addition to recognizing HGP-30 sequence. The cross-clade recognition was higher in mouse sera obtained on day 42 than on day 14 or 28. MPL/SE and Novasomes were better adjuvants than alum in inducing antibodies that showed cross-clade recognition and IgG2a and IgG2b antibody isotypes. Similar cross-clade recognition was observed in several sera from humans immunized with an HGP-30/KLH/alum formulation. The human sera from HGP-30-immunized subjects evaluated for cross-clade recognition of HGP-30 peptides were from subjects whose cells showed significant protection from HIV infection on virus challenge in the hu-PBL-SCID mouse model. These studies suggest that HGP-30 may be useful as a candidate vaccine antigen for populations in countries with prevalence of different HIV clades.  相似文献   

15.
An ApR gene cassette was constructed using the gene present in the PBR322 derivative pTZ18. The cassette is maintained in the plasmid pcLINK-1 and may be excised with any of the six rare cutting enzymes NotI, SacII, MluI, SplI, BssHII or NarI. By using a double-digestion procedure, the ApR gene may be excised with two different protruding ends. In the process of constructing the pcLINK-1 plasmid the multiplecloning site of pTZ18 was extended with recognition sites for the enzymes NotI, SacII, MluI, SplI, BssHII and NarI.  相似文献   

16.
The autocrine/paracrine peptide signaling molecules such as growth factors have many promising biologic activities for clinical applications. However, one cannot expect specific therapeutic effects of the factors administered by ordinary drug delivery systems as they have limited target specificity and short half-lives in vivo. To overcome the difficulties in using growth factors as therapeutic agents, we have produced fusion proteins consisting of growth factor moieties and a collagen-binding domain (CBD) derived from Clostridium histolyticum collagenase. The fusion proteins carrying the epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) at the N terminal of CBD (CBEGF/CBFGF) tightly bound to insoluble collagen and stimulated the growth of BALB/c 3T3 fibroblasts as much as the unfused counterparts. CBEGF, when injected subcutaneously into nude mice, remained at the sites of injection for up to 10 days, whereas EGF was not detectable 24 h after injection. Although CBEGF did not exert a growth-promoting effect in vivo, CBFGF, but not bFGF, strongly stimulated the DNA synthesis in stromal cells at 5 days and 7 days after injection. These results indicate that CBD may be used as an anchoring unit to produce fusion proteins nondiffusible and long-lasting in vivo.  相似文献   

17.
The expression of the alpha-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in alpha-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac alpha-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the alpha-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the alpha-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the alpha-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the alpha-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the alpha-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the alpha-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the alpha-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.  相似文献   

18.
We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints.  相似文献   

19.
In recent pediatric trials of acute myeloid leukemia (AML), children with Down syndrome (DS) have had significantly more megakaryoblastic leukemia and have experienced better outcome than other children. To further characterize AML in DS, Children's Cancer Group Studies 2861 and 2891 prospectively studied demography, biology, and response in AML and myelodysplastic syndrome (MDS) of children with and without DS. These studies evaluated timing of induction therapy and compared postremission chemotherapy with marrow transplantation in 1,206 children. One-hundred eighteen (9.8%) had DS, a fourfold increase in 20 years. DS patients were younger, had lower white blood cell and platelet counts, more antecedent MDS, acute megakaryoblastic leukemia or undifferentiated AML, and an under-representation of chromosomal translocations (P < .001 for each variable). Four-year event-free survival in DS was 69% versus 35% in others (P < .001). Intensively timed induction conferred significantly higher mortality in DS patients; bone marrow transplantation offered no advantage. Conventional induction followed by chemotherapy achieved an 88%, 4-year, disease-free survival in DS patients versus 42% in others (P < .001). Megakaryoblastic leukemia was unfavorable in others but prognostically neutral in DS. AML in DS is demographically and biologically distinct from AML in other children. It is singularly responsive to conventional chemotherapy and may warrant even less therapy. The increasing proportion of DS patients with AML most likely reflects changes in attitudes about entering DS patients on AML trials and possibly increasing ability to distinguish megakaryoblastic leukemia from lymphoid leukemia.  相似文献   

20.
Antigen (Ag)-triggered activation of T cells requires engagement of both the T-cell Ag receptor and a costimulatory receptor, for which CD28 can function as a prototypical example. CD80 and CD86 represent ligands for this receptor, and although they are present on professional Ag-presenting cells, these molecules are absent from most tumors. Yet some tumors are still able to costimulate a T-cell response, while others cannot. Therefore, a key question concerns the molecular basis for the costimulation of T cells by those tumor cells not expressing the CD28 ligands CD80 and CD86. Upon screening a cDNA library of such a tumor cell line in a transient COS cell transfection assay for costimulatory activity, we identified Ran/TC4 as a protein whose overexpression results in costimulatory activity. Ran/TC4 is a ubiquitously expressed member of the Ras gene superfamily of small guanosine triphosphate-binding proteins and is involved in nuclear transport; Ran/TC4 cDNA-transfected COS cells specifically costimulate CD8 T cells and not CD4 T cells. Transfection of Ran/TC4 into the costimulation-deficient murine RMA lymphoma cell line introduced costimulatory capacity for CD8 T cells and resulted in markedly elevated levels of nuclear Ran/TC4 protein expression. In addition, in vivo priming of mice with Ran/TC4-transfected RMA cells induced protection against wild-type (wt) RMA tumor cells. Ran/TC4-transfected RMA cells and wt RMA tumor cells exhibit comparable in vivo growth rates in mice lacking T and B cells, and Ran/TC4-mediated tumor rejection thus involves B and/or T cells. This possibility is substantiated by the observation that T cells from normal mice challenged with Ran/TC4-transfected RMA cells can mount a cytotoxic T-cell response not only against the Ran/TC4-transfected tumor cells but also against wt RMA tumor cells. Based on these results, we conclude that gene transfer-mediated elevations in Ran/TC4 can confer costimulatory function for CD8 T cells to tumor cells. This finding suggests a novel application of Ran/TC4 as a protein capable of regulating costimulation in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号