首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以废旧三元正极材料作为原料,提出了还原焙烧与氨基磺酸浸出相结合的工艺,提高锂的回收效率,同时实现组分的分步分离回收。在焙烧温度650℃、碳用量10%、还原焙烧时间90 min条件下,三元正极材料被还原为Li2CO3、NiO、MnO、Ni、Co的混合物,还原焙烧产物分步浸出,水浸回收锂,酸浸回收镍、钴、锰。采用氨基磺酸浸出水浸渣,最佳酸浸条件:氨基磺酸浓度0.75 mol/L、浸出温度60℃、固液比28 g/L、浸出时间40 min,此条件下镍、钴、锰的浸出率分别可以达到98.77%、98.71%、98.45%。  相似文献   

2.
铝电解槽炭渣是铝工业冶炼生产过程中产生的一种危险废物。炭渣的大量堆存,在浪费电解质资源的同时,也会造成大气、土壤以及水体的污染。本试验以炭渣为原料,Na2CO3为添加料,对炭渣的焙烧?水浸工艺回收炭粉和冰晶石的可行性与过程进行了研究。试验结果表明,将质量比为2.5∶1的Na2CO3与炭渣混合后置于坩埚电阻炉中,在950 ℃下焙烧2 h,炭渣中氧化铝、冰晶石和亚冰晶石被Na2CO3消耗,焙烧后混合料由C、Na2CO3、NaF、NaAlO2组成。焙烧后混合料在pH为13、浸出温度为25 ℃的条件下浸出1 h,固液分离后的浸出渣经过水洗、烘干后得到炭粉,其纯度可达89%。利用碳酸化法回收浸出液中F?,可获得主成分合格的粉状冰晶石。适当地提高焙烧温度和延长保温时间可提高炭和电解质的分离效率。研究经济而有效的炭渣处理方法,不仅可以解决炭渣带来的环境污染问题,还对社会的可持续发展产生深远影响。   相似文献   

3.
党晓娥  张婷 《黄金》2023,(12):82-89
为了获得H2C2O4-Na2C2O4浸出焙烧氰化尾渣中赤铁矿的工艺条件,在单因素试验结果的基础上,采用响应面法(RSM)优化其浸出工艺。结果表明:H2C2O4-Na2C2O4除铁优化条件为n(H2C2O4)/n(Na2C2O4)0.92、C2O2-4过量倍数1.25、浸出温度95℃、液固比8∶1。各因素对除铁效果影响大小排序为浸出温度、液固比、n(H2C2O4)/n(Na2C2O4)、C2  相似文献   

4.
采用Na2CO3-NaCl混合焙烧法分解废SCR脱硝催化剂, 研究了焙烧及水浸过程对钨提取率的影响因素。结果表明: 碳酸钠与氯化钠的配比对提钨影响显著。当氯化钠摩尔分数小于0.5时, 焙烧渣的钨浸出率优于纯碳酸钠焙烧所得结果, 氯化钠摩尔分数在0.5~0.8之间时钨浸出率与纯碳酸钠焙烧所得结果相当, 而进一步增加氯化钠配比则使提钨效果变差; 焙烧过程发生了矿相重构, 废催化剂原有锐钛矿XRD衍射峰减弱或消失, 并出现较弱的钛酸钠衍射峰; 水浸过程钨的浸出速度快, 受温度的影响较小, 但受液固比的影响较大。在分解药剂与原料中钛的摩尔配比n(NaCl): n(Na2CO3): n(Ti)= 0.5:1.1:1, 750 ℃焙烧2 h, 液固质量比为8, 35 ℃浸出1 h的条件下, 钨浸出率达99.1%。因此, 在适当药剂比例下, 采用Na2CO3-NaCl混合焙烧法处理废SCR脱硝催化剂, 不仅能降低药剂成本, 而且能增加钨的提取率。   相似文献   

5.
以铁含量为35%的氰渣为研究对象,研究了焙烧温度、焙烧时间及碳氧比对煤基磁化焙烧过程的影响,并采用化学分析、XRD、SEM、热重分析等分析手段对含铁氧化物的转变过程进行表征。随着焙烧温度的提高,铁氧化物的物相转变过程为Fe2O3→Fe3O4→FeO。随着磁化焙烧焙烧时间的延长,尾渣中的Fe2O3首先被C还原为Fe3O4,还原得到的Fe3O4可被空气中的O2重新氧化为Fe2O3。碳氧比较低时,磁化率接近2.33;当碳氧比超过3时,过量的煤与尾渣混合,Fe2O3还原反应不完全;在焙烧温度645℃、焙烧时间45 min、碳氧比3的优化焙烧条件下,得到焙烧矿的磁化率为2.34。  相似文献   

6.
以废弃三元锂离子电池正极材料(spent-NCM)为研究对象,葡萄糖(C6H12O6)为焙烧剂,采用焙烧—水浸工艺实现锂的选择性优先浸出。结果表明,在600℃焙烧90 min、C6H12O6与spent-NCM质量比25%、浸出液固比20 mL/g的条件下,spent-NCM中的有价金属元素转变为水溶性的Li2CO3和不溶性的Ni、Co和MnO,焙烧产物经水浸可选择性优先分离Li, Li的浸出率为95.62%。  相似文献   

7.
采用机械化学活化水浸工艺对废旧磷酸铁锂正极材料中的金属锂进行回收,研究了共研磨试剂与废旧磷酸铁锂正极材料物质的量之比、球磨转速、球磨时间对金属锂浸出率的影响。在四种异晶型硫酸盐共研磨试剂与废旧磷酸铁锂正极材料物质的量之比为3∶1,球磨转速为400 r/min,球磨时间为4 h的条件下,共研磨试剂Na2S2O3、Na2SO3、Na2SO4和Na2S2O8的锂浸出率分别为42.7%、30.8%、58.3%和99.3%。以Na2S2O8作为共研磨试剂进行机械化学活化水浸回收锂时,具有较高的锂浸出率。滤液中的锂通过饱和碳酸钠溶液进行沉淀分离与提纯,得到的回收产物为Li2CO3,纯度可达98.5%。该方法实现了废旧磷酸铁锂正极材料中有价金属锂的高效回收。  相似文献   

8.
为探究熔融状态下,焙烧铜渣中磁铁矿的物性转变,对铜渣进行了CO/CO2气氛下熔融氧化焙烧实验。考察了CaO添加量与焙烧温度对于渣中Fe2SiO4向Fe3O4转变过程和Fe3O4迁移并富集的影响。CaO的添加促进了渣中Fe2SiO4向Fe3O4转变和Fe3O4迁移富集,而选择适宜的焙烧温度才能最大程度让Fe3O4迁移富集。最后发现在CaO添加量为铜渣质量的25 %,焙烧温度1 300 ℃,保温时间2 h,CO2和CO体积比为190:10的条件下焙烧铜渣,铜渣中的Fe2SiO4基本完成了向Fe3O4转化,且Fe3O4迁移与富集程度较好。   相似文献   

9.
中国大部分硼铁矿品位较低,一般是把难选硼铁矿按照普通铁矿的模式进行开发利用,因此造成了硼资源的极大浪费。为实现辽宁某含硼铁精矿中硼、铁的有效分离,采用煤基直接还原—磁选工艺进行硼铁分离试验。通过研究不同添加剂、还原温度、还原时间和n(C)/n(O)对硼铁分离效果的影响。结果表明:在还原反应中引入Na2CO3或CaCO3能够促进还原反应,有利于硼铁分离,但Na2CO3对硼铁分离效果优于CaCO3,其加入Na2CO3条件下的较佳工艺参数如下:还原温度1 150℃,还原时间45 min,n(C)/n(O)为1.2,其铁回收率为99.82%,渣中硼回收率为79.43%,实现了硼铁的有效分离。该工艺可得到高金属化率的金属铁粉和较高品位的富硼渣,金属铁粉经进一步处理可用于炼钢或者硼钢生产,富硼渣可作为硼的工业优质原料。  相似文献   

10.
采用氯化焙烧—水浸的方法从某Li2O品位为3.23%的锂云母浮选精矿中回收锂,考察了焙烧过程中氯化剂用量、焙烧温度、焙烧时间,浸出过程中液固比、浸出温度、浸出时间对Li2O浸出率的影响。结果表明:在CaCl2用量为锂云母精矿质量的3/4,焙烧温度900℃,焙烧时间40min,焙烧渣在液固比3∶1,室温浸出40min的条件下,Li2O浸出率可达到95.36%,回收效果较好。  相似文献   

11.
本文研究脆硫锑铅矿低温熔盐冶炼过程中Fe的反应行为。通过模拟脆硫锑铅矿在Na2CO3-NaCl熔盐体系熔炼过程中的Fe反应过程,采用XRD分析FeS、FeS2与ZnO、碳粉在同一体系熔炼过程中Fe的反应行为,并通过SEM-EDS表征脆硫锑铅矿熔炼得到的铅锑合金表面及断面的Fe元素分布。结果表明:在973 K条件下FeS与ZnO发生置换反应形成FeO,FeS2与Na2CO3反应形成FeS与Na2S;在1 073 K条件下FeS和FeS2与ZnO、碳粉发生还原反应形成单质Fe、Fe3O4与ZnS;在1 173 K条件下FeS和FeS2与ZnO、碳粉反应产物主要有ZnS、Fe、Fe2O3与Fe3O4。随温度升高或反应时间延长,FeS和FeS2中F...  相似文献   

12.
针对高钙高磷钒渣钙含量高,现有提钒工艺难以有效提钒的现状,采用空白焙烧-碳酸化浸出工艺进行了试验研究,并采用响应曲面法进行了优化。考察了高钙钒渣中CaO/V2O5(质量比)、焙烧温度、焙烧时间、浸出搅拌速度、浸出温度、浸出时间和碳酸钠溶液浓度等条件对高钙钒渣中钒浸出率的影响。结果表明:钒渣中的CaO/V2O5(质量比)=0.6、899℃钙化焙烧160 min,熟料在浸出温度95℃、浸出时间140 min、碳酸钠浓度168 g/L、搅拌速度为300 r/min等条件下浸出,钒浸出率平均为92.22%。相比于传统的提钒工艺,空白焙烧碳酸化浸出工艺对于高钙钒渣具有钒浸出率高的优势。  相似文献   

13.
以铜阳极泥熔炼渣为原料,采用还原熔炼工艺回收渣中有价金属。探究渣型、Na2CO3用量、焦粉用量和保温时间对金属回收率的影响。结果表明,在冶炼温度1 150℃,渣相m(Fe)/m(SiO2)=0.72,m(CaO)/m(SiO2)=0.65,Na2CO3用量5%,焦粉用量2%,保温时间60 min的最优条件下,渣中Au、Ag、Pb、Bi的回收率分为97.15%、97.78%、91.27%和99.61%。实现了铜阳极泥熔炼渣中有价金属的综合回收。  相似文献   

14.
为了研究钕铁硼废料浸出前后的工艺矿物学,将钕铁硼废料在650 ℃下焙烧2 h,而后用4 mol/L的盐酸浸出,得到浸出渣。通过XRF、XRD、XPS和SEM-EDS对焙烧产物和浸出渣进行表征。实验结果表明:焙烧产物中主要由Fe2O3、Fe3O4、SiO2、NdFeO3和Nd2O3等物质组成,且焙烧产物中稀土含量为16.40%;浸出后,浸出渣中无NdFeO3、Nd2O3两种物质,稀土含量仅为0.66%。在XPS检测中,Fe以Fe(Ⅱ)和Fe(Ⅲ)两种价态存在于焙烧产物中,说明此温度下Fe没有被完全氧化成Fe(Ⅲ),仍有部分Fe(Ⅱ)存在;渣中除Fe(Ⅲ)外同样检测出Fe(Ⅱ),说明浸出过程并没有将Fe(Ⅱ)完全除去。本实验进一步完善了钕铁硼废料浸出理论,对未来钕铁硼的回收具有一定的指导意义。   相似文献   

15.
分析了 NH4HCO3、NaOH、Na2CO3三种浸出介质对钒浸出率及杂质溶出率的影响,优选 NH4HCO3作为浸出介质,确定了最佳工艺参数: NH4HCO3溶液质量分数 15% ,液固比 5∶ 1,反应温度 90 ℃ ,反应时间 30 min,搅拌速度 300 rpm,钒浸出率为 84. 52% 。将最佳反应条件下得到的浸出溶液进行沉钒实验,补加 NH4HCO3调节 p H 值至 8,搅拌速度 200 rpm,结晶温度 25 ℃ ,结晶时间 5 h 后,钒浓度降为0. 81 g / L。偏钒酸铵经过干燥、煅烧得到品位 99. 16% 的 V2O5。  相似文献   

16.
 硼铁矿是中国含硼原料的主要来源,其加工利用的关键在于硼和铁的分离。研究了不同条件下硼铁矿在直接还原过程中金属铁颗粒的生长特性,可为硼铁矿中硼和铁的有效分离提供理论支撑,从而达到硼铁矿资源化利用的目的。采用Leica DMI5000M光学显微镜获得还原球团中金属铁颗粒的显微图像后,通过Image-Pro Plus 6.0图像软件对显微图像进行金属铁颗粒粒径的分析统计,并采用化学分析的方法对还原产品中铁的金属化率进行检测,同时利用扫描电镜研究了Na2CO3促进铁氧化物还原的作用机理和金属铁颗粒的生长行为。结果表明,Na2CO3作用下硼铁矿球团中的铁氧化物能有效被还原,随着还原时间的延长,还原球团中铁的金属化率和金属铁颗粒的平均粒径均有效增大,在还原温度为1 100 ℃、还原时间为60 min的条件下,不添加Na2CO3的焙烧产物中铁的金属化率和金属铁颗粒的平均粒径分别为84.36%和8.55 μm,而在添加15%Na2CO3后于同样条件下焙烧,产物中铁的金属化率和金属铁颗粒的平均粒径分别为91.72%和14.07 μm;SEM-EDS分析结果说明,Na2CO3不仅有促进金属铁和其他物质分离的作用,而且还会影响金属铁颗粒在还原焙烧过程中的迁移行为;在直接还原过程中,金属铁颗粒先由“点”接触变为“颈”接触,然后重新相交形成新的晶界成为多边形颗粒,最后多边形颗粒间互相连接形成致密化集合体。  相似文献   

17.
不锈钢渣中铬赋存在尖晶石相中,可防止Cr6+浸出。将不锈钢中重金属Cr选择性富集、稳定化,有利于提高不锈钢渣综合利用率。本文基于熔渣非平衡凝固理论,研究了碱度、MgO及FeO含量对CaO-SiO2-MgO-Al2O3-FeO-Cr2O3不锈钢渣体系凝固过程中尖晶石相析出温度、析出量及化学组成的影响。计算结果表明:CaO-SiO2-MgO-Al2O3-FeO-Cr2O3渣析出相主要有Ca2SiO4、Ca2MgSi2O7、Ca2Al2SiO7、尖晶石相等。MgCr2O4尖晶石析出量随碱度增加而逐渐增大,提高碱度可抑制FeCr2...  相似文献   

18.
硫酸烧渣作为重要的二次资源,除砷有利于提高烧渣的价值.针对某含砷硫酸烧渣预处理脱砷的问题,采用Na2S-NaOH体系浸出烧渣中的砷.首先采用单因素试验确定Na2S和NaOH的药剂用量范围,进而采用响应曲面法优化浸出工艺参数.结果显示,响应曲面法优化Na2S-NaOH体系中浸出砷的模型显著,Na2S、NaOH和温度均对砷的浸出有着重要影响,且温度越高越有利于砷的浸出,Na2S和NaOH之间存在明显的交互作用,在80℃、NaOH浓度为0.34 mol·L-1、Na2S浓度为0.12mol·L-1时,浸出后烧渣中的砷质量分数可以降低到0.08%.   相似文献   

19.
介绍了阳极泥处理过程中, 氯化分金渣用Na2SO3分银与NH3分银的工艺过程; 研究了Na2SO3分银Na2SO3用量、pH、时间对分银效果的影响, 以及甲醛还原温度、pH对银还原率的影响, 以及NH3分银NH3浓度、时间对分银效果的影响, 并对水合肼还原水合肼用量、时间、温度对银还原率进行了研究.结果表明, 用Na2SO3分银-甲醛还原, 当Na2SO3的用量为理论量1.3倍, pH值为9.2, 浸出时间4h时, 银浸出率可达97.39 %, 当甲醛用量为(甲醛:银=1:2.5), pH值为10.5, 反应4 h, 温度为30~40 ℃时, 银还原率可达96.33 %; 用NH3分银-水合肼还原, 当NH3浓度为8 %~10 %, 温度为室温, 反应时间为4 h时, 银浸出率可达96.23 %, 当水合肼用量为理论量2倍, 温度60 ℃, 还原0.5 h时, 银还原率可达98.1 %.   相似文献   

20.
提出了一种以Na2CO3为添加剂、以煤为还原剂的还原分离方法,将原矿中铁的氧化物还原为铁单质粉末通过磁选分离回收,将水铝石矿物转化为铝酸钠溶出分离回收.通过单因素实验考察了还原温度、还原时间、Na2CO3用量和还原剂用量对粉末铁品位、铁回收率和氧化铝溶出率的影响,并用X射线衍射分析、扫描电镜观察和能谱分析等方法研究了反应的过程和机理.通过正交试验优化了实验参数,获得的最优条件为还原温度1150℃,还原时间45 min,Na2CO3用量40.47%,还原剂用量11.9%;在最优条件下,粉末铁品位为95.88%,铁回收率为89.92%,氧化铝溶出率为75.92%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号