首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
朱音  王海龙 《热加工工艺》2012,41(9):187-190
使用Ag-Cu-Ti钎料以及Ag-Cu-Ti+BAg72Cu复合钎料对Al2O3弥散强化铜与T2铜进行真空钎焊,研究了钎焊温度和保温时间对钎焊接头组织和性能的影响。结果表明,温度过低,钎料与母材相互冶金作用较弱,接头性能较差;温度过高或保温时间过长,钎料向弥散强化铜中毛细渗入严重,焊缝中出现孔洞,接头强度也下降。利用Ag-Cu-Ti+BAg72Cu复合钎料进行钎焊能有效提高接头强度。  相似文献   

2.
采用Ag-Cu-Ti钎料对Al_2O_3陶瓷与304不锈钢进行了不同工艺参数下的真空钎焊连接试验。通过SEM、EDS、XRD方法分析了钎焊接头的显微组织和界面反应产物,研究了钎焊温度和保温时间对钎焊接头组织和裂纹的影响。结果表明,Al_2O_3/304接头钎缝分为3个反应区,分别是靠近陶瓷的反应层,由Ti O反应层和Ti3Al反应层组成;钎缝区,由Ag(Cu)固溶体、Cu(Ag)固溶体和Ti Fe_2组成;靠近不锈钢的Ti Fe_2+Ti O反应层。随着钎焊温度升高,保温时间的延长,接头钎缝中Ti Fe_2数量增加,尺寸增大,这降低了通过塑性变形缓解接头残余应力的能力,同时陶瓷侧界面反应层增厚。这些使得接头陶瓷的裂纹现象越严重。  相似文献   

3.
采用新型的Cu-Mn-Ni-Si钎料真空钎焊2Cr13不锈钢,研究了钎焊温度和保温时间对接头组织和室温力学性能的影响.结果表明:钎焊接头组织由钎缝中心区Cu-Mn基固溶体和钎缝界面反应区的(Fe,Ni,Mn)- Si化合物组成.随着钎焊温度的增加,钎缝界面处化合物层厚度减小,Cu-Mn基固溶体相应增多,接头室温剪切强度随之增加,在钎焊时间15min、钎焊温度1050℃时达到321 MPa.在钎焊温度1000℃时,接头室温剪切强度随着钎焊保温时间的延长先增加后降低,在钎焊保温时间30min时取得最大值305 MPa.  相似文献   

4.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

5.
裴艳虎  李红  黄海新 《焊接》2016,(6):22-25
由于陶瓷-金属构件能够实现性能互补,其钎焊技术和接头可靠性已经成为研究热点,包括钎料选用、炉中气氛控制,以及工艺参数优化等。文中采用Ag70-Cu-Ti4.5钎料进行了ZrO_2陶瓷和TC4合金的真空钎焊连接,研究了钎焊温度与保温时间对钎焊接头四点弯曲强度与界面组织结构的影响。结果表明,最佳钎焊工艺参数为钎焊温度875℃,保温时间15 min,钎焊接头强度最高可达191.9 MPa,但钎焊温度的较小变化会引起接头强度的急剧下降。从钎料中溶解的Ti和Cu元素对ZrO_2/TC4钎焊接头的组织演变具有主要影响,钎焊接头界面组织为ZrO_2/TiO+Cu_2Ti_4O+Cu_4Ti_3/Ag+Cu_3Ti_3O/Ti_2Cu_3/Ti_2Cu_3+CuTi_2/CuTi_2+CuTi_3/TC4。在一定范围内,反应层厚度增大,界面组织细小均匀,可以获得较好的接头性能。  相似文献   

6.
采用Ti-37.5Zr-15Cu-10Ni和 Ag-Cu28两种钎料分别对TC4钛合金/30CrMnSiNi2超高强钢异种材料进行了钎焊,对钎焊界面组织以及接头的力学性能进行了分析。结果表明:Ag基钎料钎焊TC4与30CrMnSiNi2A异种材料时,钎缝界面组织为Ag(s,s)+Ti-Cu系化合物组成;因Ag固溶体的存在,钎缝具有一定的韧性,接头剪切强度较高,剪切断口呈现出韧性断裂特征。Ti基钎料钎焊TC4与30CrMnSiNi2A异种材料时,钎缝界面组织为Ti-Zr固溶体+未完全反应凝固钎料,钎缝显微硬度较高,接头剪切强度较低,呈现出脆性断裂特征。Ag基钎料TC4/30CrMnSiNi2A异种材料钎焊接头力学性能明显优于Ti基钎料结果,在钎焊温度830℃,保温时间15min时,剪切强度为125.52MPa。  相似文献   

7.
《机械制造文摘》2008,(2):25-26
Ag-Cu-Ti钎料钎焊金刚石的界面微观组织分析;SnCu钎焊接头稳态蠕变本构方程建立;Cu颗粒增强复合钎料钎焊接头的蠕变断裂及强化机理;Pd-Co-Ni-V钎料钎焊SiC陶瓷的接头组织及性能;SiCp/Cu复合材料的真空钎焊  相似文献   

8.
采用BAg72Cu共晶钎料对奥氏体不锈钢与纯铜的真空钎焊工艺进行研究.通过剪切试验、光学显微镜观察、扫描电镜及能谱分析等手段研究了钎焊温度和保温时间对钎焊接头组织和性能的影响.试验表明,钎缝中心区为AgCu共晶组织,两侧界面反应区为铜基固溶体,钎焊温度对钎焊接头的组织和性能影响明显,而保温时间对其影响不明显.当钎焊温度865℃、保温时间10min时,剪切强度最高,达到160 MPa.钎焊温度过低时,冶金作用较弱,接头强度较低;钎焊温度过高时,钎料流淌较多,接头强度也较低.以865℃为钎焊温度,改变保温时间,在10~45 min保温时间内接头的剪切强度变化不大.  相似文献   

9.
Ag-Cu-Ti钎料钎焊金刚石的界面微观组织分析;SnCu钎焊接头稳态蠕变本构方程建立;Cu颗粒增强复合钎料钎焊接头的蠕变断裂及强化机理;Pd-Co-Ni-V钎料钎焊SiC陶瓷的接头组织及性能;SiCp/Cu复合材料的真空钎焊  相似文献   

10.
高纯氧化铝陶瓷与无氧铜的钎焊   总被引:2,自引:1,他引:1       下载免费PDF全文
电真空应用中,要求高纯氧化铝与无氧铜的连接接头具有较高的强度和气密性.采用Ag-Cu-Ti活性钎料直接钎焊高纯氧化铝陶瓷与无氧铜,研究了钎焊温度和保温时间对接头组成、界面反应以及接头抗剪强度的影响,研究了铜基体材料对钎焊接头组织和界面反应的影响.钎焊温度850~900℃,保温时间20~60 min时,接头抗剪强度接近或达到90 MPa.钎焊工艺参数偏离上述范围时,接头抗剪强度较低.接头由Cu/Ag(Cu),Cu(Ag,Ti)/Cu3Ti3O(TiO2)/Al2O3组成,反应层以Cu3Ti3O为主,个别工艺条件下有一定量的TiO2生成,铜基体视工艺条件的不同对钎焊接头组织有一定影响.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号