首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new enantioselective α‐alkylation of α‐tert‐butoxycarbonyllactams for the construction of β‐quaternary chiral pyrrolidine and piperidine core systems is reported. α‐Alkylations of N‐methyl‐α‐tert‐butoxycarbonylbutyrolactam and N‐diphenylmethyl‐α‐tert‐butoxycarbonylvalerolactam under phase‐transfer catalytic conditions (solid potassium hydroxide, toluene, −40 °C) in the presence of (S,S)‐3,4,5‐trifluorophenyl‐3,3′,5,5′‐tetrahydro‐2,6‐bis(3,4,5‐trifluorophenyl)‐4,4′‐spirobi[4H‐dinaphth[2,1‐c:1′,2′‐e]azepinium] bromide [(S,S)‐NAS Br] (5 mol%) afforded the corresponding α‐alkyl‐α‐tert‐butoxycarbonyllactams in very high chemical (up to 99%) and optical yields (up to 98% ee). Our new catalytic systems provide attractive synthetic methods for pyrrolidine‐ and piperidine‐based alkaloids and chiral intermediates with β‐quaternary carbon centers.  相似文献   

2.
The first example of a highly enantioselective organocatalytic aziridination of α‐substituted α,β‐unsaturated aldehydes is presented. The reaction is catalyzed by simple chiral amines and gives access to highly functional terminal azirdines containing an α‐tertiary amine stereocenter in high yields and enantiomeric ratios (95.5:4.5–98:2).  相似文献   

3.
It was shown that the catalytic hydrogenation of α‐iminophosphonates by molecular hydrogen can serve as a convenient method for the synthesis of racemic and optically active α‐aminophosphonates. Up to 94% ee was achieved in the rhodium‐catalyzed enantioselective hydrogenation using chiral ligand (R)‐BINAP.  相似文献   

4.
The hydrogenation of carboxylic acid derivatives at room temperature was investigated. With a mixed Rh/Pt oxide (Nishimura catalyst), low to medium activity was observed for various α‐amino and α‐hydroxy esters. At 100 bar hydrogen pressure and 10% catalysts loading, high yields of the desired amino alcohols and diols were obtained without racemization. The most suitable α‐substituents were NH2, NHR, and OH, whereas β‐NH2 were less effective. Usually, aromatic rings were also hydrogenated, but with the free bases of amino acids as substrates, some selectivity was observed. No reaction was found for α‐NR2, α‐OR, and unfunctionalized esters; acids and amides were also not reduced under these conditions. A working hypothesis for the mode of action of the catalyst is presented.  相似文献   

5.
A highly enantioselective Michael addition of cyclic 1,3‐dicarbonyl compounds to β,γ‐unsaturated α‐keto esters catalyzed by amino acid‐derived thiourea‐tertiary‐amine catalysts is presented. Using 5 mol% of a novel tyrosine‐derived thiourea catalyst, a series of chiral coumarin derivatives were obtained in excellent yields (up to 99%) and with up to 96% ee under very mild conditions within a short reaction time.  相似文献   

6.
A new, highly efficient and mild N‐heterocyclic carbene (NHC)‐mediated organocatalytic procedure for the transfer of tin from tributyl(trimethylsilyl)stannane (Bu3SnSiMe3) onto aldehydes for the preparation of α‐silyloxyalkylstannanes and γ‐silyloxyallylstannanes has been developed.  相似文献   

7.
Efficient methods for the direct arylation and deacylative arylation of β‐ketophosphonates with iodoarenes in presence of a copper(I) or a copper(II) salt as the catalysts have been developed. The corresponding α‐arylphosphonates were obtained in high yields. A tentative mechanism for the deacylative arylation reaction was proposed on the basis of the experimental data.  相似文献   

8.
Regenerated cellulose (RC) films were plasticized with glycerol, glycerin α‐monobutyrate, glycerin α‐monocaproate, glycerin α‐monocaprylate, and glycerin α‐monocaprate. The structure and properties of the films were investigated by using Fourier transform IR, wide‐angle X‐ray diffraction, differential scanning calorimetry, scanning electron microscopy, and tensile tests. The experimental results showed that the addition of plasticizer enhanced the elongation at break, thermal stability, and crystallinity and lowered the tensile strength of the films. The formation of hydrogen bonds between the cellulose and plasticizers weakened the inter‐ and intra‐hydrogen bonds among cellulose molecules, leading to reduced tensile strength. These α‐monoglycerides have relatively good plasticizing effects. Compared with glycerol, the resistance against water washing of the synthesized compounds was significantly enhanced. With the increase of the carbochain length of the α‐monoglycerides, the plasticizing effect decreased but the resistance against water washing was enhanced. When the RC films were immersed in a 10% glycerin α‐monocaproate solution, the elongation at break increased to 15% and stayed at 14.8% after water washing. Glycerin α‐monocaproate might be better for plasticizing RC films than others. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3500–3505, 2003  相似文献   

9.
The methodology in this article is a palladium(II)/copper(II)‐ or palladium(II)‐catalyzed intermolecular cyclization of acrylic acid with alkenes to produce α‐methylene‐γ‐butyrolactone derivatives using molecular oxygen as an environmentally benign oxidant. In this system, the carboxylato, especially trifluoroacetato, or trimethylacetato ligand, plays a quite important role to afford a high catalytic activity by suppressing the deposition of palladium(0) black.  相似文献   

10.
α‐Substituted β‐acetyl amides could undergo C C bond cleavage to form α‐keto amides when treated with copper(II) chloride (CuCl2) and boron trifluoride diethyl etherate (BF3⋅OEt2) under an oxygen atmosphere. The yield can be increased by the addition of tert‐butyl hydroperoxide which alone can also effect the reaction. The reaction provides a new protocol for the synthesis of α‐keto amides.

  相似文献   


11.
An efficient strategy for a high‐yielding and stereoselective synthesis of α‐trifluoromethyl unsaturated carboxylic acids directly from the reactions of 3,3,3‐trifluoropropanoic acid (CF3CH2COOH) with various aryl aldehydes in the presence of titanium tetrachloride (TiCl4) is reported here for the first time, which is a valuable expansion for the classical Knoevenagel reaction. Because these compounds may have potential applications in organic electronics and can be easily converted to the corresponding fluorinated alcohols and amino acids with excellent bioactivity, this route should be a good choice for the preparation of α‐trifluoromethyl‐containing derivatives.  相似文献   

12.
(2S,3aR,7aS)‐Perhydroindolic acid, the key intermediate in the synthesis of trandolapril, and its trans‐isomers, were readily prepared. These proline‐like molecules are unique in that they contain a rigid bicyclic structure, with two hydrogen atoms trans to each other at the bridgehead carbon atoms. These molecules were used successfully as chiral organocatalysts in asymmetric domino Michael addition/cyclization reactions of aldehyde esters with β,γ‐unsaturated α‐keto esters. They proved to have excellent catalytic behavior, allowing for the synthesis of multi‐substituted, enantiomerically enriched hemiacetal esters. Under optimal conditions (using 10 mol% catalyst loading), a series of β,γ‐unsaturated α‐keto esters was examined with up to 99% de, ee and yield, respectively. Additionally, the enantiomerically enriched hemiacetal esters could be readily transformed into their corresponding bioactive pyrano[2,3‐b]pyrans (possessing a multi‐substituted bicyclic backbone).  相似文献   

13.
A kinetic analysis was performed to evaluate the antioxidant behavior of α‐ and γ‐to‐copherols (5—2000 ppm) in purified triacylglycerols obtained from sunflower oil (TGSO) and soybean oil (TGSBO) at 100 °C. Different kinetic parameters were determined, viz. the stabilization factor as a measure of effectiveness, the oxidation rate ratio as a measure of strength, and the antioxidant activity which combines the other two parameters. In the low concentration range (up to 400 ppm in TGSBO and up to 700 ppm in TGSO) α‐tocopherol was a more active antioxidant than γ‐tocopherol whereas the latter was more active at higher concentrations. It has been found that the different activity of the tocopherols is not due to their participation in chain initiation reactions, but that the loss of antioxidant activity at high tocopherol concentrations is due to their consumption in side reactions. The rates of these reactions are higher in TGSBO than in TGSO. Both α‐tocopherol itself and its radicals participated more readily in side reactions than γ‐tocopherol and its radicals. Both α‐ and γ‐tocopherol reduce lipid hydroperoxides, thus generating alkoxyl radicals which are able to amplify the rate of lipid oxidation by participating in chain propagation reactions.  相似文献   

14.
The Heck arylation of α,β‐unsaturated aldehydes is strongly dependent on the catalyst, the solvent and the base. Optimized conditions yielded either selectively cinnamyl derivatives (83%) or double arylation products (88% based on aryl conversion). A new α‐arylation of β,β‐disubstituted acrolein is also realized.  相似文献   

15.
A new enantioselective synthetic method for the synthesis of α,α‐dialkylmalonates with a quaternary carbon center was developed via α‐alkylation of prochiral malonates by phase‐transfer catalysis (PTC). Asymmetric α‐alkylation of benzylideneamino tert‐butyl α‐methylmalonates under phase‐transfer catalytic conditions in the presence of (S,S)‐3,4,5‐trifluorophenyl‐NAS bromide afforded the corresponding α,α‐dialkylmalonates in high yields (up to 97%) with excellent enantioselectivities (up to 98% ee). The products were then selectively hydrolyzed to chiral malonic monoacids under basic, acidic, or catalytic hydrogenation conditions.

  相似文献   


16.
Monoclinic (α) and hexagonal (β) polypropylene (α‐ and β‐PP) were stained in the vapor of a ruthenium tetroxide solution prepared in situ. The effect of staining on the fusion behavior was investigated using a DSC. A staining duration between 10 and 24 h was found suitable for obtaining a good electron contrast between the crystalline and amorphous regions for TEM examination without causing severe damage to the crystals. The spherulites of the water‐quenched α‐PP were found to be composed of very fine cross‐hatched lamellae whose long period was about 10 nm. In comparison, the β‐PP spherulites crystallized isothermally at 130°C had a category 2 morphology and the lamellae have a long period of 20 nm. The morphology of the spherulite boundary varied depending on the contact angle between the lamellae of the neighboring spherulites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1529–1538, 1999  相似文献   

17.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


18.
In the presence of the readily available quinine‐derived catalyst 4d , highly diastereo‐ and enantioselective Mannich reactions of tosyl‐protected imines and α‐isothiocyanato imides proceeded to afford the protected α,β‐diamino acids, useful building blocks for natural products and biologically active compounds, in good to excellent yields.  相似文献   

19.
An organocatalytic approach for the stereoselective synthesis of 3,4‐dihydrocoumarins with an α,α‐disubstituted amino acid moiety incorporated is presented. The developed methodology is based on the cascade reaction between α‐substituted azlactones and 2‐hydroxychalcones. It is initiated by a chiral Brønsted base‐catalyzed enantio‐ and diastereoselective Michael reaction followed by the azlactone ring opening to construct a 3,4‐dihydrocoumarin framework. Products bearing two adjacent stereogenic centers, one being quaternary, were formed with high enantioselectivities and excellent diastereoselectivities. Furthermore, the complete regioselectivity of the new cascade reactivity is worthy of notice.

  相似文献   


20.
Nano‐fillers play an important role in the final structure and properties of nanocomposites. The objective of the work presented here was to prepare nanocomposite films of chitosan/α‐zirconium phosphate using a casting process, with α‐zirconium phosphate (α‐ZrP) as nano‐filler and chitosan as matrix. The effects of α‐ZrP on the structure and properties of the nanocomposites were investigated. X‐ray diffraction patterns showed that α‐ZrP crystals were intercalated by n‐butylamine. The results from scanning electron microscopy and transmission electron microscopy indicated that α‐ZrP could be uniformly dispersed in the chitosan matrix when α‐ZrP loading in the composites was less than 2 wt%. A strong interaction between α‐ZrP and chitosan formed during the film‐forming process. Tensile testing showed that the tensile strength and elongation at break of nanocomposite films achieved maximum values of 61.6 MPa and 58.1%, respectively, when α‐ZrP loading was 2 wt%. The parameter B calculated from tensile yield stress according to the Pukanszky model was used to estimate the interfacial interaction between the chitosan matrix and α‐ZrP. Films with a loading of 2 wt% α‐ZrP had the highest B value (3.2), indicating the strongest interfacial interaction. The moisture uptake of the nanocomposites was reduced with addition of α‐ZrP. It can be concluded that α‐ZrP as nano‐filler in a chitosan matrix can enhance the mechanical properties of nanocomposites due to the strong interactions between α‐ZrP and chitosan. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号