共查询到17条相似文献,搜索用时 72 毫秒
1.
基于粒子群优化神经网络的变压器故障诊断 总被引:6,自引:2,他引:6
为克服电气分析应用中误差反向传播(BP)神经网络存在的不足,提出了一种利用改进粒子群算法优化神经网络的变压器故障诊断新方法。该法的惯性权重自适应调整,以平衡局部和全局搜索能力;收缩因子加快算法的收敛速度,有利于更快地收敛于全局最优解。利用改进的粒子群算法优化神经网络参数,并结合BP算法训练网络可有效地克服常规BP算法训练网络权值和阈值收敛速度慢、易陷入局部极小和遗传算法独立训练神经网络速度缓慢等缺点。最后,进行变压器故障实例分析的仿真结果表明,该算法具有较快的收敛速度和较高的诊断准确度,证实了该方法的正确性和有效性。 相似文献
2.
针对电力变压器故障诊断问题,提出了一种基于混沌(Chaos)优化的粒子群(Particle Swarm Optimization)BP神经网络算法。该算法将混沌、粒子群和BP神经网络相结合,通过混沌粒子群算法寻优,得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。利用了混沌算法的遍历性和对初始值敏感的特点,对粒子群算法进行了参数优化,引入了早熟判断机制,并在早熟状态时进行了混沌扰动,使算法后期不易陷入局部最优。通过实例训练与测试表明,CPSO-BP神经网络算法在变压器故障诊断方面有较好的效果。 相似文献
3.
4.
改进粒子群优化神经网络在变压器故障诊断中的应用 总被引:1,自引:3,他引:1
变压器绕组早期故障的诊断是实现安全生产、避免大事故的技术前提。由于变压器器身振动信号包含有丰富的信息,所以可以通过监测变压器振动信号来预估绕组的状况。笔者首先利用小波包分解原理将变压器振动信号分解到不同的频段中,然后计算各频段的能量熵值,并将其作为BP神经网络的输入向量,同时利用改进粒子群算法(IPSO)对BP神经网络进行优化。最后利用训练好的BP神经网络对变压器进行故障诊断。试验结果表明:与传统BP神经网络法和PSO-BP神经网络方法相比,该方法克服了BP神经网络的一些缺陷,具有较快的收敛速度和较高的诊断精度,对变压器绕组的早期故障具有良好的预测能力。 相似文献
5.
针对变压器故障征兆和故障类型的非线性特性,结合油中气体分析法,设计了一种改进粒子群算法的小波神经网络故障诊断模型。模型采用3层小波神经网络,并用一种改进粒子群算法对其进行训练。该算法在标准粒子群算法的基础上,通过引入遗传算法中的变异算子、惯性权重因子和高斯加权的全局极值,加快了小波神经网络训练速度,提高了其训练的精度。仿真实验证明这种改进粒子群算法的小波神经网络可以有效地运用到变压器故障诊断中,为变压器故障诊断提供了一条新途径。 相似文献
6.
7.
8.
《高压电器》2016,(11)
传统单一人工智能方法对变压器故障诊断中采用的大量不完备信息不能够有效处理,导致故障诊断准确率不高。为弥补这一不足,在全面分析粒子群算法(particle swarm optimization,PSO)和极限学习机(extreme learning machine,ELM)各自优势的基础上,构建了一种基于粒子群优化极限学习机的变压器故障诊断方法。该方法以DGA作为特征输入,利用粒子群算法对极限学习机的输入层权值和隐含层阈值进行优化,从而提高变压器故障诊断的精度。实例对比分析表明,与BP神经网络和极限学习机方法相比,粒子群极限学习(PSO-ELM)方法有更高的诊断准确率。 相似文献
9.
基于粒子群优化支持向量机的变压器故障诊断 总被引:3,自引:4,他引:3
为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类捕食行为的研究。这种方法不仅具有很强的全局搜索能力,而且容易实现,适合于SVM参数优化。变压器故障诊断实例分析结果证明,PSO-SVM的诊断精度高于IEC三比值法、BP神经网络、普通的SVM,PSO-SVM适用于电力变压器故障诊断。 相似文献
10.
11.
为了更加准确快速地诊断出三相异步电动机运行过程中发生的各类故障,在采用小波包分析提取异步电机故障特征向量的基础上,提出了一种混沌动态权重粒子群算法(CDW-PSO)优化BP神经网络的故障诊断方法,构建电机的神经网络故障诊断模型,采用混沌动态权重粒子群算法优化神经网络的结构参数。实验分析表明,采用该方法用于电机故障诊断,诊断速度快、准确性高、可靠性好。 相似文献
12.
13.
14.
为精确诊断电力变压器内部潜在绝缘故障类型,通过对变压器内部油过热和油纸绝缘中局部放电等8种潜在绝缘故障发生时所产生的气体成分分析,提出了一种以人工免疫网络与粒子群算法改进径向基函数RBF(radial basis function)神经网络的变压器故障诊断算法。重点介绍了基于RBF神经网络的变压器故障诊断模型的构成原理、基于人工免疫网络算法的故障模型隐层中心确定方法以及基于粒子群算法的网络模型权重寻优方法,并进行了仿真实验。实验结果表明:该算法能有效地识别其绝缘故障类型,且识别精度可达90%以上。 相似文献
15.
基于免疫粒子群算法的电力系统无功优化 总被引:1,自引:2,他引:1
为提高粒子群优化(particle swarm optimization,PSO)算法的收敛性能,将免疫算法(immunity algorithms,IA)的免疫信息处理机制引入到标准粒子群算法,形成一种新的优化算法,即免疫粒子群算法。该算法将免疫算法的免疫记忆和自我调节机制引入PSO,并采用基于粒子浓度机制的多样性保持策略;同时,用免疫算法的"接种疫苗"和"免疫选择"来指导搜索过程。改进后的算法可以很好的保持优化过程中粒子群的多样性,抑制优化过程中出现的退化现象,保证算法的收敛精度和收敛速度。IEEE 30节点系统算例仿真表明,IA-PSO算法与标准PSO算法相比,能够及时跳出局部最优得到全局最优解,且收敛速度快、精度高。 相似文献
16.
17.
改进PSO算法用于电力系统无功优化的研究 总被引:3,自引:0,他引:3
由于电力系统无功优化为一有多变量、多约束、非线性的组合优化问题,针对传统粒子群算法收敛精度不高、易陷入局部最优的缺点,提出了一种改进的算法:分别赋予传统算法中的粒子以不同的初始惯性权重,权重较大的粒子拓展搜索空间,惯性权重较小的粒子完成局部强化寻优的工作。用改进的PSO算法无功优化计算IEEE-14节点系统的结果表明:新算法不仅避免了惯性因子权重调整的困难,而且较好地协调了算法的局部与全局搜索能力,可较好地解决电力系统的无功优化问题。 相似文献