首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
通过对含4.5%Re/3.0%Ru单晶镍基合金进行高温蠕变性能测试,并采用扫描电镜(SEM)、透射电镜(TEM)对不同蠕变期间的试样进行组织形貌观察,研究了该合金的高温蠕变行为。结果表明,本实验所选用的单晶合金在高温蠕变期间具有良好的蠕变抗力,在1040℃/160MPa的蠕变寿命达到725h。高温蠕变初期,合金中γ′相沿垂直于应力轴方向转变成筏状结构,其稳态蠕变期间的变形机制是位错在基体中滑移和攀移越过筏状γ′相。高温蠕变后期,合金的变形机制是位错在基体中滑移和剪切筏状γ′相。位错的交替滑移使筏形γ′相扭曲,并在γ/γ′两相界面发生裂纹的萌生与扩展直至断裂,是合金在高温蠕变后期的断裂机制。  相似文献   

2.
研究一种镍基第三代单晶(single crystal,SC)高温合金在760℃/800 MPa,980℃/250 MPa与1100℃/137 MPa条件下的横向持久性能。结果表明:在760℃/800 MPa,980℃/250 MPa与1100℃/137 MPa条件下,该合金横向持久寿命与伸长率均低于纵向;横向与纵向持久断裂后的位错组态特征一致,760℃/800 MPa条件下断裂后γ′相中存在相交的层错,而1100℃/137 MPa条件下断裂后γ/γ′相界面形成位错缠结与高密度位错网;横向与纵向在760℃/800 MPa条件下为类解理断裂与韧窝断裂的混合断裂,而在980℃/250 MPa与1100℃/137 MPa条件下为韧窝断裂;第一代单晶高温合金DD3、第二代单晶高温合金DD6与本研究的第三代单晶高温合金中高温横向持久断裂机制基本一致;外应力方向垂直于定向凝固过程形成的一次枝晶间界面,是横向持久性能低于纵向的主要原因。  相似文献   

3.
研究一种镍基第三代单晶(single crystal, SC)高温合金在760℃/800 MPa,980℃/250 MPa与1100℃/137 MPa条件下的横向持久性能。结果表明:在760℃/800 MPa,980℃/250 MPa与1100℃/137 MPa条件下,该合金横向持久寿命与伸长率均低于纵向;横向与纵向持久断裂后的位错组态特征一致,760℃/800 MPa条件下断裂后γ′相中存在相交的层错,而1100℃/137 MPa条件下断裂后γ/γ′相界面形成位错缠结与高密度位错网;横向与纵向在760℃/800 MPa条件下为类解理断裂与韧窝断裂的混合断裂,而在980℃/250 MPa与1100℃/137 MPa条件下为韧窝断裂;第一代单晶高温合金DD3、第二代单晶高温合金DD6与本研究的第三代单晶高温合金中高温横向持久断裂机制基本一致;外应力方向垂直于定向凝固过程形成的一次枝晶间界面,是横向持久性能低于纵向的主要原因。  相似文献   

4.
用扫描电镜(SEM)和透射电镜(TEM)观察两种“W替Re”型低成本第二代镍基单晶高温合金分别在982℃/248 MPa和1070℃/137 MPa条件下持久变形断裂后的微观组织,研究了其变形的机制。结果表明,两种合金的持久性能均达到第二代单晶高温合金的水平;持久变形断裂后γ’相连接并合并成“N型筏”结构,随着与距离断口位置的接近γ’相的扭曲变形程度加剧。在相同条件下8.5W+1.0Re合金γ’相的筏形化程度比8.0W+1.5Re合金低;与982℃/248 MPa条件相比,在1070℃/137 MPa下两种合金持久变形断裂后的界面位错网更加致密。在相同条件下,8.0W+1.5Re合金比8.5W+1.0Re合金的位错网更致密,8.5W+1.0Re合金在两条件下持久变形断裂后都能观察到剪切进γ’相的a<010>超位错;两种合金失稳断裂的主要原因是,γ基体中的a/2<110>位错剪切进入γ’相使筏形γ’相变形加剧,裂纹在γ/γ’界面处萌生和扩展,最终使合金断裂;γ/γ’两相界面上的位错网和a<010>超位错可在一定程度上提高合金的持久变形抗力。  相似文献   

5.
利用透射电镜和场发射扫描电镜研究了两种不同Ru含量(3%和5%,质量分数)的第四代镍基单晶高温合金DD22在1130℃长期时效过程中γ′相形貌演化、TCP相析出和界面位错网的演化情况。研究结果表明:在完全热处理后5Ru合金比3Ru合金的γ′相尺寸更小,形状更规则,γ/γ′相界面的错配度更大,高Ru含量使合金Re,Mo等元素出现反分配现象;5Ru合金在1130℃长期时效过程中γ′相粗化速率、溶解速率和形筏速率均低于3Ru合金;5Ru合金在长期时效1000 h后仍没有TCP相析出,而3Ru合金在时效50 h后便析出TCP相,随着长期时效时间延长,TCP相数量增多,尺寸增大;与3Ru合金相比,长期时效1000 h后5Ru合金γ′/γ界面位错网更加致密和规则;综上所述,Ru的元素反分配作用和低的扩散系数使5Ru合金比3Ru合金表现出更高的组织稳定性。  相似文献   

6.
本文研究一种在热腐蚀环境下工作的 Ni 基单晶高温合金错配度以及γ′筏状形成与性能的关系;通过蠕变和持久试验,研究合金的变形组织和强化特点。在变形过程中,基体运动位错遇γ′相受阻而在γ′相表面形成位错网络,这种位错结构在变形中形成了新的强化机制,提高了合金的蠕变抗力。  相似文献   

7.
使用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)和高温拉伸试验机等手段系统地研究了不同Ta含量FGH98合金的显微组织和高温拉伸性能。结果表明:添加Ta可明显消除原始粉末颗粒的边界(PPB,Prior Particle Boundary),促进二次γ′相形态失稳和三次γ′相数量的增加。加入Ta使合金的高温抗拉强度和屈服强度都有一定程度的提高,Ta含量为2.4%(质量分数,下同)的合金塑性最好;无Ta和1.2%Ta合金的拉伸断口为结晶状断口;2.4%Ta合金的断口上有较多的等轴状韧窝,为韧性断裂;3.6%Ta和4.8%Ta合金为穿晶和沿晶解理断裂,属于典型的结晶状断口。在无Ta合金中产生大量孪晶和位错绕过γ′相发生变形,Ta的加入降低了合金的层错能,随着Ta含量的提高合金的位错剪切γ′相产生大量的层错。  相似文献   

8.
通过蠕变性能测试和组织形貌观察,研究了一种Re含量为4.5%Re(质量分数,下同)的镍基单晶合金的高温蠕变行为、变形和损伤机制。结果表明,4.5%Re合金在980℃/300MPa的蠕变寿命为169h。蠕变初期,合金中立方γ′相转变为垂直于应力轴的N型筏状结构。稳态蠕变期间,合金的变形机制为位错在基体中滑移和攀移越过筏状γ′相。蠕变后期,合金的变形机制为位错在基体中滑移和剪切进入筏状γ′相。由于γ基体通道较窄,位错在基体通道中滑移所需的阻力较大。剪切进入γ′相的110超位错可由{111}面交滑移至{100}面,形成K-W锁,从而抑制位错的滑移和交滑移,这是合金具有较好蠕变抗力的主要原因。主/次滑移位错的交替开动,可致使筏状γ′相扭曲,并促使裂纹在筏状γ/γ′两相界面萌生;裂纹沿垂直于应力轴方向扩展,直至断裂,这是合金的蠕变断裂机制。  相似文献   

9.
魏力民  杨权  程义  谭舒平 《材料导报》2017,31(16):107-111
在Thermo-Calc热力学软件模拟计算基础上,采用光学显微镜、扫描电子显微镜、能谱检测和透射电子显微镜研究了Ni-25Cr-20Co合金在长期时效过程中析出相的变化情况及对性能的影响,理论分析了γ′相颗粒粗化对合金拉伸变形过程中第二相与位错交互作用机制的影响。结果表明:经750℃时效后合金中析出MC、M_(23)C_6和γ′相,γ′相的体积分数约为16%。长期时效后,γ′相颗粒的平均尺寸与时间t符合LSW理论,受溶质原子扩散及γ/γ′界面能的影响。时效后合金的拉伸强度明显增加,随时效时间的延长,拉伸强度逐渐降低。随γ′相的粗化,拉伸变形过程中第二相与位错交互作用的机制由位错热攀移机制→位错切割机制→Orowan绕越机制转变为位错热攀移机制→Orowan绕越机制→位错切割机制。  相似文献   

10.
通过对三种Re含量不同的单晶高温合金1100℃/140MPa蠕变实验及组织分析,研究了Re对单晶高温合金蠕变过程中γ′相定向粗化的影响。结果表明,在单晶高温合金蠕变过程中,Re促进形成完整、细密、连续的γ′筏排组织,降低合金元素扩散速率,延缓γ通道厚度的增加,降低γ′相体积分数的减小速率,从而稳定了对合金高温强度起重要作用的γ′相,使γ′相的强化作用持续较长时间。  相似文献   

11.
目的 研究含铜抗菌不锈钢拉伸性能,为工业生产中的成形工艺优化提供一定的理论依据。方法 在拉伸应变分别为5%、15%、30%、45%、60%、75%以及最后拉伸断裂时应变为81%条件下,采用岛津AGS-100KN万能拉伸试验机对含铜抗菌不锈钢进行拉伸试验。通过扫描电子显微镜(SEM)、电子背散射衍射仪(EBSD)和透射电子显微镜(TEM)表征分析含铜抗菌不锈钢拉伸断裂后的断口形貌以及拉伸过程中的微观组织演变。结果 含铜抗菌不锈钢抗拉强度最大值为587.523 MPa,应变最大值为81%。拉伸断口与拉伸方向呈45°开裂,呈杯锥状,断裂模式是韧性断裂。结论 随着应变的增大,低角度晶界逐渐增多,高角度晶界与孪晶逐渐减少,GOS值逐渐增大,Goss织构、S织构和R织构含量逐渐减少,Brass织构含量逐渐增加,拉伸断裂后的体积分数为23.3%。在拉伸后期,Copper织构和Brass织构含量较多,在拉伸过程中起到整体稳定协调微观组织作用的S织构不断减少,随应变的增大,组织内部协调变形加快,变形程度快速增大,从而导致S织构向Copper织构和Brass织构转变,出现板条状马氏体,存在应变诱发马氏体相变。位错滑移、形变孪晶和形变诱导马氏体等多种变形机制的共同作用使含铜抗菌不锈钢具有良好的塑性。  相似文献   

12.
分别对原始态的双相Mg-8Li-4Al-3Zn-La合金进行固溶及退火处理,通过光学显微镜、扫描电镜以及X射线衍射等方法研究合金在不同热处理状态下微观组织的变化,测定了合金硬度及拉伸性能并分析了断口。研究结果表明,经固溶处理后合金抗拉强度明显提高,由原来的194MPa提升到243MPa,延伸率由18%降至9%;而退火处理后其强度没有提升,塑性反而下降。此外,合金中两相组织与第二相分布具有明显差异,使得各相性能及其对热处理的反应不同。  相似文献   

13.
对铸态Al10Cu25Co20Fe20Ni25高熵合金进行冷轧处理后进行室温拉伸测试,并利用X射线衍射仪(XRD)和扫描电镜(SEM)分别对其相结构、微观组织形貌及拉伸断口进行分析。结果表明:经冷轧工艺处理后,Al10Cu25Co20Fe20Ni25高熵合金硬度最大为285HV,较轧制前提高了51.6%;在变形量为40%时,抗拉强度达到最大值,为638MPa,是铸态合金的2.7倍。拉伸断口分析表明,铸态合金的断裂模式为树枝晶沿晶断裂和韧窝型延性断裂,而冷轧态合金主要为韧窝型延性断裂模式。  相似文献   

14.
Hi‐Nicalon SiC (silicon carbide) fibres were annealed in an argon flow for 10 h at 1400 °C, 1600 °C and 1800 °C. The strength of the fibres was determined by a monofilament tensile testing machine, their fracture surfaces were analysed by SEM (scanning electron microscope) and their microstructure was characterized by a TEM (transmission electron microscope) and XRD (X‐ray diffractometer). The results indicated that the strength of the fibres obeyed the Weibull distribution and the tensile strength decreased with the increase of annealing temperatures. The specimens showed brittle/flat fracture; most of the cracks initiated at the inner region of the fibres. After being annealed at 1800 °C for 10 h, the specimens showed cleavage and transcrystalline fracture. Statistical analysis revealed that the defects at the surface of the fibres had a negligible effect on their strength.  相似文献   

15.
The aim of this study was to investigate the mechanical properties of Al‐Mg‐Si alloys aged to peak hardness with different dispersoid volume fraction. It was found that the tensile strength increases with dispersoid content, for alloys having similar ductility. The effect of an increasingly triaxial stress state on a fracture strain above mentioned alloys were measured using a series of notched tensile specimens whose notch root radius of curvature was changed. The alloy ductility was found to increase with dispersoid content and root radius and to decrease with increased stress triaxiality. The fracture toughness of these alloys was determined as a function of dispersoid content and notch root radius of curvature. It was observed that the fracture toughness increased as the dispersoid content and the notch root radius increased. scanning electron microscope analysis of the fracture surfaces revealed that fracture mechanism was transgranular fracture with dimples formation. It is argued that optimum mechanical properties in these alloys can be achieved at about 0.5 % Mn content.  相似文献   

16.
为研究陶瓷基复合材料的低周疲劳失效机理,通过试验和细观分析对其疲劳特性进行了探讨。研究了室温下加载循环数对2D针刺C/SiC复合材料拉-拉疲劳剩余强度的影响,并采用光学显微镜和扫描电子显微镜对该材料的断口形貌和微观结构进行了观察。结果表明:2D针刺C/SiC复合材料具有较好的抗疲劳特性,在85%极限拉伸强度(UTS)载荷下的循环数超过106;随着加载循环数的增加,剩余强度先增大然后下降。断口分析表明:纤维拔出长度随着加载循环数的增加而增加,说明在疲劳加载过程中,纤维/基体的界面结合强度降低,减缓了材料内部受力的不均匀性,提高了材料的承载能力,使2D针刺C/SiC复合材料出现了疲劳强化现象。   相似文献   

17.
A novel titanium matrix composites reinforced with TiB and rare earth oxides (Y2O3) were prepared by a non-consumable arc-melting technology. Microstructures of the composites were observed by means of optical microscope (OM) and transmission electron microscope (TEM). X-ray diffraction (XRD) was used to identify the phases in the composites. There are three phases: TiB, Y2O3 and titanium matrix alloy. TiB grows in needle shape, whereas Y2O3 grows from near-equiaxed shape to dendritic shape with increase of yttrium content in the composite. The interfaces between reinforcements and titanium matrix are very clear. There is no interfacial reaction. Tensile properties of the composites were tested at 773, 823 and 873 K. Both the fracture surfaces and longitudinal sections of the fractured tensile specimens were comprehensively examined by scanning electron microscope (SEM). The fracture mode and fracture process at different temperatures were analyzed and explained. The results show that the tensile strength of the composites has a significant improvement at elevated temperatures. The predominant fracture mode of composites is cleavaged at 773 and 823 K. Fracture occurs by ductile failure at 873 K.  相似文献   

18.
Effects of pre-stretching on microstructure and mechanical properties of WE43A alloy were investigated by optical microscope, transmission electron microscope, scanning electron microscopy and electronic universal material testing machine. The experimental results showed that a large number of dislocations and twins were formed in the matrix with the increase of deformation strain. During subsequent aging, β1 phases precipitated in dislocation area and distributed in matrix in a combined manner, honeycomb network and random. The precipitation of β1 increased the ultimate tensile strength and yield strength of WE43A alloy to 272 and 241?MPa, in comparison with the samples without pre-stretching (226 and 180?MPa). The fracture morphology of sample with strain 9% was transgranular cleavage fracture.  相似文献   

19.
为了提高含Sc超高强Al-Zn-Cu-Mg-Zr合金的固溶程度,减少未溶结晶相的数量,用极差分析方法对强化固溶处理制度进行了优化.采用拉伸试验、金相和透射电镜分析、扫描电镜观察和能谱分析等方法研究了强化固溶对合金力学性能和组织的影响.结果表明,与常规固溶相比,强化固溶后合金的屈服强度和抗拉强度分别提高了28MPa和18MPa,合金的断口形貌呈现晶内韧窝与沿晶破裂的混合断裂,强化固溶后合金的力学性能有所改善,残余的第二相数量明显减少,η′析出相也更细小、弥散.  相似文献   

20.
Microstructure and tensile properties of the laser welded joint of Fe–18.8Mn–0.6C TWIP steel were investigated in this research. The microstructure of fusion zone (FZ) was characterized by means of X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). TEM and in-situ SEM observation were employed to investigate the microstructural evolution and strengthening mechanism of FZ during deformation. The welded joint with a fully austenitic structure was obtained by the laser welding. The granular divorced eutectic phases (Fe, Mn)3C and inclusions formed in the interdendritic regions during the solidification of FZ. The fully austenitic structure and coarse dendrite grains were responsible for the fracture at the weld seam. The FZ exhibited a good combination of strength (e.g. tensile strength up to 1000 MPa) and ductility (e.g. total elongation up to 73%). The microstructural evolution revealed that dislocation slip was the main deformation mechanism at low strains of FZ, while at relatively high strains, mechanical twinning was the domain deformation mechanism and played an important role in improving the strength and ductility as well as the work-hardening effect of FZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号