首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用热重分析法(GTA-TGA)研究丝氨酸在空气中的热分解行为及其动力学规律。在5、10、15、20、25 K×min~(-1)的升温速率下,使用DTG-60和DSC-60加热丝氨酸得到了TG-DTA曲线,结果表明丝氨酸在熔融过程中伴随着分解反应。运用Flynn-Wall-Ozawa积分法、Kissing最大速率法和?atava-?esták积分法对实验所得的数据进行处理,最终得到了丝氨酸热分解反应的表观活化能E_s为147.575 kJ×mol~(-1);指前因子的对数值lg(A_s/min~(-1))为17.398;确定了丝氨酸热分解反应的机理为化学反应,得到了热分解机理函数的积分式为G(α)=[1-(1-α)~(1/3)]~(1/2)。此外,在热分解过程中,丝氨酸的焓变ΔH~≠为342.57 kJ×mol~(-1),熵变ΔS~≠为146.28 J×(mol×K)~(-1),吉布斯自由能的变化ΔG~≠为376.60 kJ×mol~(-1),这些物性数据为进一步研究丝氨酸的性质和应用提供了基础数据。  相似文献   

2.
采用热重分析方法对阻燃剂季戊四醇双甲基膦酸酯的热分解行为及其动力学规律进行了研究。得到在氮气气氛升温速率分别为5、10、20、40℃/min下其TGA-DTG曲线。运用Kissinger、Flynn-Wall-Ozawa(FWO)和atava-esták法对其热分解动力学进行了研究,计算出其热分解反应的表观活化能为97.32 k J·mol-1;指前因子的对数值lg A为8.30;其热分解机理为一维相界面反应,热分解动力学机理函数的积分式G(α)=α。  相似文献   

3.
卢莲英  屈章瑜 《化学世界》2008,49(3):154-157
采用TG-DTG技术研究了2-巯基吡啶镉(Ⅱ)、汞(Ⅱ)配合物在氮气气氛中的热分解机理及非等温动力学。采用积分法(Coats-Refern方程,HM方程,MKN方程)和微分法(Achar方程)对非等温动力学数据进行了分析,得到了配合物第一步热分解反应的机理函数、动力学参数和热分解动力学方程。结果表明:其热分解过程属F2(化学反应)机理控制,非等温热分解的动力学方程为dα/dT=A/β.e-E/RT(1-α)2,其中镉(Ⅱ)配合物的表观活化能E=86.35 kJ/mol,指前因子A=4.72×107s-1;汞(Ⅱ)配合物的表观活化能E=189.67 kJ/mol,指前因子A=3.79×1018s-1。  相似文献   

4.
在升温速率分别为2.5、5、10、20 K/min条件下对2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)及其黏结炸药进行了TG实验,根据实验结果讨论了ANPyO及其两种橡胶黏结炸药的热分解过程,用非线性等转化率积分法和Ozawa法计算了ANPyO及其两种黏结炸药的热分解动力学参数和机理函数.结果表明,ANPyO及其黏结炸药在210℃以下均未出现明显的质量损失过程.ANPyO及其黏结炸药的热分解机理均属于n=1的随机成核和随后生长.ANPyO热分解的活化能、指前因子和机理函数分别为198.22 kJ/mol,2.743×1017 s-1,f(a)=(1-α),热分解动力学方程为:(dα)/(dt)=kf(α)=A·e(-E)/(RT)·f(α)=2.743×1017×(1-α)exp-(2.384×104)/(T).  相似文献   

5.
采用TG方法研究了2,4,6-三氨基-3,5-二硝基吡啶-1-氧化物(TNPyO)及其造型粉在升温速率分别为5、10、15、20 K/min的热分解过程,用非线性等转化率积分法(NL-INT)和Ozawa法计算了TNPyO及其造型粉的热分解动力学参数和机理函数.结果表明,TNPyO及其造型粉在231℃以下均具有良好的热安定性,热分解机理均属于n=1的随机成核和随后生长;TNPyO热分解的活化能、指前因子和机理函数分别为344.01 kJ/mol、3.796×1031和f(α)=(1-α),热分解动力学方程为:dα/dt=3.796×1031×(1-α)exp(-3.4401×104/T).  相似文献   

6.
将线型低密度聚乙烯(PE-LLD)与苯氧基环三磷腈(PCPZ)熔融共混,采用热重(TG)法及Freeman-Carroll法分析了PCPZ及PE-LLD/PCPZ共混物的热分解行为。结果表明,PCPZ对PE-LLD的热分解具有催化作用。在PCPZ质量分数为0~10%内,随PCPZ含量的增加,PE-LLD/PCPZ共混物热分解反应的活化能(E)、起始失重温度(T0)、转化率(α)由0增至50%的温度(T50%)、热失重终止温度(Tf)、α由0增至100%的升温幅度(ΔTall)、最大热分解反应速率[(dα/dT)max]、最大热分解反应速率温度(Tmax)、最大热分解反应速率时的转化率(αmax)均下降。同时分别求解了PCPZ及不同PCPZ含量下PE-LLD/PCPZ共混物的热分解反应动力学参数(E、反应级数n、指前因子A),得到了PCPZ阻燃PE-LLD的机理。  相似文献   

7.
利用失重法(TG)在升温速率5 K·min~(-1)、10 K·min~(-1)、20 K·min~(-1)下对RDX基发射药的热分解进行了测试,并对其热分解动力学进行了研究。实验结果表明:将TG数据与Malek法相结合,利用辅助函数y(α)和z(α)判定RDX基发射药热分解动力学机理函数,通过动力学表达式的求解可以得出两种不同配方发射药的表观活化能及反应级数。  相似文献   

8.
在不同升温速率下,利用热重分析法研究了聚酰胺12(PA12)在氮气氛围中的热分解动力学。运用Freeman Carroll、Kissinger、Ozawa、Achar和Coats Redfern方法计算和确定了PA12在氮气氛围中的热分解活化能和热分解机理及其模型。结果表明,在氮气氛围中,PA12的热分解活化能为246.5 kJ/mol,指前因子为1014.71;PA12热分解机理为收缩球体法则,机理方程的微分形式为f(α)=3(1-α)2/3,积分形式为G(α)=1-(1-α)1/3。  相似文献   

9.
利用热重分析法研究了聚对苯二甲酸丁二醇酯(PBT)及溴化环氧树脂(BER)协同三氧化二锑(Sb2O3)阻燃PBT在不同升温速率下的热稳定性及热分解动力学;采用Kissinger及Flynn-Wall-Ozawa方法计算出了PBT和阻燃PBT的热分解活化能;利用Coats-Redfern方法确定了PBT和阻燃PBT的热分解动力学机理及其模型,得出了聚合物主降解阶段的非等温动力学方程。结果表明:BER协同Sb2O3阻燃体系的添加提高了PBT的阻燃性能;通过Kissinger和FWO法的分析可知,阻燃PBT在主分解阶段的活化能明显提高;PBT的热分解机理函数为g(α)=1-(1-α)1/3,阻燃PBT的热分解机理函数为g(α)=2[(1-α)-1/2-1],反应级数n=1.5。  相似文献   

10.
利用热失重分析法(TG)研究了聚酰胺(PA)66及溴化聚苯乙烯(BPS)、BPS协同Sb2O3阻燃PA66在不同升温速率下的热稳定性及热分解动力学,采用Kissinger及Flynn-Wall-Ozawa方法分析了PA66和阻燃PA66的热分解活化能;利用Coats-Redfern方法确定了PA66和阻燃PA66的热分解动力学机理及其模型,得出了聚合物主降解阶段的非等温动力学方程。结果表明,BPS协同Sb2O3阻燃体系阻燃PA66的效果最好,体系的降解模式发生了变化,PA66和BPS阻燃PA66的机理方程为g(α)=-ln(1-α),反应级数n=1,而BPS协同Sb2O3阻燃PA66的机理方程为g(α)=(1-α)-1-1,反应级数n=2。  相似文献   

11.
以聚酰胺66 (PA66)为基体,二乙基次膦酸铝(AlPi)和多聚苯磷酰硅油(PPSO)为阻燃剂,在密炼机上通过熔融共混制备了阻燃PA66,采用热重分析仪表征了阻燃PA66的热稳定性,通过Kissinger法(K法)和Flynn-Wall-Ozawa法(FWO)法分析了阻燃剂对材料热分解活化能的影响,并通过Coats-Redfern法进一步分析了材料的热分解机理和反应级数。实验结果表明,单独加入AlPi时,降低了材料的热分解活化能,使材料的分解提前,随着PPSO的加入,后期热分解活化能增加,提高了材料的热稳定性。纯PA66的机理函数G(α)=1–(1–α)~(1/4) (0.10≤α≤0.90),反应级数为1/4,其为相边界反应分解机理;10% AlPi阻燃PA66的机理函数G(α)=α~2 (α≤0.35,α≥0.70)和G(α)=α~(3/2)(0.40≤α≤0.65),反应级数分别为2和3/2,整个分解过程均为相边界反应分解机理;6% AlPi+2% PPSO阻燃PA66的机理函数G(α)=α+(1–α)ln(1–α) (α≤0.50)和G(α)=[–ln(1–α)]~3 (α≥0.50),反应级数分别为1和3,其分解机理分别为二维扩散的分解机理、随机成核和随后生长分解机理。  相似文献   

12.
彭强  郭玉香  曲殿利 《硅酸盐通报》2017,36(6):1886-1890
利用热重(TG)分析法,对不同粒度菱镁矿的热分解过程进行研究.根据Flynn-Wall-Ozawa法,拟合计算得到不同粒度菱镁矿热分解的活化能和指前因子.采用Thermo-kinetics软件对可能性最大的5种动力学机理函数进行拟合,根据相关系数最大的原则确定最佳分解机理.研究结果表明:菱镁矿热分解的活化能随菱镁矿粒度的增大而减小,当菱镁矿的粒度由小增大时,控制其热分解过程的机理由化学反应逐渐向颗粒内部的传热和CO2的扩散传质转变;其热分解过程的最可几机理函数为R3模型,即三级相边界扩散反应,函数方程为G(α)=1-(1-α)1/3.  相似文献   

13.
新型膨胀阻燃聚丙烯的热分解动力学研究   总被引:4,自引:0,他引:4  
通过极限氧指数法 (LOI)和锥型量热仪(Cone)考察了膨胀阻燃聚丙烯体系(IFR/PP)的阻燃性能;利用热重分析法 (TG)研究了聚丙烯 (PP)及IFR/PP体系在不同升温速率下的热稳定性及热分解动力学,采用Kissinger及Flynn-Wall-Ozawa方法分析PP和IFR/PP的热分解表观活化能;利用Coast-Redfern方法确定了PP和 IFR/PP热分解动力学机理及其模型,得出了聚合物主降解阶段的非等温动力学方程,结果表明,IFR的添加提高了聚丙烯的阻燃性能,阻燃剂的提前分解降低了聚合物的热稳定性,PP和IFR/PP热分解反应均属于随机成核和随后增长反应,其机理函数为g(α)= -ln(1-α),反应级数n=1  相似文献   

14.
采用非等温热重法对聚苯硫醚的热分解动力学进行研究,通过比较计算结果选定拟合结果更好的迭代法计算反应活化能,采用积分法结合36种动力学函数来判断聚苯硫醚热分解的机理函数。得到了聚苯硫醚热分解动力学参数平均活化能E、指前因子A和对应的热分解动力学方程。  相似文献   

15.
采用非等温热重法对聚苯醚的热分解动力学进行研究,计算了反应活化能,采用积分法结合36种动力学函数来判断聚苯醚热分解的机理函数,得到了聚苯醚热动力学参数即反应的动力学函数,平均活化能(Ea)为211.64kJ/mol,指前因子(A)的平均值为6.24×107s-1,也获得了对应的热分解动力学方程。  相似文献   

16.
马来酸酐改性PVB水性化接枝物的热分解动力学   总被引:1,自引:0,他引:1  
制备了马来酸酐改性聚乙烯醇缩丁醛(PVB)接枝物(MPVB-M)及MPVB-M的水性化产物WPVBM。采用红外、核磁氢谱对MPVB-M的结构进行了表征,采用Flynn-Wall-Ozawa(FWO)、Kissinger和Starink法对WPVB-M的热分解动力学进行了研究,求出其参数;利用Coast-Redfern法研究了WPVB-M的热分解机理。结果表明,不同多重速率扫描法求得的WPVB-M热分解的表观活化能较为接近;Kissinger法求得的两步分解的指前因子分别为34.76和32.79;WPVB-M的两步热分解动力学方程分别为G(α)=[ln(1-α)-1]3,G(α)=[ln(1-α)-1]4。  相似文献   

17.
在线性升温速率2.0、5.0、10.0和20.0K/min的条件下,采用热重-差热分析法(TG-DTA)测试5,5′-联四唑-1,1′-二氧二羟胺(TKX-50)的热分解行为,用Dzawa法和Kissinger法研究了其热分解动力学参数。结果表明,TKX-50的热分解过程可分为两个阶段,第一分解阶段活化能为147.05kJ/mol,指前因子为1012.91s-1,受二维扩散机理控制,反应机理服从n=1/2的Jander方程,热分解反应的动力学方程可表示为:dα/dT=1012.91/β×4(1-α)1/2[1-(1-α)1/2]1/2e14705/RT。  相似文献   

18.
对α-萘乙酸(C_(12)H_(10)O_2)的热分解机理进行了研究,采用TG曲线确定了它的热分解过程,并通过四种方程对其热分解过程的活化能En进行了计算,利用41种不同的机理方程af)((微分机理方程)和G(α)(积分机理方程),对其热分解过程的非等温动力学数据进行了线性回归处理,并推断出其热分解机理为n=1/4的化学反应机理,最可几函数为4/3af-=)1(4)(a,并建立了其动力学方程。  相似文献   

19.
马荣华  马虹钰 《化学试剂》2012,34(1):23-26,30
用室温固相法合成了Keggin结构单取代杂多硅钨酸盐甘氨酸超分子化合物α-K4(HGly)3[SiW11Ti(H2O)O39].4H2O,用IR、UV、TG-DTA、X-射线粉末衍射等方法对其进行了表征。结果表明:甘氨酸阳离子与杂多阴离子主要靠静电作用结合,超分子化合物中杂多阴离子仍保持Keggin结构。同时,采用TG-DTA技术研究了标题化合物在氮气气氛中的热分解机理及非等温动力学,用Coats-Redfern的积分法和Achar的微商法对配合物的非等温动力学数据进行分析,得出了热分解反应的机理函数、动力学参数以及分解反应的活化能E和lnA。  相似文献   

20.
利用水解-缩合法,以苯基三甲氧基硅烷、乙烯基单封头为原料制得乙烯基苯基倍半硅氧烷。采用1H NMR、FTIR分析了倍半硅氧烷的结构。以热失重分析(TGA)为手段,研究了乙烯基苯基倍半硅氧烷在氮气气氛中的热分解动力学;利用Kissinger方程、Flynn-Wall-Ozawa方程对乙烯基苯基倍半硅氧烷进行了热分解动力学研究,得到了乙烯基苯基倍半硅氧烷的热分解活化能E和指前因子A;将15种热分解机理函数分别代入4种动力学方程中研究了该乙烯基苯基倍半硅氧烷的热分解机理。研究表明:制得的乙烯基苯基倍半硅氧烷中乙烯基质量分数为2.01%,乙烯基苯基倍半硅氧烷在氮气气氛中热分解活化能E=237.62 k J/mol,指前因子A=2.90×1014s-1,最概然热分解机理为f(α)=1/4(1-α)[-ln(1-α)]-3,热分解动力学方程为:dα/dt=7.25×1013(1-α)[-ln(1-α)]-3exp(-2.85×104/T)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号