首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Khanal DR  Yim JW  Walukiewicz W  Wu J 《Nano letters》2007,7(5):1186-1190
We have calculated the effects of quantum confinement on maximum achievable free carrier concentrations in semiconductor nanowires. Our calculations are based on the amphoteric defect model, which describes the thermodynamic doping limit in semiconductors in terms of the compensation of external dopants by native defects. We find that the generation of amphoteric native defects strongly limits maximum achievable carrier concentrations for nanowires with small widths where quantum confinement is appreciable. The magnitude of this effect in a given material is found to be determined by two material properties: the effective mass of the free carriers, and the position of the conduction (n-type) or valence band (p-type) edge on the absolute energy scale. These results offer a simple, predictive guideline for designing nanostructure devices and contacts where high doping levels are needed.  相似文献   

2.
Andreas Klein 《Thin solid films》2012,520(10):3721-3728
The energy band alignment at interfaces of semiconducting oxides is of direct relevance for the electrical function of electronic devices made with such materials. The most important quantities of the interface determined by band alignment are the barrier heights for charge transport given by the Fermi level position at the interface and the band discontinuities. Different models for predicting energy band alignment are available in literature. These include the vacuum level alignment (electron affinity rule), branch point or charge neutrality level alignment governed by induced gap states, and an alignment based on the orbital contributions to the density of states (common anion rule). The energy band alignment at interfaces of conducting oxides, which have been experimentally determined using photoelectron spectroscopy with in situ sample preparation, are presented. The materials considered include transparent conducting oxides like In2O3, SnO2, ZnO, and Cu2O, dielectric and ferroelectric perovskites like (Ba,Sr)TiO3 and Pb(Zr,Ti)O3, and insulators like Al2O3. Interface formation with different contact partners including metals, conducting and insulating oxides are addressed. The discussion focuses on the energy band alignment between different oxides. A good estimate of the band alignment is derived by considering the density of states of the materials involved.  相似文献   

3.
In the hydrogen evolution reaction (HER), energy‐level matching is a prerequisite for excellent electrocatalytic activity. Conventional strategies such as chemical doping and the incorporation of defects underscore the complicated process of controlling the doping species and the defect concentration, which obstructs the understanding of the function of band structure in HER catalysis. Accordingly, 2H‐MoS2 and 1T‐MoS2 are used to create electrocatalytic nanodevices to address the function of band structure in HER catalysis. Interestingly, it is found that the 2H‐MoS2 with modulated Fermi level under the application of a vertical electric field exhibits excellent electrocatalytic activity (as evidenced by an overpotential of 74 mV at 10 mA cm?2 and a Tafel slope of 99 mV per decade), which is superior to 1T‐MoS2. This unexpected excellent HER performance is ascribed to the fact that electrons are injected into the conduction band under the condition of back‐gate voltage, which leads to the increased Fermi level of 2H‐MoS2 and a shorter Debye screen length. Hence, the required energy to drive electrons from the electrocatalyst surface to reactant will decrease, which activates the 2H‐MoS2 thermodynamically.  相似文献   

4.
Atomic geometry, electronic structure and formation energy of native defects in Zn3N2 films have been studied by means of density functional theory to interpret the different behaviors of defective Zn3N2. The effects of the vacancy and self-interstitial N on electronic and optical properties of zinc nitride were investigated, from which we conclude that N vacancy is responsible for n-type conduction character. Various defects may cause energy shift or gap change, which explains different optical band gap detected in Zn3N2 samples.  相似文献   

5.
Origin of the well-known blue-green emission of spray pyrolysed ZnO thin films has been discussed on the basis of variation of the properties due to different treatment of the samples such as ion beam irradiation and doping. 120 MeV Au ions and 80 MeV Ni ions were used for ion beam irradiation while indium was used for doping studies. It was assumed that, Au ions might have produced huge amount of defects while the defects might be less in Ni irradiated films due to the difference in energy and mass number. Photoluminescence studies of pristine sample showed only one emission at 517 nm at room temperature while the irradiated films showed a decrease in intensity of this emission. Indium doping also reduced the intensity of this emission. But additional emissions were also observed in these films. Based on the observations, we proposed that the blue-green emission was due to the transition from conduction band to the level due to oxygen antisite (OZn).  相似文献   

6.
Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiCx:H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiCx:H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV-Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiCx:H thin films.  相似文献   

7.
Thin films of amorphous AsSe3/2 have been prepared by thermal evaporation of the material under a vacuum of 1.33×10?3 Pa. Reflectivity, transmission and ellipsometric measurements of the films have been carried out. The optical energy gap and the absorption coefficient as a function of wavelength were obtained. Two absorption bands were observed and interpreted in terms of defects in the AsSe3/2 system (homopolar bonds). Analysis of reflection and transmission spectra shows that the electron density at band tails of both conduction and valency bands follows N(E)?E1/2 (Taue plots). No considerable variations were observed on changing the film thickness.  相似文献   

8.
The electronic structure of Cu2O is important for its application as a p-type transparent conducting oxide (TCO). To be useful as a TCO, a material needs to show enhanced transparency in the visible range (band gap > 3 eV) as well as good conduction properties. While Cu2O has too small a band gap, alloys of Cu2O and Al2O3 or Cu2O and alkaline earth oxides are known to display enhanced transparency, with little degradation of electrical properties. It is of interest to consider how to dope Cu2O p-type, e.g. Cu vacancies (oxidation) or cationic dopants. We present a study of the electronic structure and effective hole masses of stoichiometric and oxidised Cu2O and study metal cation doping, using density functional theory (DFT), to analyse p-type doping scenarios. We show that formation of a Cu vacancy is relatively facile, introducing delocalised hole states, with a light hole present. Substitutional cation doping with Al and Au/Ag is found to decrease the band gap but maintains a light hole effective mass necessary for p-type conduction.  相似文献   

9.
This paper reports on the band structure properties and changes in band structure of fluorine-doped LaO1?x F x FeAs (x = 0, 0.2) compound, measured using X-ray photoemission spectroscopy (XPS). The band structure of the superconducting compound is compared with nonsuperconducting parent compound LaOFeAs. With fluorine doping, a shift of the shallow core level is observed in XPS spectra, which may be a response of the band structure due to fluorine doping in the system. The balance of the chemical potential shift with the screening effect of conduction electrons near the Fe and As ions is discussed using nearly unchanged Fe 2p and As 3d core-level spectra. The La 3d core-level spectra shift towards the high energy, ~0.36 eV, may be due to the chemical potential shift caused by fluorine doping. In our valence band spectra, a small peak at around 0.2 eV is observed, which disappeared with the fluorine doping in the system, indicating a change of Fe 3d state from low spin to high spin states and also confirming the nature of Fe 3d electrons as itinerant, which is responsible for superconductivity in these compounds.  相似文献   

10.
Abstract

In this work, we implemented density function theory to investigate the structural and the electronic properties of nitrogen doped single walled carbon nanotube under different orientations of Stone Wales defect. We have found that, the doped defected structures are more stable than the non-doped defected structures. Furthermore, doping defected carbon nanotubes with a nitrogen atom has significantly narrowed the band gap and slightly shifted the Fermi level toward the conduction band. Moreover, nitrogen substitution creates new band levels just above the Fermi level which exemplifies an n-type doping. However, the induced band gap is indirect band gap compared to direct band gap as in pristine carbon nanotubes. Furthermore, the electronic and structural properties of nitrogen doped carbon nanotube with Stone Wales defects is crucially affected by the dopant site as well as the orientations of Stone Wales defects.  相似文献   

11.
伏春平 《材料工程》2016,(12):80-83
采用第一性原理研究Cu,Ag,Au掺杂单层MoS_2的键长畸变、能带结构和态密度。探讨Cu,Ag,Au掺杂对单层MoS_2电子结构的影响。结果表明:Cu,Ag,Au在S位掺杂的杂质能都低于在Mo位掺杂的杂质能,其在S位掺杂的体系的稳定性强于在Mo位掺杂的体系。在S位掺杂时,杂质与最近邻的Mo,S原子的键长都发生了畸变,畸变率最大的是dAu-Mo,达23.8%。与单层MoS_2的超胞相比,掺杂体系的禁带中出现了4条新能级,导带和价带的能量向低能区移动。杂质原子周围存在着电荷聚集,同时也存在电荷损失。  相似文献   

12.
Based on the first-principle calculations by using the Korringa?CKohn?CRostoker coherent potential approximation (KKR-CPA) method in connection with the local density approximation (LDA), we study theoretically the electronic and magnetic properties of different point defects in ZnO, which are Zinc interstitials (Zni), Zinc antisites (ZnO), Oxygen interstitials (Oi) and Oxygen antisites (OZn) defects in ZnO. The supercell calculations were also performed using the full potential local-orbital (FPLO) band structure scheme. This work presents detailed information about total and local density of states at some concentrations of these defects; the stability of the ferromagnetic state compared with the spin-glass state is investigated by comparing calculating their total energy. The results show on one hand that Zni and ZnO produce a shallow donor bellow the bottom of the conduction band (CB), while Oi and OZn produces the shallow acceptors above the top of the valence band (VB), and moment magnetic; on other hand that the ferromagnetic state is more stable than the spin-glass in Oxygen interstitials (Oi) and vice versa for oxygen antisites (OZn) of native point defects in ZnO. The other native point defects (Zni, ZnO, VO, and VZn) have a zero magnetic moment. The results show that the Curie temperature increases with the concentration of interstitial oxygen.  相似文献   

13.
Gd–La codoped TiO2 nanoparticles with diameter of 10 nm were successfully synthesized via a sol–gel method. The photocatalytic activity of the Gd–La codoped TiO2 nanoparticles evaluated by photodegrading methyl orange has been significantly enhanced compared to that of undoped or Gd or La monodoped TiO2. Ti4+ may substitute for La3+ and Gd3+ in the lattices of rare earth oxides to create abundant oxygen vacancies and surface defects for electron trapping and dye adsorption, accelerating the separation of photogenerated electron–hole pairs and methyl orange photodegradation. The formation of an excitation energy level below the conduction band of TiO2 from the binding of electrons and oxygen vacancies decreases the excitation energy of Gd–La codoped TiO2, resulting in versatile solar photocatalysts. The results suggest that Gd–La codoped TiO2 nanoparticles are promising for future solar photocatalysts.  相似文献   

14.
The temperature dependence of direct current (dc) conductivity has been reported in thin films of a-Se95M5 (where M = Ga, Sb, Bi), in the temperature range 219-375 K, in order to identify the conduction mechanism and to observe the doping effect of different metals on amorphous selenium. It is found that the conduction in high temperature range (314-375 K) is due to thermally activated tunneling of charge carriers in the band tails of localized states; and in the low temperature range (219-314 K) conduction takes place through variable range hopping in the localized states near the Fermi level. Current-voltage (I-V) measurements at high electric fields (the field dependence of dc conductivity) have also been carried out for the samples of present system. The analysis of data shows the existence of space charge limited conduction (SCLC) in these glassy alloys. The density of localized states near the Fermi level is calculated for these alloys using dc conductivity (Mott parameters) and SCLC measurements data. The properties have been found to be highly composition dependent.  相似文献   

15.
Photocatalytic CO2 reduction to valuable fuels is a promising way to alleviate anthropogenic CO2 emissions and energy crises. Perovskite oxides have attracted widespread attention as photocatalysts for CO2 reduction by virtue of their high catalytic activity, compositional flexibility, bandgap adjustability, and good stability. In this review, the basic theory of photocatalysis and the mechanism of CO2 reduction over perovskite oxide are first introduced. Then, perovskite oxides' structures, properties, and preparations are presented. In detail, the research progress on perovskite oxides for photocatalytic CO2 reduction is discussed from five aspects: as a photocatalyst in its own right, metal cation doping at A and B sites of perovskite oxides, anion doping at O sites of perovskite oxides and oxygen vacancies, loading cocatalyst on perovskite oxides, and constructing heterojunction with other semiconductors. Finally, the development prospects of perovskite oxides for photocatalytic CO2 reduction are put forward. This article should serve as a useful guide for creating perovskite oxide-based photocatalysts that are more effective and reasonable.  相似文献   

16.
Lanthanum and transition metal mixed oxides form an interesting series of compounds with a general formula LaMO3 (with M = Ti, V, Mn, Cr, Co, Ni and Fe). These compounds have been investigated by many workers as regards to their various physical parameters including the electrical conductivity. The new data reported in this paper refer to the Seebeck coefficient (S) in the temperature interval 300 to 1250 K. Electrical conductivity as a function of temperature has also been reported in the same temperature range and this is quite consistent with the values reported in the literature. Using these and other relevant data reported in the literature it has been concluded that native defects are mainly responsible for the electrical conduction in these solids. The nature of defect centres, charge carrier and their electrical transport mechanism is briefly discussed.  相似文献   

17.
Electronic and optical properties of compensated and noncompensated (Cr, N) codoped TiO2 have been investigated using density functional theory with plane wave basis set and pseudopotential. To investigate the formation of defect pair in the codoped models, defect pair binding energy was calculated. Compensated codoped model has two Cr atoms doped at Ti sites, one N atom at O sites along with an oxygen vacancy that gave stable configuration, better electronic and optical properties. Defect pair binding energy of this model showed that, individual defects would bind each other leading to stable configuration compared to mono-doped models. Band structure results showed that compensated (Cr, N) codoping introduced substantially broaden intermediate states in the forbidden band along with narrowed band gap. Furthermore, the Fermi level was shifted from top of the valence band to middle of the forbidden band describing half metallic character. Cr doping changed the nature of N 2p states from unoccupied to occupied which will improve electron–hole pair separation. Optical properties comparison showed that all doped models effectively shifted the absorption edge of TiO2 towards visible light. Compensated (Cr, N) codoped TiO2 has better optical properties and covered wide absorption band in the visible light region, attributed to the stable configuration, narrowed band gap and widely distributed states in the band gap. Our results provide reasonable explanation of the experimental findings.  相似文献   

18.
To elucidate the electronic state and the conduction mechanism of Nd2NiO4+δ series oxides at high temperatures, the electrical conductivity, Seebeck coefficient, and nonstoichiometric oxygen content of Nd2−xSrxNiO4+δ (x = 0, 0.2, 0.4) were measured as a function of the Sr content, temperature, and oxygen partial pressure. The hole mobility is estimated from the electrical conductivity and the hole concentration which is defect chemically determined. The mobility slightly decreases as temperature increases as in metals at high temperatures. The relationships between the Seebeck coefficient, electrical conductivity, and hole concentration can be explained by Mott's equation, which expresses the Seebeck coefficient for metals. Semi-quantitative analyses strongly indicate that the electron or hole is itinerant in Nd2−xSrxNiO4+δ, and the conduction mechanism is metal-like band conduction at high temperatures. Based on the experimental results, schematics for energy level and band structure are proposed. At high temperatures, free holes in the σx2−y2 band composed of dx2−y2 orbitals contribute to metallic conduction.  相似文献   

19.
We have studied the optical absorption in sapphire after Fe-ion irradiation and subsequent vacuum heat treatment. The absorption parameters and the nature of the transitions between localized states and allowed bands have been shown to be influenced by substitutional defects, intrinsic radiation-induced defects, and their complexes. We have evaluated the contributions of individual substitutional defects, their clusters, and complexes of substitutional defects with native vacancies and the effect of the iron oxides forming during annealing on the absorption in sapphire. The nature of the substitutional defect clusters and impurity-native defect complexes has been analyzed in detail.  相似文献   

20.
A discussion of the optical properties of two systems of dielectric films i.e. In2O3 and of mixed oxides In2O3−MoO3 system is presented. Film thickness, substrate temperature, annealing and composition (in molar%) have a profound effect on the structure and optical properties of these films. The decrease in optical band gap with the increase in film thickness of In2O3 is interpreted in terms of incorporation of oxygen vacancies in the In2O3 lattice. The decrease in optical band gap with the increase in substrate temperature and annealing of In2O3 thin films is ascribed to the release of trapped electrons by thermal energy or by the outward diffusion of the oxygen-ion vacancies, which are quite mobile even at low temperature. For the mixed oxides In2O3−MoO3 system the results are found to be compatible with the reduction in the value of optical band gap of these materials as the molar fraction of MoO3 increases in the In2O3 thin films and is attributed to the incorporation of Mo(VI) ions in an In2O3lattice that causes the indium orbital to become a little less tightly bound. The decrease in optical band gap of mixed oxides In2O3−MoO3 system, with increasing film thickness is interpreted in terms of incorporation of oxygen vacancies in both In2O3 and MoO3 lattice which are also believed to be the source of conduction electrons in In2O3–MoO3 complex. The decrease in optical band gap with increasing substrate temperature and annealing of mixed oxides In2O3−MoO3 system is due to the increasing concentration of oxygen vacancies, formation of indium and molybdenum species of lower oxidation state and indium interstitials. The blue colouration of mixed oxides In2O3–MoO3 samples is due to the inter-electron transfer from oxygen 2p to molybdenum 4d level due to which Mo species of lower oxidation states are formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号