首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
The prediction of the hydrodynamic performance of marine current turbines   总被引:2,自引:0,他引:2  
The development of a blade element momentum (BEM) model for the hydrodynamic design of marine current turbines is presented. The model includes routines for interpolation of 2D section data and extrapolation for stall delay. The numerical model is compared with experimental data obtained from tests of an 800 mm diameter model rotor carried out in a cavitation tunnel. The theoretical predictions are in good agreement with the experiments. Using this validated model, a typical 3D rotor is used to demonstrate parametric variations of the design parameters. The effect of tip immersion on possible cavitation is assessed for this rotor. The model is then used to solve the dynamic effects of a tidal profile. The effect of an increase in blade roughness is presented, indicating a relatively small reduction in power. This work demonstrates that the numerical model developed can provide a useful tool for the investigation of the hydrodynamic design and operation of marine current turbines.  相似文献   

2.
The conversion of the kinetic energy presented by ocean or marine currents offers an exciting proposition as it can provide regular and predictable energy resource. The majority of the proposed designs for converting this type of kinetic energy are based on the concept of the horizontal axis turbines, which has common characteristics to those being used in wind energy. Although a lot can be learnt and transferred from wind turbine technology, there are significant differences. These include the effects of the free surface and the occurrence of cavitation. Consequently, any developed numerical methods need to be verified. This study reports on the development and verification of simulation tools based on blade element momentum theory—a commercial code (GH-Tidal Bladed) and an academic in-house code (SERG-Tidal). Validation is derived from experimental measurements conducted on a model 800 mm diameter turbine in a cavitation tunnel and a towing tank. The experimental data includes measurements of shaft power and thrust generated by the turbine for a series of blade pitch settings and speeds. The results derived from the two codes are compared. These indicate that the two developed codes demonstrate similar trends in the results and provide a satisfactory representation of the experimental turbine performance. Such results give the necessary confidence in the developed codes resulting in appropriate tools that can to be utilised by developers of marine current turbines.  相似文献   

3.
To convert the kinetic energy of marine current into electricity, the most sensible generator is a horizontal axis turbine. The know-how and the tools used for marine propulsion devices find a new range of applications in this field. An academic panel method code developed for the design of bare and ducted marine propellers was applied to design a marine current turbine. The turbine dimension and the tidal current velocity have been taken to fit the conditions in the Race of Alderney. The wing section theory and the optimum rotor theory based on the blade element momentum were used to obtain the design condition and a first geometry approaching the Betz limit for a bare rotor. The panel method was then used to verify the power coefficient obtained in the presence of the 3D effects and if the cavitation constraints are respected. Subsequently, the same panel code was used to verify if the addition of a duct could improve the power output per unit surface.  相似文献   

4.
Tidal power generation by means of marine current farms is potentially a large renewable energy resource which could be harnessed in many coastal waters. Its availability is highly predictable in time, and the technology promises high energy conversion efficiency along with a relatively low impact on sea life due to its relatively small disturbance of natural tidal flows.A series of devices have so far been proposed and developed for the extraction and conversion of kinetic energy present in tidal flows into useful electrical power [1]. Designs include horizontal axis turbines, vertical axis turbines, and devices with oscillating lift surfaces. Up to date no technology has firmly established itself.This paper describes a novel hydraulic control mechanism designed for vertical-axis marine current turbines of the straight-bladed Darrieus type. It has been found to significantly improve turbine efficiency over conventional Darrieus turbines when operated at low blade tip-speed to tidal-flow-velocity ratios (TSR) and to give the turbine the ability to self-start reliably. The control mechanism enforces a cyclic pivoting motion on the turbine blades as they move around their circular flight-path. The movement of the pitch control is of sinusoidal shape and is continuously variable in amplitude. The blade actuation is powered by the turbine's own rotation and is implemented using a swash-plate mechanism in conjunction with a hydraulic circuit for every blade. For surface piercing turbines, this control mechanism may be remotely positioned in a dry nacelle above sea level. If the appropriate design is applied, this can offer access to the cyclic pitch control mechanism, gearbox and generator, even when the turbine is operational, promising lower maintenance and operating costs compared with submerged systems.  相似文献   

5.
During the last decade, the development of tidal current industries has experienced a rapid growth. Many devices are being prototyped. For various purposes, investors, industries, government and academics are looking to identify the best device in terms of of cost of energy and performance. However, it is difficult to compare the cost of energy of new devices directly because of uncertainties in the operational and capital costs. It may however be possible to compare the power output of different devices by standardizing the definition of power coefficients. In this paper, we derive a formula to quantify the power coefficient of different devices. Specifically, this formula covers ducted devices, and it suggests that the duct shape should be considered. We also propose a procedure to quantify the efficiency of a tidal current turbine farm by using the power output of the farm where no hydrodynamic interaction exists between turbines, which normalizes a given farm's power output. We also show that the maximum efficiency of a farm can be obtained when the hydrodynamic interaction exists.  相似文献   

6.
The impact of blade roughness and biofouling on the performance of a two-bladed horizontal axis marine current turbine was investigated experimentally and numerically. A 0.8 m diameter rotor (1/25th scale) with a NACA 63-618 cross section was tested in a towing tank. The torque, thrust and rotational speed were measured in the range 5 < λ < 11 (λ = tip speed ratio). Three different cases were tested: clean blades, artificially fouled blades and roughened blades. The performance of the turbine was predicted using blade element momentum theory and validated using the experimental results. The lift and drag curves necessary for the numerical model were obtained by testing a 2D NACA 63-618 aerofoil in a wind tunnel under clean and roughened conditions. The numerical model predicts the trends that were observed in the experimental data for roughened blades. The artificially fouled blades did not adversely affect turbine performance, as the vast majority of the fouling sheared off. The remaining material improved the performance by delaying stall to higher angles of attack and allowing measurements at lower λ than were attainable using the clean blades. The turbine performance was adversely affected in the case of roughened blades, with the power coefficient (CP) versus λ curve significantly offset below that for the clean case. The maximum CP for this condition was 0.34, compared to 0.42 for the clean condition.  相似文献   

7.
Pacific Island Countries (PICs) have a huge potential for renewable energy to cater for their energy needs. Marine current energy is a reliable and clean energy source. Many marine current streams are available in Fiji's waters and large amount of marine current energy can be extracted using turbines. Horizontal axis marine current turbine (HAMCT) can be used to extract marine current energy to electrical energy for commercial use. For designing a HAMCT, marine current resource assessment needs to done. A potential site was identified and resource assessment was done for 3 months. The coordinates for the location are 18°12′1.78″S and 177°38′58.21″E; this location is called Gun-barrel passage. The average depth is 17.5 m and the width is nearly 20 m – the distance from land to the location is about 500 m. A multi cell aquadopp current profiler (ADCP) was deployed at the site to record marine currents. Strong marine currents are recorded at this location, as a combination of both tidal and rip currents. The maximum current velocity exceeds 2.5 m/s, for days with large waves. The average velocity was 0.85 m/s and power density for the site was 525 W/m2. This site has good potential for marine current and HAMCT can be installed to extract power. A turbine with diameter between 5 and 8 m would be suitable for this site. Therefore, a 5 m HAMCT is designed for this location. The HF10XX hydrofoils were used from blade root (r/R = 0.2) to tip (r/R = 1.0). HF10XX series hydrofoil sections were designed to operate at varying turbine operating conditions; these hydrofoils have good hydrodynamic characteristics at the operating Reynolds number. The turbine is designed to operate at rated marine current speed of 1.5 m/s, cut in speed of 0.5 m/s and cut off speed of 3 m/s at a tip speed ratio (TSR) of 4.2.  相似文献   

8.
Having very strong current on the west coast with up to 10 m tidal range, there are many suitable sites for the application of tidal current power (TCP) in Korea. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. To extract a significant quantity of power, a tidal current farm with a multi-arrangement is necessary in the ocean. The interactions between devices contribute significantly to the total power capacity. Thus, the study of wake propagation is necessary to understand the evolution of the wake behind a turbine. This paper introduces configuration design of horizontal axis tidal current turbine based on the blade element theory, and evaluating its performance with CFD. The maximum efficiency of the designed turbine was calculated as 40% at a tip speed ratio (TSR) of 5. The target capacity of 300 kW was generated at the design velocity, and the performance was stable over a wide range of rotating speeds. To investigate the wakes behind the turbine, unsteady simulation was carried out. The wake velocity distribution was obtained, and velocity deficit was calculated. A large and rapid recovery was observed from 2D to 8D downstream, followed by a much slower recovery beyond. The velocity was recovered up to 86% at 18D downstream.  相似文献   

9.
The study investigates the impact that construction of a Severn Barrage in the Severn Estuary, on the west coast of the UK, might have on local wave conditions. Implementation of a barrage will impact on tidal currents and water elevations in the wider region. There is strong tidal modulation of wave conditions under the natural regime and therefore barrage-induced changes to tidal conditions could affect wave modulation in the region. This paper uses Swan, an open source 3rd generation spectral wave model, to investigate the possible impacts of construction of a barrage on tidal modulation of the wave conditions. It is found that current variations, rather than water level variations, are the dominant factor in tidal modulation of wave conditions. Barrage implementation does not substantially change the modulation of the wave period or direction. However, barrage implementation does affect the tidal modulation of wave heights in the area of interest. The tidal modulation of the wave heights is generally reduced compared to the natural case; the peaks in the wave heights on an incoming tide are slightly lowered and there is lesser attenuation in wave heights on the outgoing tide. This modulation leads to net changes in the wave heights over one tidal cycle. For all of the tested wave conditions, this net change is small for the majority of the tested domain, namely to within ±5% of the no barrage case. There are some areas of greater change, most notably larger net increases in the wave heights near the North Somerset coast where the post-construction net wave height increase over a tidal cycle approach 20% of the pre-construction conditions. These changes do not impact coastal flooding because the wave height increase is not co-incident with high tide. Importantly, the maximum wave height is not increased and thus the likelihood of extreme events is not increased. The area of greatest reduction is between Swansea and Porthcawl. Changes over a neap tidal cycle show similar patterns of net change, but the modulation over the tidal cycle is different; primarily the magnitude of modulation is half that for the spring tide case and the shape is altered in some locations.  相似文献   

10.
The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise their performance. Localised membrane resistance and current density measurements for a single channel polymer electrolyte fuel cell are presented for a range of operating conditions. The current density distribution results are compared with an analytical model that exhibited generally good agreement across a broad range of operating conditions. However, under conditions of high air flow rate, an increase in current is observed along the channel which is not predicted by the model. Under such circumstances, localised electrochemical impedance measurements show a decrease in membrane resistance along the channel. This phenomenon is attributed to drying of the electrolyte at the start of the channel and is more pronounced with increasing operating temperature.  相似文献   

11.
Optimal flow channel design of a fuel cell is crucial to further improve the performance of polymer electrolyte membrane fuel cell (PEMFC). In this work, a comprehensive parametric study was conducted to analyze the performance of a PEMFC with conventional parallel serpentine flow fields (PSFF) and parallel serpentine-baffled flow fields (PSBFF). A three-dimensional two-phase computational fluid dynamics model was used to numerically simulate the fuel cell performance. The effects of operating parameters such as pressure, temperature, and stoichiometric ratio, as well as the geometric parameters of channel height to channel width ratio and rib width to channel width ratio for both flow fields on fuel cell performance were investigated. The results show that as pressure, temperature, and stoichiometric ratio increase, cell performance increases for both flow fields, with a more substantial rate of improvement for the PSBFF design. A 16.1% improvement in cell performance at an operating pressure of 1 atm, a 19.9% improvement at a cell temperature of 70 °C, and a 16.1% improvement at a stoichiometric ratio of 2 were obtained when PSBFF was used instead of PSFF. By increasing the channel height and rib width, the cell performance for PSBFF remains almost constant due to the improved forced convection of the gas mixture and the reduction in concentration loss, while the cell performance for PSFF decreases significantly. At the largest channel height to channel width ratio of 1.5 and rib width to channel width ratio of 1.315 studied in this work, an improvement in cell performance of 53.3% and 58.5%, respectively, was achieved when PSBFF was used instead of PSFF. In addition, PSBFF was more effective in removing water from the porous zones than PSFF under all conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号