首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Liquid Composite Molding (LCM) processes with compliant tool, such as Vacuum Assisted Resin Transfer Molding Process (VARTM), resin flow continues even after the inlet is closed due to the preform deformation and pressure gradient developed during infusion. The resin flow and thickness changes continue until the resin pressure becomes uniform or the resin gels. This post-filling behavior is important as it will determine the final thickness and fiber volume fraction distribution in the cured composite. In this paper, a previously proposed one dimensional coupled flow and deformation process model has been compared with the experimental data in which the resin pressure and part thickness at various locations during the post-filling stage is recorded. Two different post-infusion scenarios are examined in order to determine their impact on the final part fiber volume fraction and thickness. The effects of different venting arrangements are demonstrated. The model predictions compare favorably with the experimental data, with the minor discrepancies arising due to the variability of material properties.  相似文献   

2.
The electrical properties of sisal fiber reinforced polyester composites fabricated by resin transfer molding (RTM) have been studied with special reference to fiber loading, frequency and temperature. The dielectric constant (ε′), loss factor (ε″), dissipation factor (tan δ) and conductivity increases with fiber content for the entire range of frequencies. The values are high for the composites having fiber content of 50 vol.%. This increment is high at low frequencies, low at medium frequencies, and very small at high frequencies. The volume resistivity varies with fiber loading at lower frequency and merges together at higher frequency. When temperature increases the dielectric constant values increases followed by a decrease after the glass transition temperature. This variation depends upon the fiber content. Finally an attempt is made to correlate the experimental value of the dielectric constant with theoretical predictions.  相似文献   

3.
Sisal fibers were subjected to various chemical and physical modifications such as mercerization, heating at 100 °C, permanganate treatment, benzoylation and silanization to improve the interfacial bonding with matrix. Composites were prepared by these fibers as reinforcement, using resin transfer molding (RTM). The mechanical properties such as tensile, flexural and impact strength were examined. Mercerized fiber-reinforced composites showed 36% of increase in tensile strength and 53% in Young’s modulus while the permanganate treated fiber-reinforced composites performed 25% increase in flexural strength. However, in the case of impact strength, the treatment has been found to cause a reduction. The water absorption study of these composites at different temperature revealed that it is less for the treated fiber-reinforced composites at all temperatures compared to the untreated one. SEM studies have been used to complement the results emanated from the evaluation of mechanical properties.  相似文献   

4.
In resin transfer molding, void type defect is one of common process problems, it degenerates the mechanical performances of the final products seriously. Void content prediction has become a research hotspot in RTM, while the void formation when the flow direction and the tow direction are not identical or the fabric is sheared has not been studied to date. In this paper, based on the analysis of the resin flow velocities inside and outside fiber tows, a mathematical model to describe the formation of micro- and meso-scale-voids has been developed. Particular attention has been paid on the influence of flow direction and fabric shear on the impregnation of the unit cell, so their effects on the generation and size of voids have been obtained. Experimental validation has been conducted by measuring the formation and size of voids, a good agreement between the model prediction and experimental results has been found.  相似文献   

5.
Achievement of high class surface finish is important to the high volume automotive industry when using the resin transfer molding (RTM) process for exterior body panels. Chemical cure shrinkage of the polyester resins has a direct impact on the surface finish of RTM molded components. Therefore, resins with low profile additives (LPA) are used to reduce cure shrinkage and improve surface quality of the composite parts. However, little is known about the behaviour of low profile resins during RTM manufacturing and their ultimate effects on the surface quality of molded plaques. In this work, the effects of controlled material and processing parameters on the pressure variations, process cycle times and ultimately on the surface quality of RTM molded components were investigated. Taguchi experimental design techniques were employed to design test matrices and an optimization analysis was performed. Test panels were manufactured using a flat plate steel mold mounted on a press. Pressure sensors were inserted in the mold cavity to monitor pressure variations during different stages of cure and at various locations in the mold cavity. It was found that a critical amount of LPA (10%) was required to push the material against the mold cavity and to compensate for the resin cure shrinkage. A significant increase in pressure was observed during the later stages of resin cure due to the LPA expansion. The pressure increase had a significant effect on the surface roughness of the test samples with higher pressures resulting in better surface finish. A cure gradient was observed for low pressure injections which significantly reduced the maximum pressure levels.  相似文献   

6.
The development of residual strains and stresses is critical to manufacture composite structures with the required dimensional stability and mechanical performance. This work uses Fiber Bragg Grating (FBG) sensors to monitor strain build-up in carbon fiber composites with a polyurethane (PU) matrix designed for high production volume applications. The PU matrix presents an initially low viscosity combined with a fast cure reaction, which makes it adequate to very short processing cycles. FBG sensors were incorporated into PU-matrix composites manufactured by vacuum assisted resin transfer molding (VARTM). The measured strains were compared with those obtained with different benchmark epoxy-matrix composites and with those obtained through micromechanical finite element simulations. Results showed that most of the residual strains were built-up during cool-down from the post-curing temperature and that stresses in the PU-matrix composites were comparable to those obtained for epoxies with similar Tg.  相似文献   

7.
We studied the mechanism of volatile-induced surface porosity formation during the resin transfer molding (RTM) of aerospace composites using a blended benzoxazine/epoxy resin, and identified reduction strategies based on material and processing parameters. First, the influence of viscosity and pressure on resin volatilization were determined. Then, in situ data was collected during molding using a lab-scale RTM system for different cure cycles and catalyst concentrations. Finally, the surface quality of molded samples was evaluated. The results show that surface porosity occurs when cure shrinkage causes a sufficient decrease in cavity pressure prior to resin vitrification. The combination of thermal gradients and rapid gelation can generate large spatial variations in viscosity, rendering the coldest regions of a mold susceptible to porosity formation. However, material and cure cycle modifications can alter the resin cure kinetics, making it possible to delay the pressure drop until higher viscosities are attained to minimize porosity formation.  相似文献   

8.
The use of phenoxy nanocomposite films as carriers of nanofillers involving multiwalled carbon nanotubes and nanoclays is successfully demonstrated for application in epoxy carbon fibers reinforced composites (CFRC) processed by RTM. Model studies on individual nanocomposite filaments embedded in epoxy precursors show that the nanofillers are passively transported by the interdiffusion gradient during heating over distance around 800 μm. A morphology gradient is generated after reaction induced phase separation and the nanofillers end up in the epoxy, despite their initial dispersion in the phenoxy. The proof of concept is extended to CFRC panels where nanocomposite phenoxy films are prepositioned between every odd carbon layer of the preform. Carbon nanotubes are filtered by the carbon fabrics, which limits their full diffusion and that of phenoxy through the preform. This has negative consequences on fracture toughness (GIc). For nanoclay, GIc is rather slightly improved although the origin is not fully clear.  相似文献   

9.
Sun K. Kim  Isaac M. Daniel   《Composites Part A》2005,36(12):1694-1699
A transient gas flow method was developed to determine the quality of fibrous preforms in resin transfer molding (RTM) prior to resin injection. The method aims at detecting defects resulting from preform misplacement in the mold, accidental inclusions, preform density variations, race tracking, shearing, etc. Unlike the previously developed method based on steady-state gas flow, the new method allows for the acquisition of continuous time-varying pressure data from multiple ports during a single test. The validity of the method was confirmed by one-dimensional flow experiments.  相似文献   

10.
As biocomposites are highly sensitive to water absorption, the aim of this study was to compare the physical properties two biocomposites: (1) a flax/bio-based epoxy (Entropy SUPER SAP CLR/INS) and (2) a flax/polyurethane (HENKEL LOCTITE MAX 3). Both materials were reinforced with 14 layers of flax (TEXONIC twill 2 × 2) and manufactured using a resin transfer moulding process. Post-cured composite samples were aged at 90% RH and 30 °C for various periods of time up to 720 h. The results showed that both composites followed a Fickian diffusion behaviour. Water had a plasticizing effect on the composites and it changed their failure mode. This effect took longer to appear for the polyurethane composites. The chemical bonds between the hydroxyl groups of the fibres and the isocyanate lead to a stronger interface which improved the mechanical properties (short beam and compressive strengths) as compared to the flax/bio-epoxy composites.  相似文献   

11.
The effects of microwave irradiation for resin-curing of carbon fiber/epoxy resin composite (CFRTS), which was fabricated by vacuum-assisted resin transfer molding (VARTM) method, were investigated at 2.45 GHz frequency. The mechanical properties of CFRTS cured by microwave irradiation for 20 min at 120 °C were similar as compared to the conventional oven for 300 min at 120 °C. Moreover, the CFRTS irradiated by microwave had better adherence property between fiber and resin as compared to conventional oven at same resin-curing time. From the relation between resin-curing and mechanical property, it was found that the curing rate of microwave-irradiated CFRTS was 15 times faster as compared to conventional heating. Furthermore, the activation energies for resin-curing reaction on conventional- and microwave-cured CFRTS were estimated to be 2.7 and 1.3 × 104 J/mol, respectively. The resin-curing reaction in CFRTS prepared by VARTM method was significantly promoted by microwave irradiation at short time.  相似文献   

12.
This work investigated the ability of graphene nanoplatelets (GnPs) to improve the interlaminar mechanical properties of glass-reinforced multilayer composites. A novel method was developed for the inclusion of GnPs into the interlaminar regions of plain-weave, glass fabric fiber-reinforced/epoxy polymer composites processed with vacuum assisted resin transfer molding. Flexural tests showed a 29% improvement in flexural strength with the addition of only 0.25 wt% GnP. At the same concentration, mode-I fracture toughness testing revealed a 25% improvement. Additionally, low-velocity drop weight impact testing showed improved energy absorption capability with increasing concentration of GnPs. Ultrasonic C-scans and dye penetration inspection of the impact- and back-sides of the specimens qualitatively support these results. Finally, the impact damage area was quantified from the C-scan data. These results showed that the impact-side damage area decreased with increasing concentration of GnP, while the back-side damage area increased.  相似文献   

13.
Through-thickness penetration under vacuum assistance is crucial for resin film infusion (RFI) and vacuum assistant resin transfer molding (VARTM) process. In this paper, values of the through-thickness unsaturated permeability (TTUP) and capillary pressure (Pc) are estimated based on the infiltration velocity in preforms of carbon fiber fabric and glass fiber fabric, respectively, measured by a specially designed apparatus. It reveals that, for the through-thickness permeation, the Pc values generally decrease with increasing fiber content. Relatively accurate TTUP can be obtained by counting Pc into the permeation dynamics. If Pc is neglected, liquids with good-wettability, such as silicone oil, tend to result in larger TTUPs. The corrected TTUPs show good agreement according to Carman–Kozeny, Gutowski modified Carman–Kozeny equation, and Gebart model, respectively. The resultant permeability resistance parameters of the preforms indicate that the penetration in carbon fabric bed is slower than in glass fabric bed. However, for fiber volume fraction more than 60%, the corrected TTUPs show no significant difference for all the preforms.  相似文献   

14.
This work was to apply the vacuum-assisted resin infusion (VARI) process and use calcium carbonate inorganic nanoparticle impregnation (INI) to improve the mechanical properties and water resistance of the kenaf fiber/polyester composites. The results show that the modulus of elasticity (MOE), modulus of rapture (MOR), tensile modulus (TE) and tensile strength (TS) of the composites made with INI-treated fibers are increased by 33.1%, 64.3%, 22.3% and 67.8%, respectively, compared with the composites made with un-treated fibers. The thickness swelling of 24-h water submersion is reduced from 19.7% to 1.9%. The moisture contents of the composites after the conditioning and water submersion are reduced from 5.8% to 1.5% and 18.3% to 2.2%, respectively, when INI-treated fibers are employed. The improvement makes the kenaf fiber/polyester composites possible to replace the glass fiber SMC for the automobile application.  相似文献   

15.
In this work, the longitudinal permeability of squarely packed dual-scale fiber preforms is studied theoretically. These fiber preforms are composed of aligned porous tows and the tows are tightly packed. The effective permeability is calculated as a parallel-like network of intra-tow permeability and inter-tow permeability, which are quantified by Darcy’s law and the inscribed radius between tows, respectively. The jump velocity at the interface between inter-tow fluids and porous tows is considered, as derived by substituting Beavers and Joseph’s correlation into Brinkman’s equation. We further examine the effects of intra-tow permeability on the effective permeability of the fibrous system with three interface conditions: (1) interface velocity = 0, (2) interface velocity = mean intra-tow velocity, and (3) interface velocity = jump velocity. The jump-velocity-based model is found to be closest to numerical data. The influence of the fiber volume fraction of tows on the effective permeability is also analyzed.  相似文献   

16.
The use of resin transfer moulding (RTM) as an economic and efficient means of producing high-performance fibre-reinforced composites is critically limited by the permeability of the fabrics employed. Commercial fabrics are available where the architecture of the reinforcement is designed to cluster the fibres giving higher permeabilities than conventional fabrics. This has been shown to improve processing times, but there is evidence that such clustering is detrimental to the mechanical performance of the resulting composite material.

The objective of this work was to relate variations in permeability, and in the laminate mechanical properties, to differences in microstructure. A series of experimental carbon fibre fabrics woven to incorporate a novel flow enhancement concept (use of 3K tows in a 6K fabric) were used to manufacture plates by RTM in a transparent mould. The progress of the resin front was recorded to computer disc during injection, thus allowing the permeabilities of the fabrics to be calculated.

The manufactured plates were subsequently sectioned for mechanical testing (moduli and strengths in tension and compression) and automated image analysis. Relationships were sought between measured permeabilities, mechanical properties and microstructures using a Quantimet 570 automatic image analyser to determine fractal dimensions from polished sections. It has been shown that variations in the microstructures can be related to the permeability and mechanical property values obtained. Further the deterioration of mechanical properties for the novel fabrics with reduced fibre volume fractions is less than has been reported for fabrics with clustered flow-enhancing tows at constant fibre volume fraction.  相似文献   


17.
The woven, stitched or braided fabrics used in liquid composite molding (LCM) display partial saturation behind moving flow-front in an LCM mold which is caused by delayed impregnation of fiber tows. In this part 3 of the present series of three papers, a novel multiscale approach proposed in parts 1 and 2 [1] and [2] is adapted for modeling the unsaturated flow observed in the dual-scale fabrics of LCM under non-isothermal, reactive conditions. The volume-averaged species or resin cure equation, in conjunction with volume-averaged mass, momentum and energy (temperature) equations, is employed to model the reactive resin flow in the inter-tow (gap) and intra-tow (tow) regions with coupling expressed through several sink and source terms in the governing equations. A coarse global-mesh is used to solve the global (gap) flow over the entire domain, and a fine local mesh in form of the unit-cell of periodic fabrics is employed to solve the local (tow) flows. The multiscale algorithm based on the hierarchical computational grids is then extended to solve the dual-scale flow under reactive conditions. The simulation is compared with a two-color experiment and a previously published two-layer model. Significant differences between the temperatures and cures of the gap and tow regions of the dual-scale porous medium are observed. The ratio of pore volumes in the tow and gap regions, the effective thermal conductivity in the tows, and the reaction rate are identified as the important parameters for temperature and cure distributions in the gap and tow regions.  相似文献   

18.
Seemann Composites Resin Infusion Molding Process (SCRIMP) is a widely used version of Vacuum Assisted Resin Transfer Molding (VARTM) in which a highly permeable layer (distribution media) is placed on top of the dry preform to distribute the resin with very low flow resistance to reduce the filling and hence the manufacturing time. The flow patterns during filling may vary from part to part due to the variability associated with the material, part geometry, and layup of the assembly, which may result in race-tracking channels. The process is considered as reliable and robust only if the resin completely saturates the preform despite changing filling patterns caused by flow disturbances.The resin flow pattern can be manipulated with a tailored distribution media layout as it does impact the flow patterns significantly. The continuous distribution media layout over the entire part surface works well for very simple geometries with no to little potential for race-tracking along the edges. In this study we address complex cases, which require placement of an insert within the assembly, which will introduce race-tracking along its edges, and hence uniform placement of distribution media over the entire top surface will fail to yield a void free part. We introduce a methodology using a predictive tool to design an optimal shape of distribution media, which accounts for the flow variability introduced due to race-tracking along the edges of the inserts. This iterative approach quickly converges to provide the placement of distribution media on selective areas of the preform surface that ensures complete filling of the preform despite the variability. This approach has been validated with an experimental example and will help mitigate risk involved in manufacturing complex composites components with Liquid Molding.  相似文献   

19.
This paper addresses issues of the synergetic dynamic effect of capillary force on the longitudinal impregnation driven by external pressures, especially under vacuum assistance. An apparatus was designed to detect the axial infiltration along unidirectional fiber bundles which were all aligned closely to give a representation of micro-flow channel of inner fiber tows. The external driving pressures were controlled sufficiently low, 20–60 kPa, on the order of capillary pressures. Based on the analysis of infiltration velocities under different external pressures, dynamic capillary pressures can be determined experimentally. The results showed that capillary pressures, the most important force of microscopic flow through inner fiber yarns, acted as a drag force on the infiltration flow for vacuum assisted penetration into unidirectional fiber bundles. This unique drag effect is very different from traditional unsaturated infiltration, different from the compressed air driving permeation and the theoretical calculated data in this paper. Moreover, values and even signs of the dynamic capillary pressures varied with the fiber fraction of the assemblies as well as the fluid types. Further analysis demonstrated that the function of capillary pressure was closely related to the capillary number (Ca), acting as drag force when Ca larger than a critical value, and as a promotive force with smaller Ca. Consequently, unsaturated permeabilities of the unidirectional fiber bundles were estimated by taking consideration of both dynamic and quasi-static capillary pressures.  相似文献   

20.
Three dimensional integrated microstrip antenna (3DIMA) can carry the designed load while functioning as an antenna. In this study, the cylindrical conformal single-patch 3DIMAs with various curvatures were designed, simulated, fabricated and tested experimentally using a 3D orthogonal woven glass preform/epoxy resin composite system. The electromagnetic performances of the cylindrical microstrip antennas were analyzed. The simulated and tested results matched well and the return losses of the cylindrical conformal 3DIMAs with radii of curvatures of 60, 45 and 25 mm were less than −10 dB while resonant frequencies and their gain values were significantly influenced by the radius of curvature and the feeding direction. The 3DIMAs with the curvature perpendicular to the feeding directions showed more stable resonant frequencies and larger gain values than those of 3DIMAs with the curvature along their feeding directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号