首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

2.
采用批次试验,研究镉离子对厌氧氨氧化(ANAMMOX)反应的短期影响。结果表明,镉离子浓度2 mg/L时,对厌氧氨氧化的脱氮性能影响较低;超过2 mg/L时,镉离子浓度的增加对厌氧氨氧化脱氮性能的抑制作用逐渐增大。采用模拟废水,以上流式厌氧污泥床(UASB)反应器实现厌氧氨氧化,研究镉离子对厌氧氨氧化反应器脱氮性能的长期影响。近150 d的连续培养发现,当镉离子浓度5 mg/L时,其厌氧氨氧化脱氮性能不受影响;当镉离子浓度≥10 mg/L时,厌氧氨氧化脱氮性能显著降低;经过约25 d的恢复培养,厌氧氨氧化脱氮性能得到恢复。  相似文献   

3.
金属离子对厌氧氨氧化反应器效能的影响   总被引:1,自引:0,他引:1  
以序批式生物膜反应器(SBBR)实现厌氧氨氧化,考察了铁、锰离子对厌氧氨氧化效能和细菌混培物生长的影响。经过180 d的培养发现,增加金属离子浓度可以提高反应器的脱氮效率,铁离子浓度为0.08 mmol/L或锰离子浓度达到0.05 mmol/L时,反应器对NH4+-N和NO2--N的去除率均稳定在95%以上;两反应器的VS值分别提高了1.33倍和1.57倍。表明添加金属离子可以促进厌氧氨氧化菌混培物的生长,这对于厌氧氨氧化工艺的运行有着重要的指导意义。  相似文献   

4.
自养脱氮工艺ANITA~(TM) Mox MBBR利用移动填料的生物膜发生短程硝化和厌氧氨氧化反应进行脱氮。通过工程实例运行数据发现,ANITA~(TM) Mox MBBR工艺脱氮负荷为1.2 kg N/(m3·d),其脱氮负荷与生物膜内基质的传输有关,如生物膜密度、厚度、温度、基质浓度。为改善基质传输速率,提高脱氮的效率,威立雅研发了由悬浮活性污泥和固定生物膜相结合的ANITATM Mox IFAS工艺,其将短程硝化和厌氧氨氧化反应从同一生物膜中分离,大部分氨氧化菌(AOB)集中在活性污泥中,提高了溶解氧的利用率;而厌氧氨氧化菌An AOB集中在填料生物膜上,改善了基质的传递速率。ANITA~(TM) Mox IFAS工艺运行时所需溶解氧浓度低,仅为0.2~0.5 mg/L。但实际运行数据(50 m~3ANITA~(TM) Mox IFAS反应器)显示,其脱氮负荷是ANITA~(TM) Mox MBBR工艺的2~3倍。  相似文献   

5.
利用移动床生物膜反应器(MBBR)对亚硝化-厌氧氨氧化-反硝化(SNAD)工艺处理垃圾渗滤液厌氧出水的脱氮效果进行了研究。SNAD-MBBR反应器内投加K3填料,控制温度为33~35℃、DO为0. 03~0. 1 mg/L、pH值为7. 5~8. 0、HRT为12 h,试验一共进行了152 d,在进水总氮负荷逐渐增加过程中相应调节曝气量以获得最佳去除效果。结果表明,在该工艺条件下进水总氮负荷为0. 9 kg/(m~3·d)时,TN去除率仍可达88%。当进水总氮负荷继续提高至1 kg/(m~3·d)时,由于进水中的有机物浓度较高以及多种异养好氧菌的繁殖,抑制了亚硝化及厌氧氨氧化过程,致使反应器脱氮效率明显降低,仅为20%左右。  相似文献   

6.
以低C/N比高氨氮废水作为SBR反应器进水,出水再进入UASB反应器,进行部分亚硝化-厌氧氨氧化组合工艺脱氮效果研究。结果表明:UASB反应器进水脱氧时,在稳定运行阶段,NH_4~+-N、TN和CODCr平均去除率分别为87. 04%、80. 70%和86. 97%,最高去除率分别达到91. 32%、82. 88%和88. 89%; UASB反应器进水不脱氧时,在稳定运行阶段,NH_4~+-N、TN和CODCr平均去除率分别为91%、84%和86%,最高去除率分别达到了95. 78%、87. 67%和92. 22%。部分亚硝化-厌氧氨氧化组合工艺经过调试后可以稳定运行,对处理低C/N比高氨氮废水具有较好效果;厌氧氨氧化反应器进水不脱氧,仍可以达到较好的处理效果,反应器内是一个好氧氨氧化、异养反硝化、ANAMMOX协同脱氮过程,具体的耦合脱氮机理还有待进一步探讨。  相似文献   

7.
基于部分厌氧氨氧化的双泥龄复合脱氮工艺能实现自养脱氮和异养脱氮的耦合,在城市污水低成本高效脱氮方面表现出良好的应用潜力。为进一步探究该工艺的脱氮机理,对运行2年的中试反应器开展了脱氮途径解析与优化、主要脱氮功能菌活性测定以及微生物群落结构分析。结果表明,间歇曝气可以促进短程硝化和厌氧氨氧化过程的耦合,当曝气量为20 mL/min[DO为(0.18±0.03) mg/L]时,脱氮效率最高;厌氧氨氧化菌(AnAOB)主要分布在生物膜上,活性为44.60mg/(gVSS·d),检测到的AnAOB为Candidatus Brocadia,相对丰度为0.28%;氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)主要分布在悬浮污泥中,活性分别为61.53、86.95 mg/(gVSS·d),检测到的AOB和NOB分别为Nitrosomonas和Nitrospira,相对丰度分别为0.10%、2.10%。  相似文献   

8.
短程硝化/厌氧氨氧化联合工艺处理含氨废水的研究   总被引:2,自引:1,他引:1  
在SBR中接种普通好氧活性污泥,通过控制运行条件来实现短程硝化,同时提高厌氧生物转盘系统中厌氧氨氧化的氮负荷,使之与SBR出水中NO2--N的积累量相匹配,并将二者组合形成短程硝化/厌氧氨氧化自养脱氮工艺.处理含氨废水的试验结果表明:在SBR的进水NH4+-N为150~250 mg/L、温度为(28±2)℃、pH值为7~8、DO<1 mg/L的条件下,可实现稳定的短程硝化,NO2--N积累率达85%以上,NH4+-N负荷达0.129 kgN/(kgVSS·d),AOB和NOB的数量之比为103:1.将短程硝化出水加入NH4+-N后作为厌氧氨氧化反应器的进水,在(40±1)℃下可以达到自养脱氮的目的,对NH4+-N、NO2--N和TN的去除率分别达86%、97%和90%以上,TN容积负荷为0.488 kgN/(m3·d).  相似文献   

9.
雷秉亚 《山西建筑》2014,(29):158-159,204
为探讨高负荷条件下复合式UASB反应器中厌氧氨氧化反应的脱氮性能和稳定性,在已经成功启动并稳定运行的厌氧氨氧化反应器中,通过提高进水总氮浓度和缩短水力停留时间两种方式提高总氮负荷,考察脱氮效果。结果表明,通过逐步提高进水总氮浓度和缩短HRT可以提高厌氧氨氧化反应的总氮负荷,并获得理想的脱氮效果和运行稳定性,但过高的亚硝态氮浓度会对反应产生一定的抑制作用。  相似文献   

10.
为考察联氨作为自养脱氮系统菌群调节剂的可行性,以实验室内运行的HABRCANON反应器为试验装置,研究不同浓度联氨对自养脱氮系统脱氮效能和功能微生物的影响。结果表明,低浓度(1~4 mg/L)联氨可以抑制亚硝酸盐氧化菌(NOB)的活性,促进厌氧氨氧化菌(AnAOB)的活性,从而提高脱氮效能;高浓度(10 mg/L)联氨对好氧氨氧化菌(AOB)和NOB的抑制作用明显;停止投加联氨后,CANON系统的脱氮效能可迅速恢复;高浓度(10 mg/L)联氨对HABR全程自养脱氮工艺的影响是可逆的,但对NOB的抑制不可逆。对生物膜样品中的优势菌种进行分析发现,AOB和AnAOB为主要的功能微生物。采用低-高-低的联氨投加方式,可以有效抑制自养脱氮反应器内NOB的生长,保证自养脱氮系统的稳定运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号