首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently published algorithms for matching concurrent sets of events have the problem of unbounded message queue growth if events arrive in an undesirable order. This paper presents some algorithms that mitigate this problem by examining events waiting to be processed and removing those that cannot be part of a concurrent set  相似文献   

2.
The field of high energy physics aims to discover the underlying structure of matter by searching for and studying exotic particles, such as the top quark and Higgs boson, produced in collisions at modern accelerators. Since such accelerators are extraordinarily expensive, extracting maximal information from the resulting data is essential. However, most accelerator events do not produce particles of interest, so making effective measurements requires event selection, in which events producing particles of interest (signal) are separated from events producing other particles (background). This article studies the use of machine learning to aid event selection. First, we apply supervised learning methods, which have succeeded previously in similar tasks. However, they are suboptimal in this case because they assume that the selector with the highest classification accuracy will yield the best final analysis; this is not true in practice, as such analyses are more sensitive to some backgrounds than others. Second, we present a new approach that uses stochastic optimization techniques to directly search for selectors that maximize either the precision of top quark mass measurements or the sensitivity to the presence of the Higgs boson. Empirical results confirm that stochastically optimized selectors result in substantially better analyses. We also describe a case study in which the best selector is applied to real data from the Fermilab Tevatron accelerator, resulting in the most precise top quark mass measurement of this type to date. Hence, this new approach to event selection has already contributed to our knowledge of the top quark's mass and our understanding of the larger questions upon which it sheds light.  相似文献   

3.
He  Chengkun  Shao  Jie  Sun  Jiayu 《Multimedia Tools and Applications》2018,77(22):29573-29588
Multimedia Tools and Applications - Abnormal event detection aims at identifying anomalies under specific scene and it is widely utilized in health monitoring, public security and pedestrian...  相似文献   

4.
This correspondence is concerned with adaptive digital processing to extract impulse-like signal features from the correlated background noise for detection of intruders with the seismic sensor data. Both the adaptive digital filtering and the adaptive Kalman filtering methods are developed and shown to perform nearly the same for a short data segment. For continued processing of a long duration seismic record, the adaptive Kalman filtering considered has better capability to learn the nonstationary data characteristics than the considered adaptive filtering and to adaptively remove the background noise. Detailed experimental results are presented. Other considerations such as the hardware implementation and the relationships among the parameters are also examined.  相似文献   

5.
We investigate the use of structure learning in Bayesian networks for a complex multimodal task of action detection in soccer videos. We illustrate that classical score-oriented structure learning algorithms, such as the K2 one whose usefulness has been demonstrated on simple tasks, fail in providing a good network structure for classification tasks where many correlated observed variables are necessary to make a decision. We then compare several structure learning objective functions, which aim at finding out the structure that yields the best classification results, extending existing solutions in the literature. Experimental results on a comprehensive data set of 7 videos show that a discriminative objective function based on conditional likelihood yields the best results, while augmented approaches offer a good compromise between learning speed and classification accuracy.  相似文献   

6.
Multimedia Tools and Applications - Anomaly detection in video surveillance is a significant research subject because of its immense use in real-time applications. These days, open spots like...  相似文献   

7.
8.
Machine learning consists of algorithms that are first trained with reference input to “learn” its specifics and then used on unseen input for classification purposes. Mobile ad-hoc wireless networks (MANETs) have drawn much attention to research community due to their advantages and growing demand. However, they appear to be more susceptible to various attacks harming their performance than any other kind of network. Intrusion Detection Systems represent the second line of defense against malevolent behavior to MANETs, since they monitor network activities in order to detect any malicious attempt performed by intruders. Due to the inherent distributed architecture of MANET, traditional cryptography schemes cannot completely safeguard MANETs in terms of novel threats and vulnerabilities, thus by applying machine learning methods for IDS these challenges can be overcome. In this paper, we present the most prominent models for building intrusion detection systems by incorporating machine learning in the MANET scenario. We have structured our survey into four directions of machine learning methods: classification approaches, association rule mining techniques, neural networks and instance based learning approaches. We analyze the most well-known approaches and present notable achievements but also drawbacks or flaws that these methods have. Finally, in concluding our survey we provide some findings of paramount importance identifying open issues in the MANET field of interest.  相似文献   

9.
We discuss how a large class of regularization methods, collectively known as spectral regularization and originally designed for solving ill-posed inverse problems, gives rise to regularized learning algorithms. All of these algorithms are consistent kernel methods that can be easily implemented. The intuition behind their derivation is that the same principle allowing for the numerical stabilization of a matrix inversion problem is crucial to avoid overfitting. The various methods have a common derivation but different computational and theoretical properties. We describe examples of such algorithms, analyze their classification performance on several data sets and discuss their applicability to real-world problems.  相似文献   

10.
We explore the problem of budgeted machine learning, in which the learning algorithm has free access to the training examples’ class labels but has to pay for each attribute that is specified. This learning model is appropriate in many areas, including medical applications. We present new algorithms for choosing which attributes to purchase of which examples, based on algorithms for the multi-armed bandit problem. In addition, we also evaluate a group of algorithms based on the idea of incorporating second-order statistics into decision making. Most of our algorithms are competitive with the current state of art and performed better when the budget was highly limited (in particular, our new algorithm AbsoluteBR2). Finally, we present new heuristics for selecting an instance to purchase after the attribute is selected, instead of selecting an instance uniformly at random, which is typically done. While experimental results showed some performance improvements when using the new instance selectors, there was no consistent winner among these methods.  相似文献   

11.
ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting.By using data from the ESA-led field campaign SPARC (Barrax, Spain) we have compared the utility of four state-of-the-art machine learning regression algorithms and four different S2 and S3 band settings to assess three important biophysical parameters: leaf chlorophyll content (Chl), leaf area index (LAI) and fractional vegetation cover (FVC). The tested Sentinel configurations were: S2-10 m (4 bands), S2-20 m (8 bands), S2-60 m (10 bands) and S3-300 m (19 bands), and the tested methods were: neural networks (NN), support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR).GPR outperformed the other retrieval methods for the majority of tested configurations and was the only method that reached the 10% precision required by end users in the estimation of Chl. Also, although validated with an RMSE accuracy around 20%, GPR yielded optimal LAI and FVC estimates at highest S2 spatial resolution of 10 m with only four bands. In addition to high accuracy values, GPR also provided confidence intervals of the estimates and insight in relevant bands, which are key advantages over the other methods. Given all this, GPR proved to be a fast and accurate nonlinear retrieval algorithm that can be potentially implemented for operational monitoring applications.  相似文献   

12.
Many applications (such as system and user monitoring, runtime verification, diagnosis, observation-based decision making, intention recognition) all require to detect the occurrence of an event in a system, which entails the ability to observe the system. Observation can be costly, so it makes sense to try and reduce the number of observations, without losing full certainty about the event??s actual occurrence. In this paper, we propose a formalization of this problem. We formally show that, whenever the event to be detected follows a discrete spatial or temporal pattern, then it is possible to reduce the number of observations. We discuss exact and approximate algorithms to solve the problem, and provide an experimental evaluation of them. We apply the resulting algorithms to verification of linear temporal logics formulæ. Finally, we discuss possible generalizations and extensions, and, in particular, how event detection can benefit from logic programming techniques.  相似文献   

13.
基于遗传算法和强化学习的贝叶斯网络结构学习算法   总被引:1,自引:0,他引:1  
遗传算法是基于自然界中生物遗传规律的适应性原则对问题解空间进行搜寻和最优化的方法。贝叶斯网络是对不确定性知识进行建模、推理的主要方法,Bayesian网中的学习问题(参数学习与结构学习)是个NP-hard问题。强化学习是利用新顺序数据来更新学习结果的在线学习方法。介绍了利用强化学习指导遗传算法,实现对贝叶斯网结构进行有效学习。  相似文献   

14.
Dictionary learning algorithms for sparse representation   总被引:11,自引:0,他引:11  
  相似文献   

15.
We apply a DNA-based massively parallel exhaustive search to solving the computational learning problems of DNF (disjunctive normal form) Boolean formulae. Learning DNF formulae from examples is one of the most important open problems in computational learning theory and the problem of learning 3-term DNF formulae is known as intractable if RP NP. We propose new methods to encode any k-term DNF formula to a DNA strand, evaluate the encoded DNF formula for a truth-value assignment by using hybridization and primer extension with DNA polymerase, and find a consistent DNF formula with the given examples. By employing these methods, we show that the class of k-term DNF formulae (for any constant k) and the class of general DNF formulae are efficiently learnable on DNA computer.Second, in order for the DNA-based learning algorithm to be robust for errors in the data, we implement the weighted majority algorithm on DNA computers, called DNA-based majority algorithm via amplification (DNAMA), which take a strategy of ``amplifying' the consistent (correct) DNA strands. We show a theoretical analysis for the mistake bound of the DNA-based majority algorithm via amplification, and imply that the amplification to ``double the volumes' of the correct DNA strands in the test tube works well.  相似文献   

16.
Distributed learning from data is one of the typical tasks solved by distributed data-mining techniques and is seen as a fundamental computational problem. One of the approaches suitable for distributed learning is to select, by data reduction, relevant local patterns, called also prototypes, from geographically distributed databases. Next, locally selected prototypes can be moved to other sites and merged into the global knowledge model. The paper presents three agent-based population learning algorithms for distributed learning. The proposed algorithms are based on agent collaborations in distributed prototype selection processes and on agent collaborations when the learning global model is created. The basic property of the presented algorithms is that the prototypes are selected by agent-based population learning algorithm from data clusters induced at distributed sites. The main goal of the paper is to empirically compare how the way of inducing such clusters can influence the distributed learning performance. The paper investigates the agent-based population learning algorithms used to solve distributed data reduction and gives a brief discussion of the procedures for clusters initialization. Finally, computational experiment results are shown.  相似文献   

17.
Fuzzy algorithms for learning vector quantization   总被引:14,自引:0,他引:14  
This paper presents the development of fuzzy algorithms for learning vector quantization (FALVQ). These algorithms are derived by minimizing the weighted sum of the squared Euclidean distances between an input vector, which represents a feature vector, and the weight vectors of a competitive learning vector quantization (LVQ) network, which represent the prototypes. This formulation leads to competitive algorithms, which allow each input vector to attract all prototypes. The strength of attraction between each input and the prototypes is determined by a set of membership functions, which can be selected on the basis of specific criteria. A gradient-descent-based learning rule is derived for a general class of admissible membership functions which satisfy certain properties. The FALVQ 1, FALVQ 2, and FALVQ 3 families of algorithms are developed by selecting admissible membership functions with different properties. The proposed algorithms are tested and evaluated using the IRIS data set. The efficiency of the proposed algorithms is also illustrated by their use in codebook design required for image compression based on vector quantization.  相似文献   

18.
Constructive neural-network learning algorithms for patternclassification   总被引:3,自引:0,他引:3  
Constructive learning algorithms offer an attractive approach for the incremental construction of near-minimal neural-network architectures for pattern classification. They help overcome the need for ad hoc and often inappropriate choices of network topology in algorithms that search for suitable weights in a priori fixed network architectures. Several such algorithms are proposed in the literature and shown to converge to zero classification errors (under certain assumptions) on tasks that involve learning a binary to binary mapping (i.e., classification problems involving binary-valued input attributes and two output categories). We present two constructive learning algorithms, MPyramid-real and MTiling-real, that extend the pyramid and tiling algorithms, respectively, for learning real to M-ary mappings (i.e., classification problems involving real-valued input attributes and multiple output classes). We prove the convergence of these algorithms and empirically demonstrate their applicability to practical pattern classification problems. Additionally, we show how the incorporation of a local pruning step can eliminate several redundant neurons from MTiling-real networks.  相似文献   

19.
20.
Movement detection is gaining more and more attention among various pattern recognition problems. Recognizing human movement activity types is extremely useful for fall detection for elderly people. Wireless sensor network technology enables human motion data from wearable wireless sensor devices be transmitted for remote processing. This paper studies methods to process the human motion data received from wearable wireless sensor devices for detecting different types of human movement activities such as sitting, standing, lying, fall, running, and walking. Machine learning methods K Nearest Neighbor algorithm (KNN) and the Back Propagation Neural Network (BPNN) algorithm are used to classify the activities from the data acquired from sensors based on sample data. As there are a large amount of real-time raw data received from sensors and there are noises associated with these data, feature construction and reduction are used to preprocess these raw sensor data obtained from accelerometers embedded in wireless sensing motes for learning and processing. The singular value decomposition (SVD) technique is used for constructing the enriched features. The enriched features are then integrated with machine learning algorithms for movement detection. The testing data are collected from five adults. Experimental results show that our methods can achieve promising performance on human movement recognition and fall detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号