共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
本文提出核最近特征线和特征面分类器,可直接对高维人脸图像进行识别.为解决计算量大和可能失效的问题,提出(核)最近特征重心和(核)最近邻特征两种解决方法,前者降低了计算特征线和面距离的复杂度,后者减少了特征线和面的数目,两种方法均避免了可能失效的问题.将二者结合得到的(核)最近邻特征重心分类器,在获得相近识别率的条件下,使计算复杂度降到了最小.所得方法无需预先抽取人脸图像特征,因此避免了在较多样本数时,特征抽取存在计算量大的问题.基于ORL人脸数据库的实验验证了本文方法的有效性. 相似文献
4.
一种新颖的基于LDA的人脸识别方法 总被引:4,自引:0,他引:4
提出一种基于离散余弦变换(DCT)与.LDA相结合的人脸识别方法,首先利用DCT将图像进行降维,然后在低维空间中利用LDA进行特征提取。利用ORL人脸数据库和我们上海交通大学图像处理与模式识别研究所的人脸数据库进行测试,实验结果分别得到了97.5%和92.6%的正确识别率,表明它可以和其他方法相比较。 相似文献
5.
6.
7.
基于LDA算法的人脸识别方法的比较研究 总被引:8,自引:1,他引:8
线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。但是将LDA直接用于人脸识别会遇到维数问题和“小样本”问题。人们经过研究,通过多种途径解决了这两个问题并实现了基于LDA的人脸识别。文章对几种基于LDA的人脸识别方法做了理论上的比较和实验数据的支持,这些方法包括Eigenfaces、Fisherfaces、DLDA、VDLDA及VDFLDA。实验结果表明VDFLDA是其中最好的一种方法。 相似文献
8.
特征提取和分类器设计是人脸识别算法中的两个关键问题。提出一种基于二次小波变换、PCA算法与BP神经网络的人脸识别算法。该算法采用二次小波变换与PCA相结合的算法提取人脸图像的主要特征,并运用加入动量项的改进BP神经网络算法进行人脸图像分类识别。在MATLAB环境下,利用ORL人脸图像数据库进行了仿真实验,实验结果表明,该算法实现简单、识别速度快、识别率较高。 相似文献
9.
针对现有的人脸识别算法由于光照、表情、姿态、伪装等变化而严重影响识别性能的问题,提出了一种基于通用学习框架结合2DPCA的鲁棒人脸识别算法。首先借助于额外的通用训练样本集进行样本的叠加以增加训练样本的数量;然后利用经典的2DPCA算法进行特征提取;最后,利用最近邻分类器对人脸进行分类并完成最终的人脸识别。在基准人脸数据库ORL、FERET及鲁棒人脸数据库AR、扩展YaleB上的实验验证了该算法的有效性及鲁棒性,实验结果表明,相比其他几种人脸识别算法,提出的算法不仅提高了人脸识别率,而且大大地减少了识别所用时间,有望应用于实时鲁棒人脸自动识别系统中。 相似文献
10.
针对传统的Fisher线性判别分析(FLDA)算法在处理单训练样本人脸识别时由于类内散布矩阵为零而不能进行特征提取的问题,提出了一种基于自适应通用学习框架改进FLDA的人脸识别算法。首先选取一个合适的通用训练样本集,计算其类内散布矩阵和样本平均向量;然后,利用双线性表示算法预测单训练样本的类内、类间散布矩阵,巧妙地解决了单训练样本类内散布矩阵为零的问题;最后,利用Fisher线性判别分析进行特征提取,同时借助于最近邻分类器完成人脸的识别。在Yale及FERET两大通用人脸数据库上的实验验证了所提算法的有效性及可靠性,实验结果表明,相比其他几种较为先进的单样本人脸识别算法,所提算法取得了更好的识别效果。 相似文献
11.
12.
SUNXin LIUBing LIUBen-yong 《中国电子科技》2005,3(1):18-21
A face recognition scheme is proposed, wherein a face image is preprocessed by pixel averaging and energy normalizing to reduce data dimension and brightness variation effect, followed by the Fourier transform to estimate the spectrum of the preprocessed image. The principal component analysis is conducted on the spectra of a face image to obtain eigen features. Combining eigen features with a Parzen classifier, experiments are taken on the ORL face database. 相似文献
13.
14.
本文实现了一种基于仿生模式识别的人脸识别系统,并将其识别效果同最近邻分类器与不同核函数的SVM进行了分析比较.以ORL人脸库为识别对象,针对有"拒识"的情况下,通过改变不同识别算法的可调参数,在保证参与训练人的正确识别率在大致相同水平的条件下,分析了参与训练人的错误识别率(错识别为参与训练的其他人)与未参与训练人的错误接受率(错识别为参与训练的某人)的优劣.比较结果表明,基于仿生模式识别的方法明显优于其它模式识别方法. 相似文献
15.
16.
基于优化的LDA算法人脸识别研究 总被引:4,自引:0,他引:4
提取低维人脸特征是人脸识别系统中极其关键的一步。线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。本文提出了一种优化的LDA算法,该方法克服了传统的LDA算法用于人脸识别时存在的问题:通过重新定义样本类间离散度矩阵使传统的Fisher准则能够最优化,克服了边缘类对选择最佳投影方向的影响;同时,利用因数分解的方法避免了对矩阵求逆,解决了小样本问题。依据经验选取适当的e值,得到最佳的识别效果。实验结果表明,人脸识别效果优于传统LDA方法。 相似文献
17.
18.
In this paper, a novel image projection technique for face recognition application is proposed which is based on linear discriminant analysis (LDA) combined with the relevance‐weighted (RW) method. The projection is performed through 2‐directional and 2‐dimensional LDA, or (2D)2LDA, which simultaneously works in row and column directions to solve the small sample size problem. Moreover, a weighted discriminant hyperplane is used in the between‐class scatter matrix, and an RW method is used in the within‐class scatter matrix to weigh the information to resolve confusable data in these classes. This technique is called the relevance‐weighted (2D)2LDA, or RW(2D)2LDA, which is used for a more accurate discriminant decision than that produced by the conventional LDA or 2DLDA. The proposed technique has been successfully tested on four face databases. Experimental results indicate that the proposed RW(2D)2LDA algorithm is more computationally efficient than the conventional algorithms because it has fewer features and faster times. It can also improve performance and has a maximum recognition rate of over 97%. 相似文献
19.
In this paper, we propose a neuro-fuzzy classifier (NEFCAR) that utilizes positive and negative rules with different rule importances to create the decision boundaries between different classes. The locally unsupervised and globally supervised training technique is adopted. The decision-based and approximation-based strategies are combined to provide a suitable amount of training for each training pattern. The reinforced and anti-reinforced learning rules are given with different weighting so that the training can be efficient and can reach convergence quickly. Moreover, NEFCAR can easily provide the confidence measure of each classification decision. Therefore, the rejection algorithm can be implemented in a straightforward manner. Noise tolerant training is conducted to improve the generalization performance and the confidence measure is adopted to avoid overtraining. The proposed classifier is applied to two applications. The first one is the Fisher iris data classification, and the second one is an on-line face detection and recognition application. Good classification results are obtained in both applications. In the on-line face detection and recognition system, two NEFCAR's are utilized: a two-class and a multi-class NEFCAR's are adopted to detect the face and recognize the face, respectively. The color of skin and the motion information are taken into consideration heuristically to improve the effectiveness of the face location algorithm. 相似文献