首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For six weeks, recipient (Lewis RT11) and donor rats (LBNF11/n) were fed three diets that varied only in their lipid content. Diet A (MO) contained 19.5% menhaden oil and 0.5% safflower oil and was rich in omega 3 PUFA; diet B (SO) was 20% safflower oil rich in omega 6 PUFA; and diet C (BT) was 20% beef tallow rich in omega 9 monounsaturated fatty acids and saturated fat. In the first set of graft survival studies a group fed laboratory chow was included (CHOW). Heterotopic cardiac transplantation from donor to recipient animals was performed after the six-week feeding period. The effect of these diets on cardiac allograft survival, mixed lymphocyte response, and blood flow in the rejecting grafts was investigated. The median graft survival in days was significantly prolonged in the rats maintained on either MO (12 days) or SO (14.5 days) compared with the BT (8 days)-or lab chow (7.5 days)-fed animals (P < 0.05). Cyclosporine (CsA) administered at subtherapeutic levels further increased the differences between the PUFA-fed animals and the BT-fed group. The myocardial blood flow of the rejecting allografts was measured using an 85Sr-labeled microsphere technique on the fifth posttransplant day. Flow was greatest in the MO-fed group, and both MO and SO groups had significantly higher myocardial blood flow than BT-fed rats (P < 0.05) or those bearing isografts. The allogenic mixed lymphocyte responses of peripheral blood mononuclear cells (PBMC) and splenic lymphocytes were suppressed in MO- and SO-fed groups compared with BT-fed animals. The immunosuppressive effect of dietary PUFA warrants further investigation, and their use as a possible adjunctive treatment in organ transplantation should be considered.  相似文献   

2.
This study has assessed the influence of maternal n-3 long chain polyunsaturated fatty acid supply and dietary manipulation after weaning on the retinal polyunsaturated fatty acid profile. Infant guinea pigs born of dams fed one of two commercial chow diets (differing in the amount of eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were raised in two separate experiments, and subsequently partitioned into two diet groups, one supplied with a high level of alpha-linolenic acid (canola oil supplemented), the other with a very low level of alpha-linolenic acid (safflower oil supplemented). Guinea pigs born of dams supplied with the longer chain n-3 fatty acids in the commercial pellets (experiment 2) showed higher levels of retinal docosahexaenoic acid at weaning compared with those born to dams fed chow containing only alpha-linolenic acid (experiment 1). The rate of depletion of retinal docosahexaenoic acid after weaning onto the safflower oil diet was described by a two-stage exponential decay, possibly reflecting systemic and local conservation mechanisms, in conditions of dietary n-3 fatty acid deprivation. The rate of docosahexaenoic acid depletion in the group with the lower retinal docosahexaenoic acid at weaning was more than double the rate of depletion in the group with the higher weaning docosahexaenoic acid value. The endpoint retinal docosahexaenoic acid level at 16 weeks post-weaning after dietary n-3 fatty acid depletion on the safflower oil diet in the group, which started with the lower retinal docosahexaenoic acid level, was approximately half that compared with the group from the dams fed long chain n-3 fatty acids (experiment 1, 5% (interpolated), experiment 2, 9%). These results suggest that an adequately supplied mother is capable of providing an infant with enough n-3 fatty acids to withstand a longer period of dietary deprivation imposed after weaning.  相似文献   

3.
The effect of egg yolk fatty acid composition on the uptake and utilization of essential n-6 and n-3 fatty acids by the developing chick embryo was studied. Eggs were enriched with n-9, n-3, or n-6 fatty acids by incorporating sunflower seed high in oleic acid (C18:1 n-9), flax seed rich in linolenic acid (C18:3 n-3), or sunflower seed high in linoleic acid (C18:2 n-6) into the laying hen diets. Fertile eggs were collected and incubated. The fatty acid composition of eggs and newly hatched chicks were compared. Feeding diets containing flax seed increased (P < .05) total n-3 fatty to 528.4 mg compared with 53.9 and 39.3 mg for eggs from hens fed diets with high oleic acid or regular sunflower seed, respectively. Levels of C18:2 n-6 and monounsaturated fatty acids were higher in eggs from hens fed diets containing regular or high oleic acid sunflower seeds. Dietary fat did not influence the total lipid content of the egg yolk or total lipids of chick tissues. The fatty acid composition of the hatched progeny was significantly altered by egg yolk lipids. However, the percentage incorporation of essential n-6 and n-3 fatty acids into the progeny increased when yolk sources of these fatty acids were low. The developing chick embryo appeared to preferentially take up docosahexaenoic acid and arachidonic acid from the yolk lipids. Evidence also suggests that conversion of C18:2 n-6 and C18:2 n-3 to longer chain n-3 or n-6 fatty acids occurs during the incubation period.  相似文献   

4.
Studies were performed to determine whether feeding diets with differing fatty acid content and composition had an influence on systolic blood pressure in the rat. Weanling male rats were fed standard laboratory chow (2.9% fat in total), or synthetic diets (10% fat in total) containing fish oil, butter, coconut oil or corn oil, for 5 weeks. Coconut oil and butter diets were rich in saturated fatty acids, whilst fish oil and corn oil were rich in the n-3 and n-6 unsaturated fatty acids respectively. Systolic blood pressure was measured using an indirect tail-cuff method at the end of the feeding period, and compared to a group of weanling rats. Feeding the different diets did not alter the growth of the rats, so all animals were of similar weights at the time of blood pressure determination. Control (chow fed) animals, at nine weeks of age, had higher systolic blood pressures than the weanling, baseline control group. Fish oil fed rats had similar pressures to the chow fed rats. Corn oil fed rats had significantly lower systolic pressures than the controls. The rats led the diets rich in saturated fatty acids (butter and coconut oil) had significantly higher blood pressures than all other groups. Systolic blood pressure was found to be significantly related to the dietary intakes of saturated and unsaturated fatty acids. The dietary intake of linoleic acid was significantly higher in corn oil fed rats than in other groups. Systolic blood pressure was inversely related to linoleic acid intake. Feeding a diet rich in saturated fatty acids significantly increases blood pressure in the rat. A high intake of n-6 fatty acids, and in particular linoleic acid, appears to have a hypotensive effect. Prenatal exposure of the rats to a maternal low protein diet, abolished the hypertensive effects of the coconut oil diet and the hypotensive effect of the corn oil diet upon young adult females. The intrauterine environment may, therefore, be an important determinant of the effects of these fatty acids on blood pressure in later life.  相似文献   

5.
Arachidonic acid concentrations in liver are decreased in response to ethanol administration. In addition, the oxygenated products of arachidonic acid metabolites could affect the severity of alcoholic liver injury. Selective utilization of arachidonic acid by the cytochrome P-450 system could, in part, account for the decrease in arachidonic acid. To evaluate this pathway further, male Wistar rats were fed different dietary fats: medium chain triglycerides, palm oil, and corn oil or fish oil with either ethanol or isocaloric amounts of dextrose. Histopathology, cytochrome P-4502E1 (CYP2E1) and cytochrome P-4504A (CYP4A), and omega- and (omega-1)-hydroxylation products of lauric and arachidonic acids were evaluated. Ethanol induction of CYP2E1 was related to the concentration of polyunsaturated fatty acids in the diet; induction of CYP4A by ethanol was seen in all groups. The highest levels of 11-hydroxy-lauric acid and 19-hydroxyarachidonic acid (omega-1) were seen in rats fed ethanol with palm oil and corn oil. Highly significant correlations were seen between the (omega-1)-hydroxylation products and CYP2E1 activity. No correlation was seen between the omega-hydroxylation products and CYP2E1 activity. In contrast, the levels of omega-hydroxylation products correlated with CYP4A. The overall results showed a significant increase in (omega-1)-hydroxylation products in rats fed diets containing significant amounts of linoleic acid (i.e., palm oil and corn oil).  相似文献   

6.
The dietary fatty acids of the omega-3 series are rapidly incorporated into cell membranes and profoundly influence biological responses. These lipids influence membrane stability, membrane fluidity, cell mobility, the formation of receptors, binding of ligands to their receptors, activation of intracellular signaling pathways either directly or through the formation of eicosanoids, gene expression, and cell differentiation. In general, eicosanoids formed from the omega-3 fatty acids are much less potent in causing biological responses than those formed from the omega-6 fatty acids, including stimulation of cytokine production and inflammatory responses. In well-controlled clinical studies, consumption of omega-3 fatty acids has resulted in reduction of cardiovascular diseases including arrhythmias and hypertension, protection from renal disease, improvement in rheumatoid arthritis, improvement in inflammatory bowel diseases, reduced episodes of rejection, and protection from infection. The interactions between the omega-3 fatty acids and pharmacologic drugs that alter intracellular signaling pathways are only now being studied.  相似文献   

7.
BACKGROUND: Protocols that incorporate donor-specific cell infusions using bone marrow, spleen, or blood transfusion continue to enhance allograft survival and often lead to tolerance in experimental models. Clinical benefits from these modalities have not been as striking, leading to ongoing study in this field. We have explored culture techniques for the in vitro selection and development of cellular effectors capable of enhancing allograft survival. METHODS: Rat bone marrow or spleen cells cultured under a variety of conditions were screened for suppressor function. Bone marrow cells, nonadherent to plastic, cultured for 7 days with granulocyte-macrophage colony-stimulating factor, lipopolysaccharide, and with or without splenocytes were found to contain predominantly myeloid lineage cells and had the ability to suppress phytohemagglutinin or mixed lymphocyte reaction-induced splenocyte proliferation. Standard donor-specific peripheral blood transfusion was compared with cultured donor-specific bone marrow cells, splenocytes, or marrow cells cultured with splenocytes (cocultured) administered intravenously at 1 x 10(7) cells/kg the day before an ACI to Lewis heterotopic heart transplant. Cyclosporine was administered at 10 mg/kg on day -1 and 2.5 mg/kg on days 0-6 relative to transplantation. RESULTS: Mean allograft survival in cyclosporine-treated animals was 8.5 days without and 16.6 days with a donor-specific blood transfusion. Cocultured cells extended allograft survival (39.5 days), whereas bone marrow or splenocytes cultured alone did not. With Percoll gradient separation, two predominant culture subfractions, one with potent suppressor function and another with stimulator function, were identified. Flow cytometric analysis showed mixed populations enriched for macrophages but also including dendritic cells in both subfractions. The suppressive fraction extended allograft survival to 20.8 days and the stimulatory fraction was less effective, yet remixing of both fractions regained the full allograft survival advantage. CONCLUSIONS: In this model, the coculture of bone marrow cells and splenocytes with granulocyte-macrophage colony-stimulating factor and lipopolysaccharide produced functionally divergent subpopulations that synergistically enhanced allograft survival. The development of cellular effectors with enhanced ability to prolong allograft survival using in vitro culture techniques is possible, and provides a new therapeutic option in the use of cell infusion-based therapies.  相似文献   

8.
Fish oil is rich in the long chain omega-3 (omega-3) polyinsaturated fatty acids (PUFA), Pioneering studies of Dyerberg and Bang primarily originate interests in this way. The low incidence of acute myocardial infarction they verified within the Greenland Eskimos suggested that a high dietary omega-3 PUFA intake due to marine food might protect against coronary heart disease. They showed that the Eskimos had a beneficial lipid pattern and that their balance between pro-aggregatory thromboxanes and anti-aggregatory prostacyclins was shifted towards an anti-thrombotic state. The two major omega-3 fatty acids are decosapentaenoic acid (EPA C 20:5, omega 3), with five double bonds, and docosahexaenoic acid (DHA C 22:6, omega 3), with six double bonds. These fatty acids' significant effects include reduction of plasma triglycerides and lipoprotein levels as well as of platelets thrombogenicity in the microcirculation, which is due to effects on the mediators production derived from arachidonic acid (prostaglandins and leucotrienes), meddling in inflammatory and immune cell function, retarded atherosclerosis development. Experimental studies of atherogenesis and arterial thrombogenesis support the hypothesis that dietary omega-3 PUFA intake may play a leading role in primary or secondary prevention of coronary heart disease.  相似文献   

9.
Rainbow trout, Oncorhynchus mykiss, were maintained on isocalorific diets in which either sunflower, menhaden or Fosol oils were used as the dietary source of fatty acids. At intervals over a period of 6 months, head kidney leucocytes were isolated and used for the analysis of their fatty acid composition and eicosanoid-generating capacity. Major changes in fatty acid composition were apparent within 4 weeks on the diets, with fish fed sunflower oil diets showing a 2.1-fold increase in total n-6 fatty acids and a 2.3-fold decrease in n-3 fatty acids, compared with the original basal levels. By week 8 the fatty acid composition changes were greater in the sunflower-fed fish, but thereafter remained relatively stable to the end of the experiment at week 24. Leucocytes from the fish maintained for > 8 weeks on the sunflower oil containing diet produced significantly lower percentages of 5-series lipoxygenase products derived from eicosapentaenoic acid including 12-hydroxyeicosapentaenoic acid, leukotriene B5 and lipoxin A5 compared with those cells from fish fed either menhaden or Fosol based diets. Unlike the fatty acid composition, differences in lipoxygenase product profiles between the dietary groups increased throughout the experiment and by week 24 the arachidonic acid/eicosapentaenoic acid derived product ratios were approx. 14:1 in the sunflower oil-fed fish compared with approx. 1:1.5 in the menhaden oil-fed fish. A functional consequence of these differing ratios was seen in the ability of supernatants containing these products to cause the in vitro locomotion of trout neutrophils. Supernatants from sunflower oil-fed fish were less chemo-attractive than supernatants from menhaden or Fosol oil-fed fish.  相似文献   

10.
During feeding experiments with [omega-14C]oleic acid and [omega-14c]nervonic acid to adult rats, 14C-labelled C26, C28 and C30 fatty acids were recovered from the intestinal mucosa, liver, plasma, kidney and stools. The structures of these fatty acids were determined by g.l.c., radio-g.l.c. and mass spectrometry. The Schmidt and Ginger degradation methods indicated that most of the 14C found in these extra-long fatty acids remained in the omega position. These radioactive extra-long fatty acids were found mainly in the polar lipids of rats killed 3 or 15 h after being fed on labelled oleic acid or nervonic acid. Rats killed 63 h later yielded only traces of these extra-long fatty acids. When the rats were given antibiotics or received the same radioactive fatty acids by intravenous injection, the labelled extra-long fatty acids could not be detected in any of the tissues. We conclude that they were probably synthesized by elongation of oleic acid and nervonic acid by intestinal micro-organisms (probably yeasts) and then absorbed by the intestinal mucosa.  相似文献   

11.
DN Linz  VF Garcia  G Arya  MM Ziegler 《Canadian Metallurgical Quarterly》1994,29(8):1065-9; discussion 1070
Monokines are important mediators of wound healing. Specifically, the proportions of proinflammatory (tumor necrosis factor and PGE2) and antiinflammatory (PGF2 alpha) monokines may modulate its early phases. Using a polyvinyl alcohol sponge model of rat wounding, the authors determined the temporal changes in the levels of monokines in wound inflammatory fluid, and examined whether dietary manipulation for 6 days with the precursors (omega 6 fatty acids) and inhibitors (fish oil omega 3 fatty acids) of the prostaglandin-2 series influenced monokine composition of wound fluid. For 3 days before the wounding, adult rats received isocaloric, isovolemic, and isonitrogenous total parenteral nutrition (TPN), in which lipids supplied either 35% (Intralipid [IL] or fish oil emulsion [FO]) or 8% (minimal essential fatty acid; EFA) of the total calories. Control rats received isocaloric enteral chow. The controls were studied at 24, 48, 72, and 96 hours, and the experimentals at 72 hours after wounding. Cell counts were performed, and cell-free fluid was analyzed for PGE2, PGF2 alpha, and TNF. In control rats, the total WBC count was highest at 24 to 48 hours, and decreased significantly by 96 hours. The percentage of mononuclear cells progressively increased throughout the 96 hours, and the total mononuclear cell count peaked at 72 hours. The TNF and prostaglandin levels were highest at 24 hours; these decreased rapidly by 72 hours. At all time-points, the levels of PGE2 remained higher than those of PGF2 alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Based on previous in vitro results that showed reduced biohydrogenation of oleamide by ruminal microbes, this study was conducted to determine whether the addition of oleamide to the diets of dairy cows would enhance the C18:1 concentration in milk. Nine first lactation Holstein cows were fed three diets in a 3 x 3 Latin square replicated three times. Each period lasted 3 wk. The total mixed diets consisted of 42% corn silage and 58% concentrate (dry matter basis) with either no added fat (control), 3.5% high oleic canola oil, or 3.5% oleamide. Dry matter intake was reduced when oleamide was added to the diet but not when canola oil was added. Milk yields were the same for cows fed all three diets. Canola oil reduced fat-corrected milk yield and milk fat concentration, but these were not affected by oleamide. Milk protein concentration was lower for cows fed oleamide than for cows fed canola oil. Milk C18:1 averaged 23.16% of total fatty acids for cows fed the control diet and increased to 35.13% when canola oil was fed. Oleamide further increased C18:1 to 48.16% of total fatty acids in milk. All fatty acids with > or = 16 carbon chain length were reduced by oleamide. Oleamide was more effective than was canola oil in this study at increasing the oleic acid content of bovine milk. Oleamide reduced dietary intake when added at 3.5% of the dietary dry matter but still had no effect on milk yield or milk composition.  相似文献   

13.
While the existence of chimeric cells in host tissue following organ transplantation is well documented, its distribution, temporal evolution and relationship to allograft survival is less clear. To explore this phenomenon, Lewis recipients of ACI cardiac allografts representing a wide range of immunosuppressive protocols and graft survival times were examined for the presence of chimerism using a sensitive polymerase chain reaction assay. Four groups of animals were examined: untransplanted animals receiving donor specific transfusion (DST)/cyclosporine A (CsA); allograft recipients with no treatment; recipients treated with DST/CsA/supplementary immunosuppression with rejection at 21-183 days; and recipients sacrificed with functioning allografts, treated with DST/CsA/supplementary immunosuppression and surviving > 200 days. To elucidate variations in the tissue distribution of chimeric cells, bone marrow, skin, liver, spleen, and thymus were examined in each animal. Untransplanted animals receiving DST/CsA displayed no evidence of chimerism. In animals receiving a cardiac allograft but no treatment, there was extensive evidence of chimerism in four of five animals. Chimerism was also detected in seven of nine animals with intermediate graft survival at the time of rejection. In animals with long-term graft survival, only four of eight displayed chimerism. These results suggest that, without immunosuppression, early chimerism does not lead to prolonged graft survival and that, even when graft survival is moderately prolonged, these cells are not sufficient to prevent rejection. In conclusion, chimerism appears to be a common phenomenon following transplantation, is not a result of DST, and may not be necessary for maintenance of long-term graft survival.  相似文献   

14.
The effect of feeding rats for 30 days with diets containing high levels of linoleic acid (sunflower oil, SO) or alpha-linolenic acid (perilla oil, PO) was studied in the liver, kidney and brain. The PO group showed a higher labeling of choline glycerophospholipids (CGP) in liver and kidney but no difference with the SO group in ethanolamine glycerophospholipids (EGP) labeling. The brain displayed the lowest incorporation of both precursors and no difference between the two diets. Analyses of brain CGP and EGP fatty acid composition showed that in the PO group the ratio n-6/n-3 was lower than in the SO group, mainly as a consequence of lower levels of n-6 fatty acids. The mole % of docosahexaenoate (DHA) in these lipids was the same for both groups and only triacylglycerols (TAG) displayed a higher DHA. Therefore, at least in the brain, the magnitude of fatty acid changes observed in CGP and EGP for the PO group does not affect the uptake/incorporation of the precursors into phospholipids.  相似文献   

15.
OBJECTIVES: To ascertain the effects of dietary omega-3 (n-3) fatty acids on biochemical and histopathologic components of the inflammatory stage of wound healing. ANIMALS: 30 purpose-bred Beagles. PROCEDURE: Dogs were allotted to 5 groups of 6. Each group was fed a unique dietary fatty acid ratio of omega-6 to n-3--diet A, 5.3:1; diet B, 10.4:1; diet C, 24.1:1; diet D, 51.6:1; and diet E, 95.8:1. Dogs were fed once daily for 12 weeks, then biopsy specimens were taken from 4-day-old wounds of each dog and analyzed by gas chromatography-mass spectrometry for: prostaglandin E2 (PGE2) metabolites, and ratios of omega-6 to n-3 fatty acids, arachidonic acid (AA) to eicosapentaenoic acid (EPA), adrenic acid to docosahexaenoic acid, and PGE2 to prostaglandin E3 (PGE3) metabolites. RESULTS: Qualitative analysis was carried out on AA, EPA, adrenic acid, docosahexaenoic acid, and the major metabolite from the PGE2 and PGE3 pathway. These molecules were further quantified with respect to diet to determine significant differences. By analysis of the AA-to-EPA ratio, diet A was different from diets D and E and diets B and C were different from diet E (P < 0.05). By analysis of the PGE2-to-PGE3 metabolite ratio, diet A was different from diet E (P < 0.05). Though biochemical analysis indicated dietary dependence, histopathologic data indicated no significant difference with respect to diet groups. CONCLUSION: The biochemical component of the inflammatory stage of wound healing can be manipulated by diet. CLINICAL RELEVANCE: Omega-3 fatty acid-enriched diets can be used to control inflammation associated with dermatologic conditions.  相似文献   

16.
To examine the influence of dietary polyunsaturated fatty acids (PUFA) on the lipid composition of the pineal organ and its production of prostaglandins, Atlantic salmon were fed diets containing either fish oils rich in long-chain n-3 polyunsaturated fatty acids, or plant oils with high levels of 18:2(n-6) (sunflower oil) or 18:3(n-3) (linseed oil) for 12 weeks. Lipid content and lipid class composition of the pineal organ were not greatly influenced by the type of oil fed to the fish: choline phosphoglycerides were always the predominant lipid class and the proportion of polar lipids exceeded that of neutral lipids. The pattern of PUFA present in total lipid and individual lipid classes was, however, related to that of the dietary oil. The major PUFA in pineal total lipid from all four dietary groups was 22:6(n-3) and the proportion of n-6 PUFA present was highest in lipid from salmon fed sunflower oil. Both PGE and PGF analogues of the 2- and 3-series were detected in pineal homogenates from all dietary groups with the former prostaglandin being the most abundant. The ratio of PGE2/PGE3 was greatest in fish fed sunflower oil and lowest in those fed linseed oil. The results provide further evidence that despite its anatomical location the pineal organ resembles non-neural tissues more than brain in terms of lipid composition and prostaglandin production.  相似文献   

17.
We examined the effect of dietary fish oil (MaxEPA) and sunflower seed oil on glucose tolerance in male Wistar rats. Semipurified diets containing 100 g oil/kg diet were administered for 30 d. The fish oil diet contained 26 g (n-3) fatty acids, 16 g eicosapentaenoic acid and 10.4 g docosahexaenoic acid/kg diet. Phospholipids from liver, pancreas, and pancreatic islets were enriched in eicosapentaenoic and docosahexaenoic acids by the fish oil diet. In unfed pentobarbital-anesthetized rats, both basal plasma insulin concentration and insulin responses to intravenous glucose were significantly lower for fish oil-fed rats although glucose responses were similar; however, incremental excursions in plasma insulin over the basal concentrations did not differ. Intravenous glucose tolerance was also examined in conscious unfed rats under minimal restraint. Responses of plasma glucose and insulin were similar for fish oil- and sunflower oil-fed groups. Furthermore, in another experiment, intravenous glucose tolerance tests were similar for conscious rats provided with either 100 g fish oil or corn oil/kg nonpurified diet. Thus, glucose-induced insulin secretion is lower in rats fed fish oil than in rats fed sunflower oil, when tests are conducted in pentobarbital-anesthetized animals but not when tests are performed in conscious rats; there was no effect on plasma glucose in either anesthetized or nonanesthetized rats. Therefore, substitution of (n-3) for (n-6) polyunsaturated fatty acids in tissue phospholipids does not alter plasma glucose or insulin in conscious male Wistar rats.  相似文献   

18.
An experiment with a 5 x 5 Latin square design was conducted to determine the effects of the addition of soybean oil to high fiber diets on ruminal fermentation and ruminal lipid concentrations. Diets were 50% bermudagrass hay and 50% concentrate. Soybean oil was added to diets at 0, 2, 4, 6, or 8% of the dietary dry matter (DM). Ruminal samples were collected every 2 h on the last day of each period and analyzed for volatile fatty acids and lipids. The addition of soybean oil decreased DM and organic matter intake but increased fatty acid intake. Soybean oil had no effect on total tract digestibility of DM, organic matter, N, or neutral detergent fiber but decreased digestibility of fatty acids. The addition of soybean oil decreased total volatile fatty acid concentrations and the acetate to propionate ratio. Ruminal concentrations of unsaturated free fatty acids increased nonlinearly as soybean oil in the diets increased but remained < 0.67 mg/g of DM or 3% of the total fatty acids. Ruminal concentrations of total fatty acids and total saturated fatty acids increased nonlinearly as soybean oil in the diets increased. Total unsaturated fatty acid concentrations increased linearly as soybean oil increased. Neutral lipid concentrations in the rumen did not respond to increased soybean oil. These data indicate that large amounts of soybean oil can be fed in high fiber diets without greatly increasing the concentration of ruminal unsaturated fatty acids or depressing nutrient digestibility.  相似文献   

19.
Origins of neural crest cell diversity   总被引:1,自引:0,他引:1  
The effect of diets containing 50% of fat calories from butter, butter enriched with mono- and polyunsaturated fatty acids, and margarines with and without trans fatty acids on the serum lipids of 38 healthy men in a free-living condition have been determined. Serum lipid responses to the high level of individual dietary fats were unexpectedly small. The butter diet produced a small, but significant rise (5%) in the total serum cholesterol and low density lipoprotein (LDL)-cholesterol, relative to all other diets. Enrichment of butter with either olive oil (50/50) or sunflower oil (50/50) failed to reduce serum lipid levels below habitual diet values. Hard margarine, containing 29% trans fatty acids, caused a decrease in apolipoprotein A-I and B levels, but did not change total serum cholesterol or LDL-cholesterol levels, relative to habitual diet values. A soft margarine, high in linoleate, with no trans fatty acids reduced total cholesterol, LDL-cholesterol, and apolipoprotein B significantly, relative to all diets. Soft margarine high density lipoprotein (HDL)-cholesterol levels remained unchanged, but apolipoprotein A-I values were decreased relative to habitual and butter diets. The quantities of saturated fatty acids and the sum of monounsaturated and polyunsaturated fatty acids consumed on the hard and soft margarines were equal; therefore, the different response of serum cholesterol and LDL-cholesterol between these two diets is attributable to the trans fatty acids in the hard margarine. The data indicate that trans fatty acids are not metabolically equivalent to the natural cis isomers and that they affect the serum lipid profile adversely.  相似文献   

20.
BACKGROUND: Fats in the diet modify the lipid composition and function of the intestinal brush border membrane (BBM) as well as the enterocyte microsomal membrane (EMM). METHODS: This study was undertaken in pigs to establish the effect of 3 weeks of total parenteral nutrition (TPN) on the fatty acids in the major phospholipids, (phosphatidylcholine [PC] and phosphatidylethenolamine [PE] in the jejunal and ileal BBM and EMM. RESULTS: In a comparison of 21-day-old milk-fed piglets and newborn animals, there were differences in the major fatty acids (palmitic, 16:0; stearic, 18:0; oleic, 18:1 omega 9, and linoleic acid, 18:2 omega 6) in PC and PE in BBM and EMM. Age-matched (3-week-old) animals fed a lipid-free glucose-containing TPN solution had different membrane fatty acids than did milk-fed piglets, or animals given a soybean oil-containing TPN solution for 21 days. Substituting fish oil or fish oil plus soybean oil altered BBM and EMM fatty acids, compared with the soybean oil-based TPN solutions. These changes varied between the class of phospholipids (PC vs PE), between intestinal site (jejunum vs ileum), and between the type of membrane (BBM vs EMM). CONCLUSIONS: The jejunum and ileum have distinctive control mechanisms for varying their membrane lipids in response to TPN. There is some postmicrosomal modification of lipids between the EMM and BBM. It remains to be established whether the lipid content of the membranes of other organs, and therefore their function, is modified by the lipid composition of parenterally infused lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号