首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a new instrument developed to perform rapid, size-resolved aerosol hygroscopicity measurements. The differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP) employs differential mobility analysis in-concert with multiple humidification and optical sizing steps to determine dry optical size and hygroscopic growth factors for size-selected aerosols simultaneously at three elevated relative humidities. The DASH-SP has been designed especially for aircraft-based measurements, with time resolution as short as a few seconds. The minimum particle diameter detected with 50% efficiency in the optical particle counters (OPCs) is 135 ± 8 nm, while the maximum detectable particle diameter is in excess of 1 μm. An iterative data processing algorithm quantifies growth factors and “effective” refractive indices for humidified particles using an empirically derived three-dimensional surface (OPC pulse height–refractive index–particle size), based on a calculated value of the “effective” dry particle refractive index. Excellent agreement is obtained between DASH-SP laboratory data and thermodynamic model predictions for growth factor dependence on relative humidity for various inorganic salts. Growth factor data are also presented for several organic acids. Oxalic, malonic, glutaric, and glyoxylic acids grow gradually with increasing relative humidity up to 94%, while succinic and adipic acids show no growth. Airborne measurements of hygroscopic growth factors of ship exhaust aerosol during the 2007 Marine Stratus/Stratocumulus Experiment (MASE II) field campaign off the central coast of California are presented as the first report of the aircraft integration of the DASH-SP.  相似文献   

2.
Standard aerosol instruments to measure particle size distributions in the ultrafine size range are large and heavy. We built a small electrical diffusion battery, which can be carried in a backpack and thus makes size-resolved short-term personal aerosol exposition measurements possible. The instrument was designed for maximal measurable particle size range and long maintenance intervals. The optimum number of stages for the diffusion battery was found with a Monte-Carlo simulation. To assess the instrument's performance, we compared size distributions measured with the electrical diffusion battery to those obtained with standard aerosol instruments (the scanning mobility particle sizer and the fast mobility particle sizer of TSI Inc.). In general, the readings of the electrical diffusion battery and those of standard instruments agree well (to within 10–20%).  相似文献   

3.
By means of a newly designed portable aerosol mass spectrometer SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) for the analysis of single atmospheric aerosol particles we investigated the system performance in dependency on two different aerodynamic lenses (Liu and Schreiner type) capable of focusing particles with diameters ranging from 80 nm to 800 nm and 300 nm to 3000 nm, respectively. By using the pressure regulated Schreiner lens, the instrument is independent of variations in atmospheric pressure which would lead to changing dynamical properties of the aerosol particles. Active pressure control inside the inlet system facilitates airborne measurements without complicated corrections. With the Liu setup no pressure regulation was used. Here the overall efficiency of our instrument was 7% while with the Schreiner setup 2% was achieved. The Liu lens setup is optimal for measuring submicron particles at low particle concentrations. To detect supermicron particles the Schreiner lens setup is favored. Together with these experiments we present key details of the SPLAT setup and its characterization. Our instrument is able to measure simultaneously the size and the chemical composition of individual aerosol particles larger than 300 nm in diameter. It uses forward scattered light of single aerosol particles at two positions to determine their vacuum aerodynamic diameter from the flight time between the two lasers. Chemical analysis of the particles is done by laser ablation mass spectrometry utilizing a bipolar time-of-flight mass spectrometer.  相似文献   

4.
A thorough understanding of the importance of aerosol coagulation and deposition relative to each other as modifiers of the particle size distribution plays an important role in the proper selection of conditions to estimate the deposition rate coefficient. In this work, a theoretical analysis was conducted for investigating the size-resolved ratio of coagulation to deposition for different types of size distributions using the Simpson integral method. The theoretical model was subsequently qualitatively validated by experiments in a completely mixed and ventilated aerosol chamber. Both experimental and theoretical studies show that the ratio of the rates of coagulation to deposition is strongly dependent on the total particle number concentration and the geometric mean diameter of the aerosol. A variation of the ratio of coagulation to deposition by several orders of magnitude for aerosols with differing size distributions was found. Thus the previously employed criterion for the negligence of coagulation based solely on the total particle number concentration was shown to be insufficient to accurately judge whether an aerosol is suited for the estimation of the deposition rate coefficient. Aerosols with wide size distributions are not recommended for use in the estimation of the deposition rate coefficient. The study provides a method to understand the role of coagulation and deposition for indoor aerosols.

Copyright 2013 American Association for Aerosol Research  相似文献   

5.
Size-segregated aerosol vertical profiles in the troposphere are critically important for source attribution, transformation processes, atmospheric stability, and radiative forcing. For the first time, the development of a 6-stage impactor for real-time balloon-borne measurements of size-segregated (cutoff diameter [Dae]: 0.15–5?µm) aerosol mass concentrations in the free troposphere was tested during spring 2016 over Hyderabad, India, is presented. Total aerosol mass concentrations obtained with the 6-stage impactor (MTI) and a co-located optical particle counter (MTOPC) measurements at the surface under ambient conditions agreed to within 15%. The effect of aerosol particle growth on the MTI data are assessed using an urban aerosol particle model by scaling mass concentration of water-soluble (hydrophilic) aerosol particles at ambient relative humidity (RH) to that at RH = 50%. An overall uncertainty of the measurement of the MTI was estimated to be about 19%. The altitude variation of size-segregated mass concentrations of aerosol particles along with thermodynamic variables depicted convectively well-mixed layer extending up to about 4.5?km within which aerosol particles showed two distinct layers, one at ~2?km and another at about 4.5?km. The size-resolved air samples containing aerosol particles collected using the balloon-borne 6-stage impactor will be useful for their chemical characterization and also long-range transport studies.

Copyright © 2019 American Association for Aerosol Research  相似文献   


6.
In situ atmospheric aerosol measurements have been performed from a Manta unmanned aircraft system (UAS) using recently developed miniaturized aerosol instruments. Flights were conducted up to an altitude of 3000 m (AMSL) during spring 2015 in Ny-Ålesund, Svalbard, Norway. We use these flights to demonstrate a practical set of miniaturized instruments that can be deployed onboard small UASs and can provide valuable information on ambient aerosol. Measured properties include size-resolved particle number concentrations, aerosol absorption coefficient, relative humidity, and direct sun intensity. From these parameters, it is possible to derive a comprehensive set of aerosol optical properties: aerosol optical depth, single scattering albedo, and asymmetry parameter. The combination of instruments also allows us to determine the aerosol hygroscopicity.

Copyright © 2017 American Association for Aerosol Research  相似文献   


7.
Hygroscopicity describes the tendency of aerosol particle to uptake water and is among the key parameters in determining the impact of atmospheric aerosols on global radiation and climate. A hygroscopicity tandem differential mobility analyzer (HTDMA) system is the most widely used instrument for determining the aerosol hygroscopic growth. Because of the time needed to scan the classifying voltage of the DMA, HTDMA measurement often requires a minimum of 30?min to characterize the particle hygroscopic growth at a single relative humidity for five to six different sizes. This slow speed is often inadequate for measurements onboard mobile platforms or when aerosols evolve rapidly. Recently, a humidity-controlled fast integrated mobility spectrometer (HFIMS) was developed for measuring the hygroscopic growth of particles. The measurement speed of the HFIMS is about one order of magnitude faster than that of the conventional HTDMA. In this work, a data inversion routine is developed to retrieve the growth factor probability density function (GF-PDF) of particles measured by the HFIMS. The inversion routine considers the transfer functions of the upstream DMA and the downstream water-based fast integrated mobility spectrometer (FIMS), and derives the GF-PDF that reproduces the measured responses of the HFIMS. The performance of the inversion routine is examined using ambient measurements with different assumptions for the spectral shape of the particle GF-PDF (multimodal lognormal or piecewise linear). The influences of the data inversion parameters and counting statistics on the inverted GF-PDFs were further investigated, and an approach to determine the optimized inversion parameters is presented.

Copyright © 2019 American Association for Aerosol Research  相似文献   

8.
In recent years, Aerodyne aerosol mass spectrometers (AMS) have been used in many locations around the world to study the size-resolved, nonrefractory chemical composition of ambient particles. In order to obtain quantitative data, the mass or (number) of particles detected by the AMS relative to the mass (or number) of particles sampled by the AMS, i.e., the AMS collection efficiency (CE) must be known. Previous studies have proposed and used parameterizations of the AMS CE based on the aerosol composition and sampling line relative humidity. Here, we evaluate these parameterizations by comparing AMS mass concentrations with independent measurements of fine particle volume or particle-into-liquid sampler (PILS) ion chromatography measurements for 3 field campaigns with different dominant aerosol mixtures: (1) acidic sulfate particles, (2) aerosol containing a high mass fraction of ammonium nitrate, and (3) aerosol composed of primarily biomass burning emissions. The use of the default CE of 0.5 for all campaigns resulted in 81–90% of the AMS speciated and total mass concentrations comparing well with fine particle volume or PILS measurements within experimental uncertainties, with positive biases compared with a random error curve. By using composition-dependent CE values (sometimes as a function of size) which increased the CE for the above aerosol types, the fraction of data points within the measurement uncertainties increased to more than 92% and the mass concentrations decreased by ~5–15% on an average. The CE did not appear to be significantly dependent on changes in organic mass fraction although it was substantial in the 3 campaigns (47, 30, and 55%).

Copyright 2012 American Association for Aerosol Research  相似文献   

9.
In studies of the effects of allelochemicals or other factors on the development of different insect species, comparison of growth-inhibiting activities is difficult using the parameters currently employed. We introduce two new parameters, growth index (GI) and relative growth index (RGI), which can unify the quantification of insect development. This quantification can also eliminate the effects of different growth characteristics due to the genetic differences between insect species. By measuring growth-inhibiting effects of two phytochemicals, chaparrin and chaparrinone, on the tobacco budworm,Heliothis virescens, and the beet armyworm,Spodoptera exigua, bioassay procedures and GI and RGI calculations are demonstrated.  相似文献   

10.
《Journal of aerosol science》2006,37(10):1303-1325
A new instrument capable of measuring aerosol size distribution with high time and size resolution, and high signal-to-noise ratios is described. The instrument, referred to as Fast Integrated Mobility Spectrometer (FIMS), separates charged particles based on their electrical mobility into different trajectories in a uniform electric field. The particles are then grown into super-micrometer droplets, and their locations on the trajectories are recorded by a fast charge-coupled device (CCD) imaging system. Images captured by the CCD reveal mobility-dependent particle positions and their numbers, which are then used to derive a particle size distribution spectrum. By eliminating the need to scan over a range of voltages, FIMS significantly improves the measurement speed and counting statistics. A theoretical framework has been developed to quantify the measurement range, mobility resolution, and transfer function of FIMS. It is shown that FIMS is capable of measuring aerosol size distributions with high-time and size resolution.  相似文献   

11.

This work thoroughly analyzes a new commercial instrument for measuring Cloud Condensation Nuclei (CCN), the Droplet Measurement Technologies Cylindrical Continuous-Flow Streamwise Thermal Gradient CCN Chamber (CFSTGC). This instrument can measure CCN concentrations at supersaturations from 0.06% to 3% (potentially up to 6%), at a 1 Hz sampling rate that is sufficient for airborne operation. Our analysis employs a fully coupled numerical flow model to simulate the water vapor supersaturation, temperature, velocity profiles and CCN growth in the CFSTGC for its entire range of operation (aerosol sample flow rates 0.25–2.0 L min ? 1 , temperature differences 2–15 K and ambient pressures 100–1000 mb). The model was evaluated by comparing simulated instrument responses for calibration aerosol against actual measurements from an existing CCN instrument. The model was used to evaluate the CCN detection efficiency for a wide range of ambient pressures, flow rates, temperature gradients, and droplet growth kinetics. Simulations overestimate the instrument supersaturation when the thermal resistance across the walls of the flow chamber is not considered. We have developed a methodology to determine the thermal resistance and temperature drop across the wetted walls of the flow chamber, by combining simulations and calibration experiments. Finally, we provide parameterizations for determining the thermal resistance, the instrument supersaturation and the optimal detection threshold for the optical particle counter.  相似文献   

12.

A beta gauge particulate sampler for measuring the aerosol mass concentration in the ambient air is described. The instrument is automatically calibrated with two self-calibration mass standards during each sampling period, while it samples particles continuously with minimum sampling dead-time loss. Key design features of the instrument based on the attenuation of beta radiation include filter cassette mechanism, auto-calibration system, low sampling dead-time, high sensitivity, and straightforward audit procedures. The instrument consists of three main components: PM 10 inlet, mechanical filter movement system, and control and data processing system. The mechanical filter movement system includes particle collection system with filter cassette magazine, g -ray measuring module and particle sampling module, auto-calibration system, and flow control system. The control and data processing system performs filter cassette movement control, sampling pump control, and data analysis. The instrument has been tested in the field to compare the measurement results with those by gravimetric mass measurement. The developed beta gauge instrument has been proved to be an efficient measuring guage for the ambient particulate mass determination.  相似文献   

13.
Photometer measurement of polydisperse aerosols   总被引:4,自引:0,他引:4  
The photometer measurement of respirable aerosol mass concentration is widely employed in air pollution monitoring. Using the Mie theory of light scattering and the built-in optical parameters of some photometers, the output signal was theoretically calculated and related to the real aerosol mass concentration.. The definition of the mass sensitivity in combination with the device calibration constants enables the photometer response bias calculation as a function of the main aerosol parameters (index of refraction, particle density, particle size distribution). The respirable fraction (Soderholm (1989) Ann. occup. Hyg. 33, 301–320; Comité Européen de Normalisation (1993) EN 481; International Standards Organisation (1993) DIS 7708; American Conference of Governmental Industrial Hygienists (1994) Cincinnati, OH, pp. 42–45) of the ambient aerosol was used as a reference concentration for the calculation of the bias. The photometer response bias maps were built for four mineral dusts and a wide range of their aerosol distributions. The method makes possible an estimation of the photometer response bias in measuring various aerosols when the instrument is calibrated against any other aerosol.  相似文献   

14.

Light absorption by aerosols is one of the most uncertain parameters associated with the direct and indirect aerosol effects on climate and is one of the most difficult quantities to measure. This article describes the development of a sensitive method of measuring aerosol absorption at 532 nm with excellent time response (detection limit: 0.08 Mm?1, 60 second average) using photoacoustic absorption spectroscopy. An accurate calibration method (accuracy of 1–2%) at atmospherically relevant absorption levels and independent validation of the photoacoustic technique is presented. An upper limit to the instrument precision for aerosol absorption measurement is ~6% (2σ, 30 sec) while instrument accuracy is calculated to be ~5%. A standard for aerosol absorption measurement techniques using well characterized absorbing aerosol is also proposed.  相似文献   

15.
A short electrical mobility spectrometer (EMS) for measuring aerosol size distribution has been developed and presented [Intra and Tippayawong, Korean J. Chem. Eng., 26, 1770, 2009]. In this work, further improvement of the short EMS into a fast-response, and high resolution instrument is presented. This was done by (i) improvement in particle charging, (ii) utilization of faster flow rate, and (iii) adoption of higher number of electrode rings. The so-called ??long?? EMS consists of three main parts: a particle charger, a long multi-channel size classifier column, and a multichannel electrometer. Performance of the long EMS was preliminarily tested using polydisperse, carbonaceous aerosol particles generated by a diffusion flame. Preliminary test results showed that the long EMS performed comparatively well, and gave faster response and higher resolution than the short EMS. It was a valuable aerosol instrument available for measuring size distribution of aerosol particles.  相似文献   

16.

This study presents an indoor aerosol model based on size-resolved and multi-compartment approach. The current indoor aerosol model is also developed with a semi-empirical technique to estimate the emission rates due to indoor sources of aerosol particles. We present in this study a methodology to predict and estimate the best-fit input parameters for the current indoor aerosol model. The performance of the current indoor aerosol model in its single-compartment form was evaluated against previously measured indoor-outdoor aerosol data sets from an office room with mechanical ventilation and a family house with natural ventilation. The indoor aerosol model simulations show that the current methodology used to predict the best-fit input parameters to the indoor aerosol model is efficient. As expected, the penetration factor, aerosol particle deposition, and ventilation rate are the most important parameters in the indoor-outdoor relationship of aerosol particles transport. The emission rate analysis showed that fine aerosol particles production was as high as 26 particle/cm 3 s during wood burning in a fireplace. The emission rate was about eight times this value during grilling in a fireplace and sauna heating. Indoor activities take place in another room may significantly increase the aerosol particle concentrations in other rooms in the building. Therefore, it is recommended to use extra air cleaners in houses to reduce the number concentrations of emitted aerosol particles. The quantitative and qualitative results obtained by the current indoor aerosol model in this study are building and condition specific. Applying the current model to a broad range of conditions and previously measured indoor-outdoor aerosol data sets provides better understanding of aerosol particle characteristics indoors, especially regarding the aerosol particles produced during different indoor activities.  相似文献   

17.
Scanning electrical mobility spectrometers (SEMS) are commonly used for near real-time ultrafine particle size distribution measurements. Analysis of SEMS measurements to calculate particle size distributions requires detailed understanding of instrument characteristics and operation. Varying instrument designs are used in the different commercial SEMS systems, and data analysis with these instruments requires accurate knowledge of their relative performance. In this study, an experimental approach to evaluate and reconcile differences between different SEMS instruments is established. This approach is used to characterize the relative performance of two SEMS systems—TSI's SMPS 3936-L22 and MSP's WPS XP1000—for particle sizes in the range of 20 to 300 nm. In these tests, the instruments were operated under a low flowrate condition with aerosol and sheath air flows of 0.3 and 3 LPM, respectively. Measurements show that the particle sizing characteristics of the instruments are very consistent with each other over the entire range of particle sizes studied. Particle number characteristics are dependent on the treatment of particle losses in the system and accounting of non-idealities of transfer function. The number concentrations reported by two instruments are generally consistent with each other and with an upstream reference counter for particle sizes larger than ~ 90 nm. For smaller particles, the low flowrate operation of the two systems results in significant penetration losses. A net particle detection efficiency (NPDE) factor for the two systems was determined from experiments with monodisperse aerosol. This factor is seen to be effective in characterizing and reconciling measurements made with these two SEMS instruments.  相似文献   

18.
The accurate representation of aerosols in climate models requires direct ambient measurement of the size- and composition-dependent particle production fluxes. Here, we present the design, testing, and analysis of data collected through the first instrument capable of measuring hygroscopicity-based, size-resolved particle fluxes using a continuous-flow Hygroscopicity-Resolved Relaxed Eddy Accumulation (Hy-Res REA) technique. The Hy-Res REA system used in this study includes a 3D sonic anemometer, two fast-response solenoid valves, two condensation particle counters, a scanning mobility particle sizer, and a hygroscopicity tandem differential mobility analyzer. The different components of the instrument were tested inside the US Environmental Protection Agency's Aerosol Test Facility for sodium chloride and ammonium sulfate particle fluxes. The new REA system design does not require particle accumulation, and therefore avoids the diffusional wall losses associated with long residence times of particles inside the air collectors of traditional REA devices. A linear relationship was found between the sodium chloride particle fluxes measured by eddy covariance and REA techniques. The particle detection limit of the Hy-Res REA flux system is estimated to be ~3 × 105 m?2 s?1. The estimated sodium chloride particle classification limit, for the mixture of sodium chloride and ammonium sulfate particles of comparable concentrations, is ~6 × 106 m?2 s?1.

Copyright © 2018 American Association for Aerosol Research  相似文献   

19.
Real-time particle size spectra are being acquired on our research aircraft with relative ease and speed by techniques that make use of the real-time interaction of laser light with aerosols and cloud droplets. The results are, however, sometimes ambiguous, because the optical “signatures” of the particles depend on their refractive indices in addition to physical dimensions. The calibration supplied by the manufacturer is based on instrument response to a specific test aerosol, e.g., latex spheres (refractive index = 1.59). Such a calibration is strictly valid only for sample aerosols of refractive index and shape similar to the test aerosol. Whenever the sample aerosol differs from the test aerosol, a calibration correction is in order. Of concern here is the use of an active scattering spectrometer probe (ASAS-X), to measure sulfuric acid aerosols on high-flying U-2 and ER-2 research aircraft. Correcting the calibration of the ASAS-X for dilute sulfuric acid droplets (refractive index = 1.44) that predominate the stratospheric aerosol changes the inferred sizes by up to 32% per size interval from that determined from the nominal calibration. This results in an average increase in particle surface area and volume of 42 ± 10% and 71 ± 19%, respectively. The calibration correction of the optical spectrometer probe for stratospheric aerosol is validated by independent and simultaneous sampling of the particles with impactors. Sizing and counting of particles on microphotographs of scanning electron microscope images give results on total particle surface areas and volumes. After the calibration correction, the optical spectrometer data (averaged over four size distributions) agree with the impactor results (similarly averaged) to within a few percent. We conclude that the optical properties, or chemical makeup, of the sample aerosol must be known for accurate size analysis by optical aerosol spectrometers.  相似文献   

20.
The complexity of a typical hygroscopicity tandem differential mobility analyser (H-TDMA) can make it an awkward instrument for fieldwork. An improved design is presented here which is both light-weight, portable and permits very precise, reliable hygroscopic growth, deliquescence and efflorescence measurements for aerosols over a continuous relative humidity range from 10% to 95% without reconfiguration.The method achieves this through three significant advances in H-TDMA design: Firstly, the approach efficiently regulates the humidity by rapidly alternating the air flow between a dryer and a saturator, with the time spent in each path controlled by a feedback loop connected to the humidity sensor. Secondly, the temperature of the aerosol humidifier is directly coupled to that of the wet DMA by enveloping the humidifier in the wet DMAs excess air flow. Thirdly, a novel arrangement of two Nafion? tubes in the humidifier allows for high humidities without needing to pre-wet the aerosol flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号