首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.

A particle sampler has been developed, built, and tested. The sampler draws ambient air at approximately 300 L/min and then splits the sampled air into a particle-rich sample stream and a particle-depleted, reject stream. The particle-rich stream contains only 0.3% of the inlet air (i.e., 1-L/min), but 50-90% of the ambient particles in the size range of 2.3 w m to 8.4 w m. This 1-L/min sample stream contains the particles at a concentration of approximately 150-270 times that of the ambient air. For this reason, the sampler is called an aerosol concentrator. By concentrating the particles of interest, we substantially improve the response time and detection limit characteristics of any detector that may be used downstream of the sampler. The aerosol concentrator is a three-stage virtual impactor. The first stage is a scalper drawing nominally 330 L/min of air through a conventional single-nozzle virtual impactor. Particles larger than 10 microns are retained in the 30-L/min minor flow and rejected from the sampler. The remaining 300 L/min of air passes through a two-stage, concentrating virtual impactor (CVI) that splits the flow into a 1-L/min sample stream and a 299-L/min reject stream. The reject stream consists of 285 L/min from the first stage and 14 L/min from the second stage. A blower draws the 299-L/min reject stream and exhausts it through the nozzle of an ejector. The ejector contains a venturi-like tube that aspirates the 30-L/min reject stream from the scalper, making an overall exhaust stream of 329 L/min. Fifty to ninety percent of the particles in the size range of 2.3 microns to 8.4 microns originally in the 300-L/min stream are now contained in the 1 L/min sample stream. The sampler has no valves, and the particles in the 1 L/min sample stream do not encounter a blower, minimizing the losses of particles in the size range of interest. The emphasis on low losses improves the detection limit and speed of detection of the downstream instrumentation and also reduces the frequency of cleaning the sampler.  相似文献   

2.

This study investigates the filtration characteristics of a miniature dual saw-like electrodes electrostatic precipitator (ESP). Parameters such as particle size, rate of airflow through the ESP, voltage of charge electrode, and discharge polarity were considered to study their influence on aerosol penetration through the ESP. Polydisperse and monodisperse particles with sizes ranging from 30 nm to 10 w m were used as the challenge aerosols. Experimental results indicated that the aerosol penetration through the ESP decreased (from 96% to 15% for 0.3 w m) as the voltage of the discharge electrode increased (from + 4 kV to +8 kV) at a flow rate of 30 L/min. At a fixed electrode voltage (+8 kV), aerosol penetration increased from 15% to 69% for 0.3 w m particles as the flow rate increased from 30 to 120 L/min. The most penetrating particle size was in the range of 0.25 w m to 0.5 w m depending on the discharge voltage and the flow rate. In general, the most penetrating particle size of the ESP decreased with decreasing discharge voltage or with increasing flow rate. At the same voltage level but opposite polarity, the aerosol penetration through the ESP with negative corona was lower than that with positive corona. The difference in aerosol penetration was a factor of about 2 between the negative and positive coronas for 0.3 w m particles, and this difference was found to be independent of discharge voltage. Regarding energy conservation, use of a negative-polarity ESP was more economical if the same efficiency was required. However, the ozone generated by the ESP with negative polarity was about five times greater than that generated with positive polarity. Therefore when using an ESP as an indoor air cleaner, the search for an optimum balance between ozone production and aerosol collection efficiency should be considered.  相似文献   

3.

An ion generator was developed to neutralize concentrated streams of large, highly charged particles in a low-velocity wind tunnel. The aerosol stream tested consisted of 30 mu m aluminum oxide particles (aerodynamic diameter 52 mu m) at a flow rate of 9.6 m3/h (160 L min) and a mass concentration of 43 g/m3. The average number of excess charges per particle was 240,000 (positive), which corresponds to a neutralizing current requirement of 0.11 mu A. Neutralization to < +/- 10,000 charges per particle was necessary to prevent electrostatic sampling artifacts. Neutralization with radioactive sources would have required an impractically large source. The ion generator, constructed from 21 and 32 mm PVC pipe, has 4 peripheral radial electrodes of 0.5 mm tungsten wire and a 2.0 mm diameter central electrode. The aerosol flowed through the ion generator along its axis. The ion generator was powered by an adjustable (0-8.5 kV) power supply. Performance of the ion generator was monitored with an isokinetic Faraday-cup sampler connected to a Keithley Model 6512 electrometer capable of 0.1 fA resolution. The sampler used a stainless steel 47 mm filter holder as the Faraday cup. The cup was insulated with Teflon inside a 90 mm diameter stainless steel enclosure with a 21 mm diameter inlet. This setup gave near real-time measure ment of the charge state of the aerosol in the wind tunnel. By adjusting the ion generator power supply, particle charge could be reduced to < 2% of its original charge. Ion generator output was sufficiently stable to maintain the particle charge within +/- 2% of the original charge over a 1 h period. These reduced charge levels are comparable to charge levels found on workplace aerosols.  相似文献   

4.

At present, there is neither an officially accepted size-selective fiber (aerosol number) sampler, nor are there established performance criteria. In this work, a prototype preclassifier (multihole impactor) was used to connect a conventional asbestos sampler so that the aerosol penetration test and particle counting process could be performed. The bias, as a function of particle size, was defined as the difference between the measured penetration curve and the target ISO/ACGIH/CEN respirable convention. The imprecision was the standard error with reference to the mean aerosol penetration curve. A statistical term, one standard error shift (OSES) was used in a previous study to combine the sampling bias and imprecision. The bias and imprecision could be for aerosol number, aerosol mass, or even surface area. In this work, an additional step was taken by introducing another statistical term, maximum sampling shift (MSS), to further combine the OSES with the counting imprecision. For the surrogate sampler tested, the particle counting imprecision increased with increasing particle diameter and decreased with increasing geometric standard deviation. The particle counting imprecision was comparable with the OSES, and the resultant MSS map was actually the summation of imprecision and OSES.  相似文献   

5.

A three-stage, cascaded integrated collection and vaporization system has been developed to provide automated, 10 min resolution monitoring of the size and concentration of fine particulate nitrate in the atmosphere. Particles are collected (7 min) by a humidified impaction process, and analyzed in place (3 min) by flash vaporization and chemiluminescent detection of the evolved nitrogen oxides. The three size fractions, < 0.45 w m, 0.45-1.0 w m, and 1.0-2.5 w m, are chosen to distinguish the condensation, droplet, and coarse components of PM 2.5 . The size precut at 2.5 w m is done at ambient conditions, while the size fractionation at 1.0 w m and 0.45 w m is done at a constant relative humidity of 65%. The system is calibrated with laboratory aerosols, including comparison of sizing for hygroscopic salt and hydrophobic organic aerosols. The complete system is tested with monodisperse ammonium nitrate aerosol generated with a high-flow differential mobility analyzer coupled with an impactor precut and yields results consistent with the calibration of the individual stages.  相似文献   

6.
DEVELOPMENT OF A DICHOTOMOUS SLIT NOZZLE VIRTUAL IMPACTOR   总被引:1,自引:0,他引:1  
A high-volume slit nozzle virtual impactor has been developed to collect fine and coarse particles. The size cut-off and particle loss characteristics of the developed slit virtual impactor agree well with those of the 16.7 lmin−1 commercially available dichotomous sampler. The effects of various flow and physical design parameters on the collection of both fine and coarse particles have been investigated. The results of these tests indicated that many of the theoretical principles established for round nozzle virtual impactors can be successfully applied to slit nozzle virtual impactors. However, the effects of the flow volume and Reynolds number (Re) on the cut-off behavior and particle losses are more pronounced for slit virtual impactors. The impactor's particle size cutpoint decreased as the total inlet flow and Re increased. For Re<about 7000, particle losses increased with particle size. For Re of about 7000, particle losses exhibited a maximum near the 50% cutpoint, which is typical in round nozzle virtual impactors. For Re>7000, losses of fine particles were significant, while coarse particle losses were low. Changes in the minor-to-total flow ratio and collection slit width also affected particle losses.  相似文献   

7.
ABSTRACT

A system for the separation of ultrafine particles (i.e., particles smaller than 0.1 μm) has been developed and evaluated. Ultrafine particles are first grown by means of supersaturation to a size that can be easily separated in a virtual impactor. Thus, inertial separation of ultrafine particles occurs without subjecting them to a high vacuum. The condensational growth/virtual impaction system has been evaluated using monodisperse 0.05 and 0.1 μm fluorescent PSL particles, as well as polydisperse ultrafine ammonium sulfate and potassium nitrate aerosols. The generated aerosols were first drawn over a pool of warm water (50°C) where they became saturated. Subsequently, the saturated aerosol was drawn through a cooling tube (8°C) where particles grew due to supersaturation to sizes in the range 1.0–4.0 μm. By placing a virtual impactor with a theoretical 50% cutpoint of 1.4 μm downstream of the condenser, ultrafine particles were separated from the majority (i.e., 90%) of the surrounding gas. The sampling flow rate of the virtual impactor was 8 L/min and its minor-to-total flow ratio was 0.1. For these operating conditions, the particle collection efficiency of the virtual impactor averaged to about 0.9 for particle concentrations in the range 7 × 104-5 × 105 particles/cm3. Particle losses through the system were found less than 5%. Increasing the particle concentration to levels in the range 106–107 particles/cm3 resulted in a decrease in the collection efficiency of the virtual impactor to about 50–70%, presumably due to the smaller final droplet size to which the ultrafine particles grew for the available supersaturation.  相似文献   

8.

A new method for measuring the collection efficiency of an aerosol sampler as a function of particle size has been developed, featuring the use of dry, polydisperse latex particles. Test aerosol is generated by placing a polydisperse latex powder sample into a fluidized bed of glass beads. An Aerodynamic Particle Sizer (APS) measures the particle size distribution entering and leaving the sampler's size-selector, yielding the penetration efficiency. The use of dry latex minimizes the ''phantom'' particle problem inherent with the APS by avoiding the generation of high concentrations of small particles such as those produced by nebulizers. In addition to having useful properties for determining particle size cutoff characteristics, including spherical shape, near-unit density, and white color, latex particles afford a test for the presence of particle bounce and reen trainment. A complete efficiency measurement can be made in a little over three minutes, facilitating experimentation with parameters such as sampler flow rate, which require repeated measurements. The method has been used extensively for the development and calibration of respirable and PM-2.5 samplers.  相似文献   

9.

This article summarizes the results of an extensive experimental study of sampling losses in thin-walled probes at various values of velocity ratio R and the probe orientation with respect to the freestream. The purpose of this study was to gain insights into the complex interaction of various parameters that influence sampling losses and the consequent effect on the overall sampling efficiency. A 0.635 cm diameter sharp-edged tube was mounted in a small wind tunnel where the freestream velocity could be varied over a wide range of values. Polydispersed spherical glass beads were used as the test aerosol. The number concentration and the particle size distribution were measured using the aerodynamic particle sizer (APS 3310). The sampling efficiency was determined as a function of orientation for a range of particle sizes (or Stokes number). By using an existing model to predict the aspiration efficiency for thin-walled probes, the sampling losses could be isolated from the sampling efficiency. In this manner a new empirical model was developed to predict the losses as a complex function of Stokes number, sampler orientation, and velocity ratio. The losses appear to be influenced by particle inertia, impaction, gravitational settling in the boundary layer developing inside the thin-walled probe, and vena contracta or flow recirculation loss near the entry. It was evident from the results that these losses are strongly influenced by the Stokes number and sampler orientation. The losses also increased strongly with increasing value of velocity ratio for all orientations.  相似文献   

10.

A method has been developed to estimate average concentrations and size distributions with a miniature passive aerosol sampler. To use the passive sampler, one exposes it to an environment for a period of hours to weeks. The passive sampler is intended to monitor ambient, indoor, or occupational aerosols and has potential utility as a personal sampler. The sampler is inexpensive and easy to operate and is capable of taking long-term samples to investigate chronic exposures. After sampling, the passive sampler is covered and brought to the lab. Scanning electron microscopy (SEM) and automated image analysis are used to count and size collected particles with dp  相似文献   

11.

The purpose of this study was to numerically simulate the performance of an aerosol sampler with a curved, blunt, multi-orificed inlet in order to understand the sampling characteristics of the first prototype of the button personal inhalable aerosol sampler ("button sampler"). Because the button sampler inlet design is too complicated to apply a three-dimensional model, an axisymmetric two-dimensional model was created to be similar in geometry and to simulate the major features of the airflow through the sampler when facing the wind. Particle trajectories were calculated in a variety of wind velocities and were categorized into 5 groups based on their interactions with the curved surface of the sampling plane. Empirical sampling efficiencies of the button sampler for 3 particle sizes were used to adjust the calculated sampling efficiencies in an attempt to improve the accuracy of the two-dimensional axisymmetric model in accounting for interactions between particles and the surface of the inlet of the button sampler. Sampling efficiencies for other particle sizes were then predicted. The results showed that sampling efficiency decreased with increasing particle size up to approximately 40 w m and then remained virtually unchanged at about 35% up to 100 w m. Although the efficiencies were lower than the American Conference of Governmental Industrial Hygienists' (ACGIH) inhalability curve for larger particles, the pattern of the predicted sampling efficiency was quite similar to the ACGIH inhalability curve. Sampling efficiencies for liquid aerosol particles larger than 15 w m were predicted to be noticeably lower than those for solid particles. The results also showed that the multi-orificed curved surface played an important role in establishing a pressure drop with desired flow alignment inside the sampler, thus greatly reducing the wind effect and significantly improving the uniformity of particle deposition on the filter. The less uniform deposition found at high wind velocity can be improved by increasing the sampling flow rate.  相似文献   

12.
Single-jet and multijet aerosol-to-hydrosol transfer stages (AHTSs) with cutpoints of 2 and 0.8 μm aerodynamic diameter, respectively, were designed and evaluated. The devices are intended to take the coarse particle flow stream (minor flow) from a virtual impactor and concentrate the aerosol particles into a low flow rate of liquid. The design air flow rate for each system is 1 L/min, and the collection liquid flow needs to be ≥ 0.3 mL/min with a surfactant added to prevent loss of hydrosol particles on internal surfaces of the devices. Satisfactory performance was achieved when distilled water with 0.1% Tween 20 was used as the collection fluid. The effectiveness (average fractional efficiency) for the single-jet device is 94% over the size range of 2.5 to 10 μ m aerodynamic diameter, and that of the multijet AHTSs is 90% over the size range of 1 to 10 μ m aerodynamic diameter. The systems have an ideal air power consumption of 1.4 mW and 4.5 mW, respectively. If an AHTS were operated in a heated enclosure and sampled air at ?28°C, less than 1 W of heating would be required to prevent freezing. Preliminary results of bioaerosol testing with 0.7 μm AD single spores of Bacillus globigii var. niger show efficiencies over 100%. These values are probably due to the different expression of viability of the spores in the reference samples and those in the output liquid of the AHTSs.  相似文献   

13.
Particle losses in a differential mobility analyzer (TSI, Model 3071) caused by diffusive deposition and Brownian diffusion are measured for particles in the diameter size range between 3 and 100 nm. For small sampling and aerosol flow rates (0.3 liters/min) at 20 nm, nearly 50% of the primary particles are lost; and for 2 liters/min, the particle losses have to be considered in the diameter size range below 30 nm (50% at 7 nm). From the measured penetration values, an effective tube length is derived which is useful to calculate particle losses for other flow rates through the analyzer.  相似文献   

14.
A prototype dichotomous virtual impactor (DVI) using a single acceleration nozzle, operating at approximately 500 1/min, and having an aerodynamic particle outpoint diameter of about 2–3 μm has been constructed and tested. Under these conditions the flow through the acceleration nozzle is calculated to be turbulent. This sampler was calibrated with a monodisperse aerosol, and the measured particle size-dependent collection efficiencies demonstrate that the sampler size fractionates atmospheric particulate matter as efficiently as the low-volume dichotomous virtual impactors. Analysis of test data indicates that the high-volume sampler can be described by classical impaction theory. These data also indicate that over the range of Reynolds numbers from 24,000 to 81,000 there is little, if any, dependence of inferred acceleration nozzle turbulence on the performance characteristics of the sampling system. A comparison of the concentration of atmospheric particulate matter, sulfate, and calcium on the fine filter samples collected with colocated high- and low-volume virtual impactors also shows that the two samplers are operating with similar performance characteristics. Additionally, the high-volume DVI collects at least 10–30 times the mass of particulate matter that the presently available virtual impactors collect and thus allows one to obtain improved precision in the measurement of those airborne species that are near the minimum detectable level of current analytical methods.  相似文献   

15.
A model is presented to describe the collection of ultrafine particles by the UNC passive aerosol sampler. In this model, particle deposition velocity is calculated as a function of particle size, shape and other properties, as well as a function of sampler geometry. To validate the model, deposition velocities were measured for ultrafine particles between 15 and 90 nm in diameter. Passive aerosol samplers were placed in a 1 m 3 test chamber and exposed to an ultrafine aerosol of ammonium fluorescein. SEM images of particles collected by the samplers were taken at 125 kX magnification. Experimental values of deposition velocity were then determined using data from these images and from concurrent measurements of particle concentration and size distribution taken with an SMPS. Deposition velocities from the model and from the experiments were compared and found to agree well. These results suggest that the deposition velocity model presented here can be used to extend the use of the UNC passive aerosol sampler into the ultrafine particle size region.  相似文献   

16.

Plastic filter cassettes (37 and 25 mm), which are press fitted together to seal and hold a filter in place, are commonly used for sampling aerosols. Aerosol bypass leakage around the filter has been reported by several researchers and attempts have been made to test for leakage and to reduce the likelihood of leakage by improving cassette design. Under typical sampling conditions, there is often no indication to the user that leakage may have occurred. In the present study, a particle count leak test was developed that used a particle counter that measured the particle number concentration of ambient aerosol (primarily submicrometer particles) upstream and downstream of the filter cassette. The relationship between leak test results and particle loss from the filter depended on particle size and type in a complex fashion. The mechanisms of particle loss were investigated and the losses increased for particles above 2 w m and were much greater for solid and fume aerosols than for oil droplets. Although the test could not be used to predict particle mass loss during sampling, the test was a sensitive indicator of cassette bypass leakage and was used to establish compression pressures needed for proper assembly of these cassettes.  相似文献   

17.

Numerical calculations were conducted to simulate air and particle behavior near and into the inlet of an aerosol sampler in order to determine sampling efficiency performance. This was done with the pre-verified commercial computational fluid dynamics (CFD) software package, FLUENT (Fluent, Inc., Lebanon, NH, US). Air flow behavior was calculated for steady-state conditions approaching and flowing into 3D geometries of an aerosol sampler free in the air that was similar in dimension to two commercial samplers, namely the Gesamtstaubprobenahme sampler (GSP) and the conical inhalable sampler (CIS). Particle trajectories were calculated in a Lagrangian reference frame on the resulting velocity fields. Based on the particle trajectories, sampling efficiencies were calculated and compared to those reported in the literature for a CIS aerosol sampler. They were found to have similar overall trends for particle sizes up to 21 μ m. Using a correction factor, agreement was observed to be very good for smaller particles, but less so for larger particles.  相似文献   

18.
Experimental filtration data were collected in an effort to validate an impaction model previously developed and presented. Using a sampler with a 9.5 μm pore diameter Nuclepore filter, collection efficiencies were measured for both liquid and solid aerosols over a size range of 2–9 μm. Data for the liquid aerosol showed good agreement with the impaction model; however, data for the solid aerosol indicated an appreciably lower collection efficiency than predicted by the model. The liquid aerosol data validate the impaction model. The solid aerosol data indicate particle bounce or reintrainment subsequent to impact and underscore particle capture as a problem to be dealt with if the Nuclepore surface is to be used as a size selective filter.  相似文献   

19.

Silica gel is commonly used by industrial hygienists to collect gases and vapors in the work place, in particular air contaminants with high polarity. The collected air pollutants are then treated and analyzed to identify their type and to determine the concentration using various methods and instrumentations. In addition to collection of gaseous pollutants, the silica gel tubes are also used for acid mist collection according to the listed official analytical methods (e.g., NIOSH method 7903 and OSHA method ID-165SG). However, the filtration characteristics of silica gel tubes have not been thoroughly investigated. A constant output aerosol generator and an ultrasonic atomizing nozzle were used to generate submicrometer-sized and micrometer-sized aerosol particles, respectively. A scanning mobility particle sizer and an aerodynamic particle sizer were used to measure particles smaller and larger than 0.6 w m, respectively. Potassium sodium tartrate and dioctylphthalate were used as the solid and liquid test agents, respectively. Two types of SKC silica gel tubes (Cat No. 226-10 and 226-10-03) were examined for aerosol penetration, air resistance, and loading characteristics. The results show that the aerosol penetration through the silica gel tubes could be as high as 80% at the penetration maximum (or collection minimum) under the normal sampling flow of 0.5 L/min, well within the inertial impaction dominated region. Two glass wool plugs and one urethane plug between sorbent sections and at the back end of the SKC 226-10 contributed about 22% of the total air resistance, and the remaining 78% of the air resistance was caused by the silica gel. When the filtration efficiency by these separators was deduced, the aerosol penetration at the most penetrating size was as high as 90%. The aerosol penetration increased and the penetration curve shifted to a smaller particle size as the sampling flow increased. However, this increase in aerosol penetration of particles smaller than the penetration maximum reached a maximum and then decreased as the sampling flow was increased beyond 1.5 L/min (equivalent filtration velocity of 93 cm/s), a clear evidence of inertial impaction surpassing the diffusion deposition. As a result, the use of silica gel tubes for acid mist collection may not be appropriate if the behavior of the complete aerosol size distribution is not considered as part of the assessment of these devices.  相似文献   

20.

This paper experimentally examines the bounce and immediate re-entrainment of liquid and solid monodisperse aerosols under a stable filtration regime (precake formation) by wet and dry fibrous filters. PSL and DEHS were the solid and liquid aerosols, respectively, used in four monodisperse sizes of 0.52, 0.83, 1.50, and 3.00 w m. Three different fibrous filters were used to filter the aerosol streams, and the efficiency of the filtration process for each aerosol type under dry and wet regimes was measured. It was found that the solid particles generally exhibited a lower fractional filtration efficiency than liquid particles, although this difference decreased in the smaller size fractions. The difference between solid and liquid efficiencies was found to be greatest in the 1.5 w m size range. As particle sizes of liquid/solid aerosols and filtration parameters were similar, this difference is most likely to be due to the effect of particle bounce and or immediate re-entrainment occurring inside the filter, with the greater efficiency of filtration of the liquid particles being due to their greater capacity to plastically/elastically deform in order to absorb the impact forces. However, for the wet filtration regime (each fibre of the filter was coated by a film of water), no significant difference in filtration efficiency was detectable between solid and liquid aerosols. Therefore, the conclusion can be drawn that the either the bounce effect of the particles is inhibited by the liquid film, or the filtration conditions in the wet filter are so different that the aerosol properties are less significant with respect to capture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号