首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

We report the development and first field deployment of a new version of the Aerosol Mass Spectrometer (AMS), which is capable of measuring non-refractory aerosol mass concentrations, chemically speciated mass distributions and single particle information. The instrument was constructed by interfacing the well-characterized Aerodyne AMS vacuum system, particle focusing, sizing, and evaporation/ionization components, with a compact TOFWERK orthogonal acceleration reflectron time-of-flight mass spectrometer. In this time-of-flight aerosol mass spectrometer (TOF-AMS) aerosol particles are focused by an aerodynamic lens assembly as a narrow beam into the vacuum chamber. Non-refractory particle components flash-vaporize after impaction onto the vaporizer and are ionized by electron impact. The ions are continuously guided into the source region of the time-of-flight mass spectrometer, where ions are extracted into the TOF section at a repetition rate of 83.3 kHz. Each extraction generates a complete mass spectrum, which is processed by a fast (sampling rate 1 Gs/s) data acquisition board and a PC. Particle size information is obtained by chopping the particle beam followed by time-resolved detection of the particle evaporation events. Due to the capability of the time-of-flight mass spectrometer of measuring complete mass spectra for every extraction, complete single particle mass spectra can be collected. This mode provides quantitative information on single particle composition. The TOF-AMS allows a direct measurement of internal and external mixture of non-refractory particle components as well as sensitive ensemble average particle composition and chemically resolved size distribution measurements. Here we describe for the first time the TOF-AMS and its operation as well as results from its first field deployment during the PM 2.5 Technology Assessment and Characterization Study—New York (PMTACS-NY) Winter Intensive in January 2004 in Queens, New York. These results show the capability of the TOF-AMS to measure quantitative aerosol composition and chemically resolved size distributions of the ambient aerosol. In addition it is shown that the single particle information collected with the instrument gives direct information about internal and external mixture of particle components.  相似文献   

2.

Atmospheric sampling was conducted at a rural site near Egbert, about 70 km north of Toronto, Ontario, Canada from March 27 to May 8, 2003 to characterize the physical and chemical properties of the ambient aerosol in near real-time. The instrumentation included a tapered element oscillating microbalance (TEOM), an ultrafine condensation particle counter (UCPC), a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS), an aerosol mass spectrometer (AMS), and a particulate nitrate monitor (R&P 8400N) for aerosol measurements. Gas-phase non-methane hydrocarbon compounds (NMHCs) were measured by gas chromatograph-flame ionization detection (GC-FID). Filter samples were also collected for analysis of inorganic ions by ion chromatography (IC). Aerosol properties varied considerably depending upon meteorological conditions and airmass histories. For example, urban and industrial emissions advected from the south strongly influenced the site occasionally, resulting in higher particulate mass with the higher fractions of nitrate and organics. Cleaner northwesterly winds carried aerosols with relatively higher fractions of organics and sulfate. The AMS derived mass size distributions showed that the inorganic species in the particles with vacuum aerodynamic diameters between about 60 nm and 600 nm had mass modal vacuum aerodynamic diameters around 400–500 nm. The particulate organics often exhibited two modes at about 100 nm and 425 nm, more noticeable during fresh pollution events. The small organic mode was well correlated with gas-phase nonmethane hydrocarbons such as ethylbenzene, toluene, and propene, suggesting that the likely sources of small organic particles were combustion related emissions. The particulate nitrate exhibited a diurnal variation with higher concentrations during dark hours and minima in the afternoon. Particulate sulfate and organics showed evidence of photochemical processing with higher levels of sulfate and oxygenated organics in the afternoon. Reasonable agreement among all of the co-located measurements is found, provided the upper size limit of the AMS is considered.  相似文献   

3.
The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) is well suited for measuring non-refractory particulate matter up to approximately 1.0 µm in aerodynamic diameter (NR-sub-PM1). However, for larger particles the detection efficiency is limited by losses in the sampling inlet system and through the standard aerodynamic focusing lens. In addition, larger particles have reduced collection efficiency due to particle bounce at the vaporizer. These factors have limited the NR-sub-PM1 ACSM from meeting PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 µm) monitoring standards. To overcome these limitations, we have redesigned the sampling inlet, the aerodynamic lens, and particle vaporizer. Both the new lens and vaporizer are tested in the lab using a quadruple aerosol mass spectrometer (QAMS) system equipped with light scattering module. Our results show that the capture vaporizer introduces additional thermal decomposition of both inorganic and organic compounds, requiring modifications to the standard AMS fragmentation table, which is used to partition ion fragments to chemical classes. Experiments with mixed NH4NO3 and (NH4)2SO4 particles demonstrated linearity in the NH4+ ion balance, suggesting that there is no apparent matrix effect in the thermal vaporization-electron impact ionization detection scheme for mixed inorganic particles. Considering a typical ambient PM2.5 size distribution, we found that 89% of the non-refractory mass is detected with the new system, while only 65% with the old system. The NR-PM2.5 system described here can be adapted to existing Aerodyne Aerosol Mass Spectrometer (AMS) and ACSM systems.

Copyright © 2017 American Association for Aerosol Research  相似文献   


4.
The size-dependent particle transmission efficiency of the aerodynamic lens system used in the Aerodyne Aerosol Mass Spectrometer (AMS) was investigated with computational fluid dynamics (CFD) calculations and experimental measurements. The CFD calculations revealed that the entire lens system, including the aerodynamic lens itself, the critical orifice which defines the operating lens pressure, and a valve assembly, needs to be considered. Previous calculations considered only the aerodynamic lens. The calculations also investigated the effect of operating the lens system at two different sampling pressures, 7.8 × 104 Pa (585 torr) and 1.0 × 105 Pa (760 torr). Experimental measurements of transmission efficiency were performed with size-selected diethyl hexyl sebacate (DEHS), NH4NO3, and NaNO3 particles on three different AMS instruments at two different ambient sampling pressures (7.8 × 104 Pa, 585 torr and 1.0 × 105 Pa, 760 torr). Comparisons of the measurements and the calculations show qualitative agreement, but there are significant deviations which are as yet unexplained. On the small size end (30 nm to 150 nm vacuum aerodynamic diameter), the measured transmission efficiency is lower than predicted. On the large size end (> 350 nm vacuum aerodynamic diameter) the measured transmission efficiency is greater than predicted at 7.8 × 104 Pa (585 torr) and in good agreement with the prediction at 1.0 × 105 Pa (760 torr).  相似文献   

5.
A novel optical instrument has been developed that estimates size segregated aerosol mass concentration (i.e., PM 10 , PM 4 , PM 2.5 , and PM 1 ) over a wide concentration range (0.001–150 mg/m 3 ) in real time. This instrument combines photometric measurement of the particle cloud and optical sizing of single particles in a single optical system. The photometric signal is calibrated to approximate the PM 2.5 fraction of the particulate mass, the size range over which the photometric signal is most sensitive. The electrical pulse heights generated by light scattering from particles larger than 1 micron are calibrated to approximate the aerodynamic diameter of an aerosol of given physical properties, from which the aerosol mass distribution can be inferred. By combining the photometric and optical pulse measurements, this instrument can estimate aerosol mass concentrations higher than typical single particle counting instruments while providing size information and more accurate mass concentration information than traditional photometers. Experiments have shown that this instrument can be calibrated to measure aerosols with very different properties and yet achieve reasonable accuracy.  相似文献   

6.
Two pressure-controlled inlets (PCI) have been designed and integrated into the Aerodyne Aerosol Mass Spectrometer (AMS) inlet system containing an aerodynamic aerosol lens system for use in airborne measurements. Laboratory experiments show that size calibration and mass flow rate into the AMS are not affected by changes in upstream pressure (P 0 ) of the PCI as long as the pressure within the PCI chamber (P PCI ) is controlled to values lower than P 0 . Numerous experiments were conducted at different P PCI , P 0 , and AMS lens pressures (P Lens ) to determine particle transmission efficiency into the AMS. Based on the results, optimum operating conditions were selected which allow for constant pressure sampling with close to 100% transmission efficiency of particles in the size range of ~ 100–700 nm vacuum aerodynamic diameter (d va ) at altitudes up to ~ 6.5 km. Data from an airborne field study are presented for illustration.  相似文献   

7.
A serial sampling train consisting of a Lovelace multijet cascade impactor (LMJI) and a seven cell parallel-flow diffusion battery (PFDB) has been used to provide a comprehensive method for sizing aerosols with a wide size distribution ranging from less than 0.01 μm to over 10 μm. The fraction of the aerosol greater than 0.7 μm is collected by the impactor. The remaining fraction of the aerosol is sampled by the PFDB. Design of the PFDB is based on the theory of a screen-type diffusion battery. The concept of parallel flow is employed to provide a method for sampling aerosols that fluctuate too rapidly in concentration and size distribution to be measured by conventional methods. The LMJI/PFDB sampling system is useful for characterizing multimodel size distributions such as those that occur in ambient aerosols. It can also be used to determine the chemical composition of collected samples as a function of particle size. This sampling system has been used to size classify diesel and diesel-oil shale exposure atmospheres, and benzo(a)-pyrene-coated carbon black aerosols. The diffusion equivalent diameter (D de) of the diesel exhaust was 0.07–0.08 μm, and the oil-shale dust had a mass median aerodynamic diameter (MMAD) of 2.6–2.9 μm. The size distribution of the carbon black aerosol was bimodal, with the fine fraction having a D de of 0.2 μm, and the coarse fraction having a MMAD of 2.0 μm.  相似文献   

8.
A light scattering module has been integrated into the current AMS instrument. This module provides the simultaneous measurement of vacuum aerodynamic diameter (d va) and scattered light intensity (RLS) for all particles sampled by the AMS above ~180 nm geometric diameter. Particle counting statistics and correlated chemical ion signal intensities are obtained for every particle that scatters light. A single calibration curve converts RLS to an optical diameter (d o). Using the relationship between d va and d o the LS-AMS provides a real-time, per particle measurement of the density of the sampled aerosol particles. The current article is focused on LS-AMS measurements of spherical, non-absorbing aerosol particles. The laboratory characterization of LS-AMS shows that a single calibration curve yields the material density of spherical particles with real refractive indices (n) over a range from 1.41 < n < 1.60 with an accuracy of about ±10%. The density resolution of the current LS-AMS system is also shown to be 10% indicating that externally mixed inorganic/organic aerosol distributions can be resolved. In addition to the single particle measurements of d va and RLS, correlated chemical ion signal intensities are obtained with the quadrupole mass spectrometer. A comparison of the particle mass derived from the physical (RLS and d va) and chemical measurements provides a consistency check on the performance of the LS-AMS. The ability of the LS-AMS instrument to measure the density of ambient aerosol particles is demonstrated with sample results obtained during the Northeast Air Quality Study (NEAQS) in the summer of 2004.  相似文献   

9.

Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) instruments have been used widely to measure the size and composition of single ambient aerosol particles. ATOFMS data do not directly and quantitatively represent aerosol composition because the instruments exhibit non-linear response to particle concentration, size, and composition. Our approach is to analyze separately the components of non-linear ATOFMS response using field sampling data in order to understand ATOFMS response to ambient aerosols so that ATOFMS data can be scaled to more closely represent ambient aerosols. In this work we examine the effect of instrument busy time, mainly the time to process and save data, on ATOFMS response to ambient aerosols sampled during the 1999 Bakersfield Instrument Intercomparison Study (BIIS). During this study an ATOFMS instrument was operated alternately in normal and fast scatter data acquisition modes. In fast scatter mode, the instrument does not record mass spectra, minimizing instrument busy time; these data were used to determine particle arrival rates. Busy time in normal mode was found by a comparison of the number of particles detected to that expected for a Poisson process modified to include busy time. During the BIIS experiment, the ATOFMS instrument was busy between 5 and 95% of the nominal sampling time; thus busy time cannot be ignored for accurate quantitative analysis of ATOFMS data. ATOFMS data were scaled for on-line time and transmission efficiency, found by comparison with reference aerosol measurements, in order to estimate fine particle mass concentrations. Fine aerosol mass concentrations from scaled ATOFMS data demonstate semi-quantitative agreement with independent measurements using Beta Attenuation Monitors. We recommend that ATOFMS instruments be modified to measure busy time directly.  相似文献   

10.
We present a new instrument, the Aerosol Chemical Speciation Monitor (ACSM), which routinely characterizes and monitors the mass and chemical composition of non-refractory submicron particulate matter in real time. Under ambient conditions, mass concentrations of particulate organics, sulfate, nitrate, ammonium, and chloride are obtained with a detection limit <0.2 μg/m3 for 30 min of signal averaging. The ACSM is built upon the same technology as the widely used Aerodyne Aerosol Mass Spectrometer (AMS), in which an aerodynamic particle focusing lens is combined with high vacuum thermal particle vaporization, electron impact ionization, and mass spectrometry. Modifications in the ACSM design, however, allow it to be smaller, lower cost, and simpler to operate than the AMS. The ACSM is also capable of routine stable operation for long periods of time (months). Results from a field measurement campaign in Queens, NY where the ACSM operated unattended and continuously for 8 weeks, are presented. ACSM data is analyzed with the same well-developed techniques that are used for the AMS. Trends in the ACSM mass concentrations observed during the Queens, NY study compare well with those from co-located instruments. Positive Matrix Factorization (PMF) of the ACSM organic aerosol spectra extracts two components: hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA). The mass spectra and time trends of both components correlate well with PMF results obtained from a co-located high resolution time-of-flight AMS instrument.  相似文献   

11.
We have developed a new analyzer for the online measurement of aerosol composition: a particle trap laser desorption mass spectrometer (PT-LDMS). The main components of the instrument include an aerodynamic lens, a particle trap enclosed by a quartz cell, a quadrupole mass spectrometer (QMS), a vacuum chamber incorporating the above components, and a carbon dioxide (CO2) laser (wavelength 10.6 μm). The aerodynamic lens generates a beam of submicron particles, which is focused on a small area on the particle trap. The particle trap consists of custom-made mesh layers, the structure of which was newly designed using engineering techniques for micro electro mechanical systems (MEMS). A large number of mesh frames are well arranged in the trap, and particles can be efficiently captured after multiple impactions on the frames. The CO2 laser is used to vaporize aerosol compounds captured on the particle trap. The evolved gas confined within the quartz cell is analyzed using an electron impact ionization (EI) QMS to quantify the chemical composition of the particles. The concept of the PT-LDMS and first evaluation of its performance are presented, specifically focusing on the structure and performance of the particle trap.  相似文献   

12.
The collection efficiency (CE) of the aerosol mass spectrometer (AMS) for chamber-generated secondary organic aerosol (SOA) at elevated mass concentrations (range: 19–207 μg m?3; average: 64 μg m?3) and under dry conditions was investigated by comparing AMS measurements to scanning mobility particle sizer (SMPS), Sunset semi-continuous carbon monitor (Sunset), and gravimetric filter measurements. While SMPS and Sunset measurements are consistent with gravimetric filter measurements throughout a series of reactions with varying parent hydrocarbon/oxidant combinations, AMS CE values were highly variable ranging from unity to <15%. The majority of mass discrepancy reflected by low CE values does not appear to be due to particle losses either in the aerodynamic lens system or in the vacuum chamber as the contributions of these mechanisms to CE are low and negligible, respectively. As a result, the largest contribution to CE in the case of chamber-generated SOA appears to be due to particle bounce at the vaporizer surface before volatilization, which is consistent with earlier studies that have investigated the CE of ambient and select laboratory-generated particles. CE values obtained throughout the series of reactions conducted here are also well correlated with the f 44/f 57 ratio, thereby indicating both that the composition of the organic fraction has an important impact on the CE of chamber-generated SOA and that this effect may be linked to the extent to which the organic fraction is oxidized.

Copyright 2013 American Association for Aerosol Research  相似文献   

13.
《Journal of aerosol science》2005,36(5-6):665-676
The ultraviolet aerodynamic particle sizer (UVAPS) is a novel aerosol monitor for enumerating and sizing microbial aerosols. To explore the capability of the method to estimate the number of microorganisms (bacteria) in aerosol particles, and thus to provide information on the concentration of airborne microorganisms, in addition to the total number of microbe carrying particles, a linearity of the UVAPS fluorescent signals with respect to the concentration of the fluorophores was investigated. As the amount of intrinsic fluorophores in bacteria may vary depending on viability status of the cells, the linearity was initially investigated for the non-microbial aerosols (NADH, NADPH, or riboflavin), with preset concentrations of fluorescent material in aerosol particles. The succeeding tests were performed with bacterial aerosols containing carefully washed Bacillus subtilis or Micrococcus luteus vegetative cells. To correlate the fluorescence intensity with particle size, which determines the amount of fluorophores (or cells) in the aerosol particles, the UVAPS data were analysed for each of 64 size-channels individually. The fluorescence intensity was linear with respect to the particle volume at the fluorophore concentrations characteristic to bacterial cells (correlation factors were typically greater than 0.9) and became curvilinear at higher concentrations. As the linearity of the UVAPS signals was confirmed for bacterial aerosols, it was concluded that the UVAPS can be used to estimate the concentration of airborne viable bacterial cells in artificially generated bioaerosols. The predicted concentrations of viable cells in the M. luteus aerosols compared favourably with the results of the AGI-30 sampling for culturable cells.  相似文献   

14.
A quartz crystal microbalance (QCM) based instrument has been developed for real-time aerosol mass distribution measurement. It includes two key components: a six-stage QCM micro-orifice cascade impactor and a novel relative humidity (RH) conditioner. This instrument operates at a flow rate of 10 L·min?1 and measures the mass of the collected particles in six aerodynamic diameter channels between 45 nm and 2.5 μm. The RH conditioner ensures that the aerosol particles are collected at an RH between 40% and 65%, which is critical for eliminating particle bounce and for ensuring optimal particle coupling with the QCM. The nozzles of the impactors are clustered in the center of the nozzle plates. Therefore, particles are deposited on the central electrode of the QCM, where the mass calculated from first principles (i.e., Sauerbrey equation) agrees with the actual collected mass. The QCM response is linear up to around 130 μg for solid particles and up to around 2 μg for liquid particles. The collection efficiency curves of the QCM impactor stages were measured experimentally with monodisperse aerosols, and the results agree with the predictions of established impactor theory. This QCM-based instrument has also been tested with ambient aerosols with varying temperature and relative humidity. The aerosol distributions measured by this new instrument are in good agreement with simultaneous independent measurements carried out with a wide-range particle spectrometer (MSP Model 1000XP WPS).

Copyright © 2016 American Association for Aerosol Research  相似文献   

15.
Reactions between ammonia and sulfur dioxide are known to form aerosols, but no information on the precursors to particle formation are available in the literature. Herein, the first results on the formation of clusters containing both ammonia and sulfur dioxide are presented. Clusters produced by expansion through a dual nozzle into vacuum have been investigated using a molecular beam mass spectrometer technique. Interestingly, under similar expansion conditions, NH3 incorporation into SO2 clusters is more extensive than SO2 into NH3 clusters. In contrast to findings from the stoichiometry of the solid precipitate of the aerosol, the cluster distributions fail to reveal clusters of any stoichiometry as particularly abundant or stable, except for NH+ 4·NH3·SO2.  相似文献   

16.
Particle size distributions are of profound interest in the study of ambient aerosols. Electrostatic classification using the Scanning Mobility Particle Sizer (SMPS) and more recently the Fast-Mobility Particle Sizer (FMPS) is the most commonly employed approach to establish particle size distributions for submicron particles in field and laboratory applications. The FMPS enables fast size distribution measurements on a timescale of seconds but has been speculated to underestimate particle size. Aerosol mass spectrometry has emerged as another well-accepted method for size-resolved compositional aerosol analysis with particle sizing being accomplished by flight time separation over a specified flight path under vacuum conditions. In this work, we characterized the particle sizing performance of an FMPS against simultaneous measurements with an Aerodyne Aerosol Mass Spectrometer (AMS) and an SMPS by sampling ambient particles, as well as polydisperse and monodisperse particles from aqueous inorganic salt solutions in the size range from 50 nm to 450 nm. The particle size measurements by AMS and SMPS produced similar results, while the FMPS significantly underestimated particle size by 40–50%. The discrepancy was observed in all studied ambient and laboratory-generated aerosols and appeared to be largely independent of the sampled species. The observations suggest that it is crucial to evaluate the sizing performance of the FMPS against other instruments to ensure an adequate accuracy of the particle size measurements. In this study, a simple postcorrection method for the FMPS measurements was applied, which was able to successfully reduce the initial underestimation.

Copyright 2013 American Association for Aerosol Research  相似文献   

17.
By means of a newly designed portable aerosol mass spectrometer SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) for the analysis of single atmospheric aerosol particles we investigated the system performance in dependency on two different aerodynamic lenses (Liu and Schreiner type) capable of focusing particles with diameters ranging from 80 nm to 800 nm and 300 nm to 3000 nm, respectively. By using the pressure regulated Schreiner lens, the instrument is independent of variations in atmospheric pressure which would lead to changing dynamical properties of the aerosol particles. Active pressure control inside the inlet system facilitates airborne measurements without complicated corrections. With the Liu setup no pressure regulation was used. Here the overall efficiency of our instrument was 7% while with the Schreiner setup 2% was achieved. The Liu lens setup is optimal for measuring submicron particles at low particle concentrations. To detect supermicron particles the Schreiner lens setup is favored. Together with these experiments we present key details of the SPLAT setup and its characterization. Our instrument is able to measure simultaneously the size and the chemical composition of individual aerosol particles larger than 300 nm in diameter. It uses forward scattered light of single aerosol particles at two positions to determine their vacuum aerodynamic diameter from the flight time between the two lasers. Chemical analysis of the particles is done by laser ablation mass spectrometry utilizing a bipolar time-of-flight mass spectrometer.  相似文献   

18.
Heterogeneous reactions of trace gases with mineral dust aerosol not only impact the chemical balance of the atmosphere but also the physicochemical properties of the dust particle and the ability of the particle to act as a cloud condensation nuclei (CCN). Recent field studies have shown that carbonate minerals are preferentially associated with nitrates whereas aluminum silicates (i.e., clay minerals) are preferentially associated with sulfates. To better understand how this association can impact the climate effects of mineral dust particles, we have measured the CCN activity of a number of pure and internal mixtures of aerosols relevant to these recent field studies. The CCN activity of CaCO 3 -Ca(NO 3 ) 2 aerosol, simulating the activity of mineral dust aerosol that has been partially processed by nitrogen oxides in the atmosphere, is significantly enhanced relative to CaCO3 aerosol of the same diameter. Similar results are obtained for a clay mineral, kaolinite, internally mixed with (NH 4 ) 2 SO 4 . For example, at 0.3% supersaturation, a 200 nm particle containing a soluble nitrate or sulfate component is 2 to 4 times more active than an unreacted particle. The results presented here show that when determining the contribution of mineral dust aerosol to the overall impact of the aerosol indirect effect on radiative forcing, changes in chemical composition due to atmospheric processing cannot be ignored.  相似文献   

19.

An instrument has been developed for real-time, quantitative chemical analys is of organic particles in laboratory environments. In this apparatus, which we call a Thermal Desorption Particle Beam Mass Spectrometer (TDPBMS), particles are sampled into a differentially-pumped vacuum chamber, focused into a narrow, low-divergence particle beam using aerodynamic lenses, and then transported into a high-vacuum region where they impact on a heated surface, evaporate, and the vapor is mass analyzed in a quadrupole mass spectrometer. The average composition of a continuous stream of particles is thus measured in real time, and size-dependent composition can be obtained by passing the incoming aerosol through a differential mobility analyzer. The TDPBMS can analyze multi component organic particles in the 0.02-0.5mu m size range for compound concentrations 0.1-1mu g m3 without particle matrix effects. By using careful calibration techniques that account for particle shape and transport efficiency, the particulate organic components can be quantified with an estimated uncertainty of 20%. The utility of TDPBMS for laboratory studies of aerosol chemistry is demonstrated by monitoring the tridecanoic acid concentration in secondary organic aerosol formed during a smog chamber reaction of 1-tetradecene and ozone.  相似文献   

20.
Monodisperse, fine aerosols are needed in many applications: filter testing, experiments for testing models, and aerosol instrument calibration, among others. Usually, monodisperse fine aerosols are generated in very low concentrations, or mass flow rates, in the laboratory scale. In this work, we needed to generate aerosols with higher mass flow rate than typically available by the laboratory-scale methods, such as atomizers, nebulizers, ultrasonic generators, vibrating orifice generators, and condensation generators. Therefore, we constructed a fluidized bed aerosol generator to achieve particle mass flow rates in the range of 15-100 g/h. Monodisperse, spherical SiO2 particles of two sizes with geometrical diameters of 1.0 and 2.6 µm were used in the aerosol generator. The aerosol generator was used at both atmospheric pressure, and at high pressures up to 5 bar (abs).The particle size, mass concentration and the net average particle charge were measured after mixing the aerosol with nitrogen. The particle size distributions with both particle sizes were monodisperse, and no particle agglomerates were entrained from the fluidized bed. The behavior of the fluidized bed generator was found to be markedly different with the two particle sizes in regard to particle concentration, presumably due to different particle charging inside the generator. After determining the net average charge of the particles, an ion source Kr-85 was used to reduce the charge of the particles. This was found to be effective in neutralizing the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号