首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
针对传统大功率液压泵马达试验台采用节流阀或溢流阀方式加载,导致能量均以热能的形式浪费的问题,设计了一种可对开式液压泵、闭式液压泵和液压马达进行性能测试的机械补偿功率回收式试验系统.从理论上对系统的匹配要求和回收效率进行了详细分析,同时通过试验发现系统功率回收效率与液压泵和液压马达的总效率成正比,其实际功率回收效率最高可达46%以上.液压系统设计合理,功率回收效果良好,为液压泵马达试验台的设计与研究提供了新的设计理念.  相似文献   

2.
在常规功率回收型液压泵实验台中,当电机转速超过回收马达转速时,功率回收马达成为电机负载而产生额外的功率损耗。针对这一问题,设计了一种应用电磁超越离合器的功率回收型液压泵试验台,并对该试验台功率回收原理及功率回收效率进行分析。并以K5V200DT轴向柱塞泵作为对象验证试验台的功率回收效果。结果表明:应用了电磁超越离合器的功率回收型液压泵试验台功率回收效率达到了42.16%,功率回收效果良好,为解决液压泵功率回收型试验台的额外功耗问题提供了新的解决方案,对液压泵功率回收型试验台的高效设计具有一定的指导意义。  相似文献   

3.
针对批量液压马达试验中能量浪费的问题,提出了精确控制马达转速和马达加载的试验方法,设计了一种电功率回收液压马达出厂试验台,并对液压马达试验台电功率回收原理及功率回收效率进行分析。采用AMESim软件对系统功率回收效率仿真,且通过试验台对液压马达相关性能进行测试,对试验与仿真系统功率回收效率进行比较分析,发现在仿真和试验中系统功率回收效率存在最大值且与液压马达总效率正相关。试验台设计合理,可以较好的实现试验过程中多余能量回收,对液压马达试验台电功率回收的设计与研究具有参考价值和实际工程指导意义。  相似文献   

4.
对液压泵可靠性试验台常用功率回收方式及其特点进行分析;结合并行式节能理念设计搭建新型可靠性试验台。利用采集到的数据经计算分别得到35 MPa和45 MPa下系统输入总功率、回收功率和损耗功率的情况,并将系统实际功率回收率与理论计算得到的功率回收率进行对比。结果表明与常规试验台比较,并行式可靠性试验台节能效果显著。  相似文献   

5.
基于目前最为流行的液压泵加速寿命试验和冲击试验,针对现有功率回收式液压泵试验台的特点及存在的问题,设计了一种多台液压泵可同时进行试验的机械补偿功率回收式液压泵可靠性试验台,提供了新的液压泵试验台设计理念,对相关工作具有一定的指导意义。  相似文献   

6.
随着液压泵等液压元件的发展趋向高压、高功率、高转速,液压元件测试台的功率也在不断提高,造成更多的能量消耗,因此试验台的功率回收至关重要。分析了电功率、机械补偿和液压补偿的功率回收系统方案,确定出液压泵马达测试台较为理想的功率回收系统形式。对选用的电功率回收系统通过AMESim软件建立了功率回收系统模型,对不同工况下电功率回收系统的回收率进行分析。  相似文献   

7.
设计了功率回收式液压泵可靠性试验台的液压系统原理图,利用AMESim软件完成了对系统中的比例溢流阀和比例节流阀等重要元件的建模与仿真,通过与两种阀的样本曲线进行对比,搭建的液压元件仿真模型可用。搭建了试验台的系统仿真模型,通过仿真与试验结果的对比,表明本试验系统的可行性。  相似文献   

8.
基于液压补偿功率回收理论,采用容积调压加载的方式,结合PLC在液压系统的控制应用,针对试验台的液压系统及测控系统进行设计,并对液压系统的主要液压元件试验参数匹配关系进行理论计算。由理论关系式得出液压马达排量的调节对试验台的驱动转速与加载转矩的影响,并依照系统原理搭建试验台,通过试验检测,得到功率回收效率。  相似文献   

9.
液压泵和液压马达功率回收式试验方法的研究   总被引:2,自引:1,他引:1  
液压泵和液压马达的功率回收试验方式与非功率回收式试验方法相比,明显具有节能和装机容量小的优点,特别适用于大功率的液压马达及液压泵性能试验。该文给出这种试验系统的试验压力、试验转数和功率回收系数等参数算法和试验调试所应遵循的基本原则,为功率回收式试验方法的推广应用提供科学的基础。  相似文献   

10.
所设计的HK型叶片式液压马达试验台采用串并联液压补偿功率回收方式,功率回收率达69.62%,起到了降低电动机的装机功率、节约能源及减少发热等作用;文中基于AMESim软件,完成了试验台液压系统的建模与仿真。仿真结果表明:在低速重载工况,HK型叶片式液压马达的转速、加载压力和输出扭矩分别为47.32 r/min、7.52MPa和17 399 N·m,达到了所规定的技术指标要求,符合相关国家标准的规定;且具有功能完善、控制准确、自动化程度高及安全可靠等优点。其设计成果对HK型叶片式液压马达的性能测试及相关试验台的研发具有一定的指导与参考作用。  相似文献   

11.
针对大型油气悬挂缸的静、动态性能试验,提出了一种由伺服电机驱动的定量液压泵/马达控制加载液压缸的节能型试验台设计方案,试验过程中能量的回收与存储采用超级电容。试验台可对被试悬挂缸施加多种激励,且液压主回路无节流。建立了加载系统的数学模型,并利用AMESim软件仿真了性能试验过程。研究结果表明:试验台的性能可以满足多种大型悬挂缸静、动态性能试验的需要,且能实现能量回收,相对于阀控系统能耗降低了约92%;超级电容储能方案避免了电机瞬时大功率运行对电网的冲击,大幅降低了配电系统的建设、改造成本。  相似文献   

12.
合理配置系统各主要参数,是影响混合动力车辆制动性能及节能效果的关键问题。以轮边驱动液压混合动力车辆为原型,分析了轮边驱动液压混合动力车辆能量回收系统的工作原理,以原型车的1/4为基础,对辅助动力元件(蓄能器)、二次元件(液压泵/马达)的参数进行了理论分析;建立了能量回收系统的AMESim仿真模型,进行仿真分析;搭建了试验台架,开展试验验证。结果表明:在满足制动性能要求的前提下,增大蓄能器容积以及降低蓄能器最小工作压力有利于回收制动能量;二次元件的排量对制动性能的影响比较大,对制动能量的回收率影响很小;蓄能器工作压力越低,能量密度越大。  相似文献   

13.
液压机的特点是滑块质量大,工进负载力大,其滑块空程下放造成了重力势能、动能等能量的浪费。为了回收利用这部分能量并且降低电机转矩,基于“伺服电机+定量泵”的闭式泵控方案,提出了带超级电容储能系统的双排量泵/马达闭式驱动液压机方案,并制定能量管理策略对能量进行回收与再利用。搭建了液压机试验台,试验结果表明,储能系统的能量回收效率为79.3%;进一步开展仿真研究,基于SimulationX多学科仿真软件,构建了液压机的多学科仿真模型,仿真结果表明,双排量泵能大幅度降低电机转矩,储能系统能够减少液压机整机6.9%的能耗。  相似文献   

14.
针对纯电动汽车续驶里程低、电池充电难等问题,对纯电动汽车的再生制动系统进行了研究,通过比较多种液压制动能量回收方案与储能方式,提出了定压源飞轮液压再生制动系统。为提高所提出的再生制动系统的能量回收效率,以泵/马达和蓄能器工作参数作为变量进行了试验研究和基于AMESim软件的仿真研究,通过仿真分析和试验研究对比,找出了最佳的参数匹配。研究结果表明,该再生制动系统的能量回收效率随着蓄能器容积的大小不同和液压泵/马达的排量不同而改变,泵/马达排量越大回收的能量越多,但是随着排量的增加泵/马达上的阻力也增加了,高于一定值后能量回收效率会下降;蓄能器容积越大,可回收的能量越多。对该系统的研究值得借鉴,可为合理匹配电动汽车液压再生制动系统参数提供依据。  相似文献   

15.
为克服发动机效率低、污染严重、调速性能差的问题,提出了一种基于LUDV系统和变频电机的液压挖掘机系统方案。建立了液压系统、机械结构及变频电机的仿真模型,以及电动液压挖掘机的联合仿真模型。采用变频电机与变量泵复合控制方法,设定电动液压挖掘机“泵排量目标值”(“泵排量目标值”是液压泵目标排量值与液压泵最大排量的比值,是液压泵实际排量的控制目标,不是将液压泵的排量固定在某个数值)分别为0.9、0.7、0.5。研究表明,随着“泵排量目标值”的减小,电机转速提高,耗电量减小;当“泵排量目标值”减小到某个值时,耗电量不会随着“泵排量目标值”的减小而降低,耗电量达到最小值。  相似文献   

16.
为了研究工程机械混合动力系统的机电耦合特性和轴系的振动特性,研制了由柴油机、电动机和液压泵共轴连接组成的工程机械混合动力系统实验台.设计了由工控机、PCI总线控制卡和组态软件组成的实验台测控系统,分析测控系统输入信号和控制信号的数量与类型,确定测控系统控制策略的设计原则和开发过程.通过在柴油机输出轴的端面布置3个加速度传感器实现柴油机工作时曲轴的振动特性,对不同负载功率下柴油机曲轴的振动特性进行试验测试.测试结果表明,柴油机曲轴的振动能量集中在径向,轴向的振动能量可忽略不计;设计的测控系统能实现混合动力系统轴系振动性能测试.  相似文献   

17.
针对传统异步电机驱动液压动力源在实际应用中存在的效率低、响应速度慢以及低速调节性能不稳定等缺陷,将永磁同步电机节能、调速性能好与齿轮油泵不能调速但可靠性好的技术特点相结合,提出了一种节能型液压动力源,并在节能和变频调速理论指导下设计开发了实验系统,实验结果表明所研究的动力源具有可行性,而且该动力源还表现出一些特有的系统性能和技术优势。实验结果还表明:所提出的液压动力源在负载功率匹配、响应速度、调速精度等方面均优于异步电机驱动的液压动力源,在低速轻载时节能效果尤为显著。  相似文献   

18.
卷带装置液压系统恒功率特性研究   总被引:2,自引:0,他引:2  
为研究卷带装置液压系统的恒功率特性,建立了理论分析的数学模型,分析了相关参数对系统性能的影响,在此基础上建立了系统的仿真模型,分析了负载变化对系统压力、液压泵流量及液压马达转速的影响,通过搭建卷带装置实验台,测试了系统的恒功率特性。结果表明:系统具有较好的恒功率特性,仿真模型能够有效测试系统的恒功率特性。研究成果为卷带装置液压系统的改进设计提供了技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号