首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Nanosized silica size standards produced with a sol–gel synthesis process were evaluated for particle size, effective density, and refractive index in this study. Particle size and effective density measurements were conducted following protocol from the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. Particle sizes were measured via electrical mobility analysis using a differential mobility analyzer (DMA) at sheath flow rates (Qsh) of 3.0 and 6.0 L/min and a constant aerosol flow rate (Qa) of 0.3 L/min. The measured mean and mode diameters agreed well with the labeled sizes in the size range 40–200 nm, with differences ranging from 0.03% to 0.8%, well within the labeled expanded uncertainties (95% confidence intervals) of 1.8%–2.2%. The coefficient of variation (CV) of the size distribution was 0.012–0.027 for 40–200 nm. Particle sizes measured for 20 nm and 30 nm standards showed size differences with respect to the certified sizes of 1.7% and 8.3% at Qsh = 6.0 L/min, but the size distributions were narrow, with CV = 0.047–0.064. The average effective density for the range 40–200 nm measured with an aerosol particle mass analyzer (APM) was 1.9 g/cm3. The real component of the refractive index measured with an optical particle counter (OPC) was 1.41 at a wavelength of 633 nm. All properties (size, effective density, and refractive index) were stable and could be measured with good repeatability. From these evaluations, it was found that the nanosized silica size standards have good characteristics for use as size standards and constitute a feasible alternative to PSL particles.

© 2017 American Association for Aerosol Research  相似文献   


2.
The goals of the experiments described herein involve determining in real time the size, concentration enrichment, and chemical composition of coarse-mode (<2.5 μm) and fine-mode (>2.5 μm) particles within the nonconcentrated and concentrated flows of a coarse particle concentrator used for human exposure studies. The coarse particle concentrator was intended to concentrate ambient particles in the PM10–2.5 size range before sending them into a human exposure chamber. The aerodynamic size and chemical composition of particles in the upstream and downstream flows of the concentrator were monitored with an aerosol time-of-f1ight mass spectrometer (ATOFMS) for fixed time intervals over the course of three days. Based on the ATOFMS results, it was found that there was no change in the composition of the ten major particle types observed in the upstream and downstream flows of the concentrator under normal operating conditions. Furthermore, no new particle types were detected downstream that were not detected upstream of the concentrator. A characterization of the aerosol chemical composition and its dependence on sampling conditions is also discussed. Aerosol size distributions were measured with three aerodynamic particle-sizing (APS) instruments sampling simultaneously from different regions of the concentrator. The APS size distributions were used to scale ATOFMS data and measure the ambient concentration factors for the coarse particle concentrator and the exposure chamber. The average concentration factor (ratio of inlet number concentration to the outlet number concentration) for the particle concentrator was 60 + 17 for the 2.5–7.2 μm size range before dilution and transport to the exposure chamber. It was observed that not only were coarse particles being concentrated but fine (<2.5 μm) particles were being concentrated as well, with concentration factors ranging from 2–46 for aerodynamic particle sizes from 0.54–2.5 μm.  相似文献   

3.
The effects of particulate matter on environment and public health have been widely studied in recent years. In spite of the presence of numerous studies about this topic there is no agreement on the relative importance of the particles' size and origin with respect to health effects among researchers. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. The most reliable method used in measuring particulate matter (PM) is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique, however, neglects the possibility to correlate short term intraday atmospheric parameter variations that can influence ambient particle concentration and size distribution as well as human activity patterns. Besides, a continuous method to determine PM concentrations through the measurement of the number size distribution is the system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this article, the evaluation of the uncertainty budget in measuring PM through the SMPS–APS system, as well as a metrological comparison with the gravimetric reference method in order to analyze the compatibility, was carried out and applied with reference to an experimental campaign developed in a rural site. This choice allowed to assume the hypothesis of spherical particle morphology. The average PM10, PM2.5, and PM1 uncertainties obtained for the SMPS–APS system are equal to 27%, 29%, and 31%, respectively. Here the principle influence parameter is the particle density that has to be directly measured with low uncertainty in order to reduce the PM uncertainty.  相似文献   

4.
The physical properties of carbonaceous aerosol particles are often of interest but are difficult to determine from a single measurement. In this study, we used tandem aerosol measurement techniques to measure the effective physical properties, namely the effective density, porosity, and effective complex refractive index of spheroid aggregated and porous carbonaceous aerosol particles. An in-flight measurement system, composed of a differential mobility analyzer (DMA) followed by either an aerosol particle mass analyzer (APM) or a laser particle counter-pulse height analyzer (LPC–PHA), was constructed and used to examine shape-controlled and porosity-controlled carbonaceous particles produced by a spray-drying process. The effective density and porosity were inferred from tandem measurements in which particles were first mobility-classified by the DMA and subsequently mass classified in the APM. The effective refractive index of the particles was inferred from tandem DMA–LPC–PHA measurements in conjunction with Mie Theory. The measured effective density and porosity of the carbonaceous particles ranged from 695.0 to 1399.9 kg/cm3 and 15.2% to 64.3%, respectively. Furthermore, the real and imaginary parts of the effective complex refractive index were between 1.430 and 1.736 and between 0.035 and 0.125, respectively. Both the real and imaginary parts decreased with increasing particle porosity.  相似文献   

5.
We report on a new instrument developed to perform rapid, size-resolved aerosol hygroscopicity measurements. The differential aerosol sizing and hygroscopicity spectrometer probe (DASH-SP) employs differential mobility analysis in-concert with multiple humidification and optical sizing steps to determine dry optical size and hygroscopic growth factors for size-selected aerosols simultaneously at three elevated relative humidities. The DASH-SP has been designed especially for aircraft-based measurements, with time resolution as short as a few seconds. The minimum particle diameter detected with 50% efficiency in the optical particle counters (OPCs) is 135 ± 8 nm, while the maximum detectable particle diameter is in excess of 1 μm. An iterative data processing algorithm quantifies growth factors and “effective” refractive indices for humidified particles using an empirically derived three-dimensional surface (OPC pulse height–refractive index–particle size), based on a calculated value of the “effective” dry particle refractive index. Excellent agreement is obtained between DASH-SP laboratory data and thermodynamic model predictions for growth factor dependence on relative humidity for various inorganic salts. Growth factor data are also presented for several organic acids. Oxalic, malonic, glutaric, and glyoxylic acids grow gradually with increasing relative humidity up to 94%, while succinic and adipic acids show no growth. Airborne measurements of hygroscopic growth factors of ship exhaust aerosol during the 2007 Marine Stratus/Stratocumulus Experiment (MASE II) field campaign off the central coast of California are presented as the first report of the aircraft integration of the DASH-SP.  相似文献   

6.
The use of cavity ring down spectroscopy to retrieve aerosol complex refractive index from optical property measurements has seen increasing popularity over the past few years. However, few studies have looked at the limit which sources of error and uncertainty inherent in the cavity ring down method place on the accuracy with which the refractive index can be retrieved. In this paper, we consider both experimental sources of error and those which compromise the theoretical models against which measurements are compared, both reviewing previously published work and presenting new data. Our results show that for absolute measurements made using single-cavity instruments, factors such as uncertainty in the length of the ring down cavity occupied by aerosol and the counting efficiency of the CPC can introduce an error of ~2.5% into the real part of the refractive index retrieved from experiment. This is significantly higher than the typical 1% error quoted in previously published work. We note that due to the dependence of particle extinction efficiency on diameter, the effect of a given error on measurements for different particle sizes is not constant.  相似文献   

7.

Combustion and industrial processes are an important source of particles. Due to the new PM 10 and PM 2.5 standards for ambient air quality, a sampling system for PM 10/PM 2.5 in-stack measurements was designed and calibrated. In this new system, the exhaust gas is isokinetically sucked into a two stage impactor through the inlet of a plane filter device and the aerosol is fractionated in the particle size classes >10 w m, 10-2.5 w m, and <2.5 w m. Due to a relatively high volume flow (ca. 3.2 m 3 /h, depending on exhaust gas conditions), sampling times are kept short, e.g., 30 min for dust concentrations of 10 mg/m 3 . The impactor was calibrated in the laboratory and then operated at various industrial plants. Parallel measurements with identical devices showed average standard deviations of 3.1% (PM 10) and 3.4% (PM 2.5). Measurements of the cascade impactor together with the plane filter device gave plausible results and average PMx/TSP ratios of 0.49 (PM 2.5/TSP) and 0.78 (PM 10/TSP), showing a large variability for different processes. Elemental analysis using total-reflection X-ray fluorescence spectrometry, together with the size-fractionated sampling, proved to give characteristic patterns of the emitted aerosols, which can be used for a subsequent fingerprint modelling for source apportionment of ambient air pollution.  相似文献   

8.
The performance of the DAWN-A differential light-scattering detector (Wyatt et al., 1988. Appl. Opt. 27:217–221) was characterized in laboratory experiments. Objectives of this work included measurement of size-dependent counting efficiencies and of angular scattering patterns for spherical particles of known size and composition.

Counting efficiencies for polystyrene latex (PSL) spheres of nine sizes in the 0.14–0.97-μm diameter range were obtained as a function of the trigger threshold level. Counting efficiencies were found to increase with increasing particle size and decreasing trigger threshold level. Maximum observed counting efficiencies were in the range of 50% to 60%, indicating that the half-width of the laser beam was about a factor of 2 narrower than the width of the particle beam in the scattering volume. A distribution of pulse heights was observed for particles of a given size, reflecting the variability of the illumination intensity.

Angular scattering patterns of PSL, dioctyl sebacate (DOS), and methylene blue for nine different sizes in the 0.14–0.97-μm size range were obtained; measurements were also done with 0.55-μm (at 7% relative humidity) sulfuric acid droplets exposed to eight different relative humidities in the 7% to 81% range. The PSL data were used to calibrate the detectors. For the other materials, Lorenz-Mie theory was used to determine the “best” value of the complex refractive index to match measurements to theory for each particle size investigated. For sulfuric acid, the inferred imaginary component of refractive index was zero as expected, while the real component was within 2% of the literature value over the range of relative humidities investigated. For DOS (expected value = 1.46 + 0.00i), the inferred real component of refractive index was, on average, 4% greater than the expected value, and the average inferred imaginary component was 0.02 for particles 0.32 μm. Small signal-to-noise led to poor agreement between theory and measurement for 0.14-μm particles. For methylene blue, which has a nonzero imaginary component (expected value = 0.82 + 0.40i), there were large uncertainties in the inferred refractive index values due to problems in generating spherical, homogeneous particles.  相似文献   

9.
Isokinetic sampling is required when evaluating the aerodynamic sizes of particles released from dry powder inhalers (DPI) under simulated breathing condition since anisokinetic sampling may lead to significant sampling error for coarse particles. We propose an isokinetic measuring system for aerosol particles from a stream in a narrow conduit of variable flow rates (variable flow rate aerosol sampler, VFAS) combined with Aerodynamic Particle sizer® APSTM spectrometer (model 3321, TSI Inc.). The VFAS was capable of generating variable sampling flow rates by adjusting the flow resistance of makeup air to produce constant flow rate of aerosol to the APS. The penetrations through the VFAS-APS system were measured using monodisperse particles with a size range of 0.7–15 μm by applying a rectangular flow rate–time pattern of sampling air, and we found that the VFAS-APS system can measure the number concentration of particles with the particle detection efficiency (particle penetration through the system) of almost unity. The VFAS-APS system may be a powerful tool to measure the size and concentration of powder released by the DPI in the size range of 0.5–15 μm.

Copyright 2012 American Association for Aerosol Research  相似文献   

10.
Integrated particle size distribution (IPSD) is a promising alternative method for estimating particulate matter (PM) emissions at low levels. However, a recent light-duty vehicle (LDV) emissions study showed that particle mass estimated using IPSD (MIPSD) with the TSI Engine Exhaust Particle Sizer (EEPS) Default Matrix was 56–75% lower than mass derived using the reference gravimetric method (MGrav) over the Federal Test Procedure (FTP). In this study, MIPSD calculated with a new inversion matrix, the Soot Matrix, is compared with MGrav and also photoacoustic soot mass (MSoot), to evaluate potential improvement of the IPSD method for estimating PM mass emissions from LDVs. In addition, an aerodynamic particle sizer (APS) was used to estimate mass emission rates attributed to larger particles (0.54–2.5 µm in aerodynamic diameter) that are not measured by the EEPS. Based on testing of 10 light-duty vehicles over the FTP cycle, the Soot Matrix significantly improved agreement between MIPSD and MGrav by increasing slopes of MIPSD/MGrav from 0.45–0.57 to 0.76–1.01 for gasoline direct injected (GDI) vehicles; however, for port-fuel injection (PFI) gasoline vehicles, a significant discrepancy still existed between MIPSD and MGrav, with MIPSD accounting for 34 ± 37% of MGrav. For all vehicles, strong correlations between MIPSD and MSoot were obtained, indicating the IPSD method is capable of capturing mass of soot particles. The discrepancy between the MIPSD and MGrav for PFI vehicles, which have relatively low PM emissions (0.22 to 1.83 mg/mile), could be partially due to limited size range of the EEPS by not capturing larger particles (0.54–2.5 µm) that accounts for ~0.08 mg/mile of PM emission, uncertainties of particle effective density, and/or gas-phase adsorption onto filters that is not detected by in situ aerosol instrumentation.

Copyright © 2016 American Association for Aerosol Research  相似文献   


11.
Recently, the protection of health care workers from tuberculosis-containing aerosols has been the subject of considerable debate. An experimental apparatus and test protocol were developed to measure the collection efficiency of surgical mask and respirator filter media using a microbial aerosol challenge. Mycobacterium chelonae (M. chelonae), used as a surrogate for Mycobacterium tuberculosis, was generated from liquid suspension using a Collison nebulizer. Upstream and downstream concentrations of viable aerosol particles were measured using Andersen cascade impactors, while total particle concentrations were measured with an aerodynamic particle sizer (APS). A monodisperse polystyrene latex (PSL) sphere aerosol (0.804 μm) was used in separate experiments to measure filter efficiency; concentrations were determined with the APS. The mycobacterial aerosol ranged in size from 0.65 to 2.2 μm when measured with the cascade impactor. A similar size range was found with the APS, yielding a count median diameter of about 0.8 μm. Samples of the mycobacterial aerosol were collected on glass slides, stained M. chelonae, as determined by environmental scanning electron microscope, were found to be rod shaped with an average length of 2 μm and average width of 0.3 μm. To evaluate the apparatus over a range of filter efficiencies (10–100%), different layers of fiberglass filter paper were tested for penetration using a 0.12 μm dioctyl phthalate (DOP) aerosol measured with a light scattering photometer, in addition to the mycobacterial and PSL aerosols. For the range of efficiencies tested it was shown that filter collection of DOP was linearly related to that of both mycobacterial and PSL sphere aerosols (r2 = 0.99), demonstrating that an inert aerosol may be used to predict the collection of biological aerosols by such filter media.  相似文献   

12.
The performance of Grimm optical particle counters (OPC, models 1.108 and 1.109) was characterized under urban aerosol conditions. Number concentrations were well correlated. The different lower cut-off diameters (0.25 and 0.3 μm) give an average difference of 23.5%. Both detect less than 10% of the total particle concentration (0.01–1 μm; Differential Mobility Analyzer), but in the respective size ranges, differences are <10%. OPC number size distributions were converted to mass concentrations using instrument-specific factors given by the manufacturer. Mass concentrations for OPC1.108 were 60% higher than for OPC1.109 and (in case of OPC1.109) much lower than those measured with an impactor in the relevant size range or a TSP filter. Using the C-factor correction suggested by the manufacturer, OPC1.109 underestimated mass concentrations by 21% (impactor) and by about 36% (TSP filter), which is in the range of comparability of co-located different mass concentration methods (Hitzenberger, Berner, Maenhaut, Cafmeyer, Schwarz, &; Mueller et al., 2004).  相似文献   

13.
Rotating drum impactors (RDI) are cascade type impactors used for size and time resolved aerosol sampling, mostly followed by spectrometric analysis of the deposited material. They are characterized by one rectangular nozzle per stage and are equipped with an automated stepping mechanism for the impaction wheels. An existing three-stage rotating drum impactor was modified, to obtain new midpoint cutoff diameters at 2.5 μm, 1 μm, and 0.1 μm, respectively. For RDI samples collected under ambient air conditions, information on the size-segregation and the spatial uniformity of the deposited particles are key factors for a reliable spectrometric analysis of the RDI deposits. Two aerodynamic particle sizers (APS) were used for the determination of the RDI size fractionation characteristics, using polydisperse laboratory room air as quasi-stable proxy for urban ambient air. This experimental approach was suitable for the scope of this study, but was subject to numerous boundary conditions that limit a general use. Aerodynamic stage penetration midpoint diameters were estimated to be 2.4 and 1.0 μm for the first two RDI stages. Additionally, the spatial uniformity and geometrical size distribution of the deposited aerosol were investigated using micro-focus synchrotron radiation X-ray fluorescence spectrometry (micro-SR-XRF) and transmission electron microscopy (TEM), respectively. The size distribution of the particles found on the TEM samples agreed well with the results from the APS experiments. The RDI deposits showed sufficient uniformity for subsequent spectrometric analysis, but in the 2.5–10 μm size range the particle area density was very low. All of the applied methods confirmed the theoretical cutoff values of the modified RDI and showed that compared to other cascade impactors, the determined stage penetration sharpness was rather broad for the individual impactor stages.  相似文献   

14.

The design and experimental characterization of a condensation nucleus counter (CNC) is presented. The counter produces supersaturation by means of fast volume-controlled adiabatic expansion. The aerosol number concentration is derived from observing scattered laser light in the forward direction under a solid angle between 1.1° and 4.4° over the full annular sector. The number concentration is derived by application of Mie theory from the characteristic pattern in the temporal evolution of the detected signal during the droplet growth process. The equation for calculation of the aerosol number density by this method is presented. Theoretical considerations for the smallest aerosol particles that can be activated indicate a lower size cut-off between 2.5 and 3.0 nm. Model calculations of the expected Mie scatter signal during expansion agree very well with the experimental observations. The Expansion-CNC can be operated fully automated under computer (PC) control in 10-second sample cycles. For characterization it is compared with a TSI 3025A Ultrafine-CPC (TSI UCPC) for measurements of monodisperse sodium chloride and sulfuric acid aerosol particles, indicating good agreement between the two counters down to particle sizes as low as 3.5 nm under laboratory conditions. In addition, ambient aerosol measurements in urban air show excellent agreement with simultaneous TSI UCPC measurements for particle number concentrations ranging from roughly 50 cm? 3 to 130000 cm? 3.  相似文献   

15.
ABSTRACT

A differential mobility and optical particle size spectrometer (DMOPSS) was developed to measure ambient size distributions based on geometric particle diameter in the size range of 0.1 to 1.0 μm diameter. The DMOPSS consists of a high-flow differential mobility analyzer (HF-DMA) followed by an optical particle counter (OPC) and condensation nucleus counter (CNC) operating in parallel. The OPC and CNC sample monodisperse aerosol of known geometric diameter from the HF-DMA output or, alternatively, polydisperse aerosol with known dilution directly from the ambient air. The monodisperse samples are used to create time-dependent calibrations of the OPC, providing optical response versus geometric size for the ambient aerosol under study. The direct ambient measurements are then reduced, using this ambient-based calibration. A field test of the DMOPSS system was performed in the summer of 1992 at Meadview, Arizona, where more than 12,000 size spectra were collected; they consisted of roughly one-third direct ambient samples and two-thirds HF-DMA sized samples. Measured aerosol volumes and calculated particle scattering coefficients were strongly correlated with nephelometer measurements, with a mean scattering-to-volume ratio of 5 m2/cm3. With the ambient aerosol calibration, the measured aerosol volumes were 47% larger, and volume geometric mean diameters were 12% larger, than would have been obtained using a polystyrene latex calibration.  相似文献   

16.

A new method for measuring the collection efficiency of an aerosol sampler as a function of particle size has been developed, featuring the use of dry, polydisperse latex particles. Test aerosol is generated by placing a polydisperse latex powder sample into a fluidized bed of glass beads. An Aerodynamic Particle Sizer (APS) measures the particle size distribution entering and leaving the sampler's size-selector, yielding the penetration efficiency. The use of dry latex minimizes the ''phantom'' particle problem inherent with the APS by avoiding the generation of high concentrations of small particles such as those produced by nebulizers. In addition to having useful properties for determining particle size cutoff characteristics, including spherical shape, near-unit density, and white color, latex particles afford a test for the presence of particle bounce and reen trainment. A complete efficiency measurement can be made in a little over three minutes, facilitating experimentation with parameters such as sampler flow rate, which require repeated measurements. The method has been used extensively for the development and calibration of respirable and PM-2.5 samplers.  相似文献   

17.
Based on the experimental infrared spectral transmittances, an inverse model for determining the optical constants of aerosol particles is presented in this paper. Combined with the Mie theory and Kramers–Kronig (K–K) relations, the complex refractive indices of the aerosol particles are retrieved by the spectral transmittance distribution of a cloud of aerosol particles in potassium bromide (KBr) pellets. Particular attention is given to the unique value problems of the complex refractive index. According to calculation and analysis, the uniqueness range of the complex refractive index is obtained. The complex refractive indices of SiO2, Fe2O3, CaSO4, Al2O3 particles or their mixtures with different volume fractions are obtained. At the same time, the retrieved effective refractive indices of mixed particles are compared with those from effective medium theory. Good agreement is obtained between the inverse simulation results and the results from effective medium theory. Finally, the complex refractive index of aerosol particles collected in China is determined by the inverse model used in the present work.  相似文献   

18.

To adequately assess the effects of atmospheric aerosols on climate, their optical constants (scattering and absorption coefficients) must be known. The absorption and scattering coefficients of the aerosols are derived from the real and imaginary parts of the complex refractive index and are dependent on their size and chemical composition. Because aerosol properties vary significantly with location, it is difficult to assign values for the absorption and scattering of solar radiation by aerosols in models of global climate change. This study reports a new method of collecting size-fractionated atmospheric aerosol samples for the purpose of directly measuring their transmission and reflectance spectra followed by the determination of the complex refractive index across the entire atmospherically relevant spectral range. The samples were collected with a modified Sierra high-volume cascade impactor with the usual filter collection surfaces replaced with Teflon sheets machined to hold quartz (ultraviolet [UV]/visible transparent) and/or silver chloride (infrared transparent) sample collection plates. Reflectance and transmission spectra can be obtained on the aerosol samples directly as a function of wavelength, from 280 nm to 2.5 m, with an integrating sphere coupled to an UV/visible or a Fourier transform infrared (FTIR) spectrophotometer. The effective real and imaginary components of the refractive index of the bulk sample material can then be approximated, as a function of wavelength, from the sample spectra. Preliminary results are presented for carbon soot samples generated in the laboratory and for standard diesel soot samples in the UV/visible spectral range. These are compared to results obtained for size-fractionated atmospheric aerosol samples collected near Pasco, WA, West Mesa, AZ, and Argonne, IL.  相似文献   

19.
Cavity ring-down spectroscopy (CRDS) of single, optically manipulated aerosol particles affords quantitative retrieval of refractive indices for particles of fixed or evolving composition with high precision. Here, we quantify the accuracy with which refractive index determinations can be made by CRDS for single particles confined within the core of a Bessel laser beam and how that accuracy is degraded as the particle size is progressively reduced from the coarse mode (>1 μm radius) to the accumulation mode (<500 nm radius) regime. We apply generalized Lorenz–Mie theory to the intra-cavity standing wave to explore the effect of particle absorption on the distribution of extinction cross section determinations resulting from stochastic particle motion in the Bessel beam trap. The analysis provides an assessment of the accuracy with which the real, n, and imaginary, κ, components of the refractive index can be determined for a single aerosol particle.

Published with license by American Association for Aerosol Research  相似文献   


20.

Thirty-seven days of PM 10 aerosol samples (particles with aerodynamic diameter <10 w m) were collected in an industrial area in Brisbane during April to June 1999 to study the light extinction efficiencies of urban aerosols in different size ranges. The light scattering coefficient of the air was measured by nephelometry. The light absorption coefficient of the aerosol samples was measured by the integrating plate laser absorption method. Multiple linear regression techniques were used to investigate the relationships between the visibility degrading properties and the chemical composition of the aerosol samples. The results are comparable with those from other visual air quality studies. The absorption of light by fine (PM 2.5 ) aerosols is mainly due to elemental carbon (EC) particles smaller than 0.5 w m. The b 0 ap values of EC particles in different size ranges are 9.08 (< 2.7 w m) and 0.32 (2.7-10 w m)m 2 g -1 , respectively. The absorption of light by coarse (PM 2.5-10 ) aerosols is mainly due to soil ( b 0 ap = 0.17) and organic ( b 0 ap = 1.11) particles. The scattering of light is highly related to the concentration of fine particles in the air (mass scattering efficiency b 0 sp = 1.65) and is mainly due to the fine sulphate ( b 0 sp = 10.9), soil ( b 0 sp = 2.73), and EC ( b 0 sp = 3.89) particles. On average, fine EC (44%), sulphate (20%) and soil (7%) particles, NO 2 (9%), and Rayleigh scattering (19%) were the largest contributors of visibility degradation for the sampling days in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号