首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.

Measurement methods for fine carbonaceous aerosol were compared under field sampling conditions in Flushing, New York during the period of January and early February 2004. In-situ 5- to 60-minute average PM 2.5 organic carbon (OC), elemental carbon (EC), and black carbon (BC) concentrations were obtained by the following methods: Sunset Laboratory field OC/EC analyzer, Rupprecht and Patashnick (R&P) series 5400 ambient carbon particulate monitor, Aerodyne aerosol mass spectrometer (AMS) for total organic matter (OM), and a two-wavelength AE-20 Aethalometer. Twenty-four hour averaged PM 2.5 filter measurements for OC and EC were also made with a Speciation Trends Network (STN) sampler. The diurnal variations in OC/EC/BC concentrations peaked during the morning and afternoon rush hours indicating the dominant influence of vehicle emissions. BC/EC slopes are found to range between 0.86 and 1.23 with reasonably high correlations (r > 0.75). Low mixing heights and absence of significant transported carbonaceous aerosol are indicated by the measurements. Strong correlations are observed between BC and thermal EC as measured by the Sunset instrument and between Sunset BC and Aethalometer BC. Reasonable correlations are observed among collocated OC/EC measurements by the various instruments.  相似文献   

2.
The collection efficiency (CE) of the aerosol mass spectrometer (AMS) for chamber-generated secondary organic aerosol (SOA) at elevated mass concentrations (range: 19–207 μg m?3; average: 64 μg m?3) and under dry conditions was investigated by comparing AMS measurements to scanning mobility particle sizer (SMPS), Sunset semi-continuous carbon monitor (Sunset), and gravimetric filter measurements. While SMPS and Sunset measurements are consistent with gravimetric filter measurements throughout a series of reactions with varying parent hydrocarbon/oxidant combinations, AMS CE values were highly variable ranging from unity to <15%. The majority of mass discrepancy reflected by low CE values does not appear to be due to particle losses either in the aerodynamic lens system or in the vacuum chamber as the contributions of these mechanisms to CE are low and negligible, respectively. As a result, the largest contribution to CE in the case of chamber-generated SOA appears to be due to particle bounce at the vaporizer surface before volatilization, which is consistent with earlier studies that have investigated the CE of ambient and select laboratory-generated particles. CE values obtained throughout the series of reactions conducted here are also well correlated with the f 44/f 57 ratio, thereby indicating both that the composition of the organic fraction has an important impact on the CE of chamber-generated SOA and that this effect may be linked to the extent to which the organic fraction is oxidized.

Copyright 2013 American Association for Aerosol Research  相似文献   

3.
The Sunset Laboratory Carbon Aerosol Analysis Lab Instrument is widely used for thermal-optical analysis (TOA) of ambient particulate matter samples to measure total carbon (TC), organic carbon (OC), and elemental carbon (EC), and often thermal sub-fractions of OC and EC. TOA operating protocols include a series of plateau temperatures at which the thermal sub-fractions evolve. The temperatures have conventionally been measured by a sensor located in the sample oven but away from the filter sample. However, the TOA protocol used by the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and recently adopted by the U.S. Environmental Protection Agency (EPA) Speciation Trends Network (STN) and Chemical Speciation Network (CSN) specify temperatures to be achieved at the filter. Our goal was to develop a simple calibration method to obtain the target filter temperatures in a Sunset Instrument. This method showed good agreement with the IMPROVE/STN/CSN method and has the advantages of not damaging oven components and of providing a direct comparison of sample oven sensor and filter temperatures at the TOA protocol-specified temperatures. Calibrations performed on four Sunset Instruments yielded different sensor/filter temperature relationships. Ambient PM 2.5 samples analyzed using IMPROVE_A temperatures at the oven sensor compared to IMPROVE_A temperatures at the filter yielded statistically insignificant differences for TC, OC, and EC but statistically significant differences for the carbon sub-fraction concentrations. Temperature calibrations should be performed on each Sunset Instrument to ensure comparability in the carbon sub-fractions being reported, and a simple method has been provided for performing these calibrations.  相似文献   

4.
Organic carbon (OC) and elemental carbon (EC) are operationally defined due to the lack of definitive standards. Consequently, their quantification is protocol dependent. IMPROVE and NIOSH are the two widely used thermal/optical protocols for OCEC analysis, differing in temperature programs and in the optical method for charring correction. The IMPROVE protocol is often implemented on a DRI analyzer while the NIOSH protocol is often implemented on a Sunset Laboratory Analyzer. Evaluation of the implementation of the IMPROVE protocol on the Sunset Laboratory analyzer or implementation of the NIOSH or NIOSH-derived protocols on the DRI analyzer has rarely been reported. We analyzed OC and EC in about 100 ambient samples collected in the Pearl River Delta in China by implementing the IMPROVE protocol and a NIOSH-derived (ACE-Asia) protocol on both a DRI Model 2001 analyzer and a Sunset Laboratory analyzer. The total carbon (TC) and EC filter loading as determined by the ACE-Asia protocol on the Sunset analyzer varied from 2.6 to 67.0 and 0.2 to 7.4 μg cm?2, respectively. Inter-instrument comparison indicates that the implementation of the IMPROVE protocol on the Sunset analyzer reports TC, EC, and OC measurements to be in good agreement with those made on the DRI analyzer. EC and OC analyzed using the ACE-Asia protocol are also in good agreements for measurements implemented on the Sunset and DRI analyzers. Inter-protocol comparison indicates consistency in TC determination but discrepancies in OC and EC, with the IMPROVE protocol reporting much higher EC than the ACE-Asia protocol. An analysis of different comparison scenarios reveals that the cause of the EC difference could be quantitatively attributed to temperature protocol (thermal effect) and optical pyrolysis correction method (reflectance vs. transmittance). The variation in EC concentrations was more pronounced in samples that produced more charred OC during thermal analysis.

Copyright 2012 American Association for Aerosol Research  相似文献   

5.
A Particle-Into-Liquid Sampler (PILS) was modified and coupled with a Total Organic Carbon (TOC) Analyzer (Sievers 800T, GE Water Systems, Boulder, CO), in an attempt to measure particulate organic carbon (OC) online. The PILS droplet collection system was changed from an inertial impactor to a miniature cyclone to increase the efficiency of transferring insoluble carbonaceous aerosol to the liquid sample stream. The performance of the modified PILS was investigated with a variety of calibration aerosols through comparison with the Sunset Labs ECOC technique (NIOSH method 5040). Linear regression slopes of water-soluble organic compounds compared well with Sunset Labs measurement, agreeing to within 5%. However, a size dependence was observed when comparing insoluble carbonaceous aerosol (polystyrene latex spheres, PSL). The new method did not effectively measure insoluble particles with aerodynamic diameters greater than ~ 110 nm due to inefficient analysis by the TOC. The OC measurement method was also compared with online Sunset Labs organic carbon (OC) measurements in two urban locations: Atlanta, GA, and Riverside, CA. Linear regression slopes between the PILS technique and Sunset Labs were near unity (101% to 93% ± 2 and 5%, respectively), and not statistically different from unity considering the measurement uncertainty of each method. However there was a significant (0.6 to 1.7 μ gC m ? 3 ) non-zero intercept, with the Sunset Labs instrument measuring higher concentrations, possible due to the inability of the PILS to measure large, insoluble particles or positive artifacts with the non-blank corrected Sunset Labs filter-based collection method.  相似文献   

6.
Aerosol absorption coefficients were obtained using two versions of the Magee Scientific Aethalometer and a Particle Soot Absorption Photometer (PSAP) in Riverside, California during July and August of 2005. These measurements were subsequently compared to each other and to hourly elemental carbon (EC) mass concentrations as determined by a Sunset Labs semi-continuous OCEC analyzer. Measurements from all four instruments were shown to be highly correlated (R 2 = 0.83 to 0.92). Differences between absorption values measured by the PSAP and the Aethalometer were found to be dominated by differences in the filter media used by the respective instruments. Comparison of optical and thermal measurements revealed that the specific attenuation cross section (σ ATN ) of light absorbing carbon (LAC) varied as a function of the time of the day, most notably during weekdays. Minimum σ ATN values were observed during morning rush hour when EC concentrations were at their greatest and maxima were seen in the late afternoon. These variations correlated with changes in the OC/EC ratio and the Angstrom exponent for absorption, which is consistent with changes in the mixing state of elemental carbon associated with secondary aerosol condensation on primary EC particles.  相似文献   

7.

Historically, obtaining quantitative chemical information using laser desorption ionization mass spectrometry for analyzing individual aerosol particles has been quite challenging. This is due in large part to fluctuations in the absolute ion signals resulting from inhomogeneities in the laser beam profile, as well as chemical matrix effects. Progress has been made in quantifying atomic species using high laser powers, but very few studies have been performed quantifying molecular species. In this study, promising results are obtained using a new approach to measure the fraction of organic carbon (OC) associated with elemental carbon (EC) in aerosol particles using single particle laser desorption ionization. A tandem differential mobility analyzer (TDMA) is used to generate OC/EC particles by size selecting EC particles of a given mobility diameter and then coating them with known thicknesses of OC measured using a second DMA. The mass spectra of the OC/EC particles exiting the second DMA are measured using an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS). A calibration curve is produced with a linear correlation (R2 = 0.98) over the range of OC/EC ion intensity ratios observed in source and ambient studies. Importantly, the OC/EC values measured in ambient field tests with the UF-ATOFMS show a linear correlation (R2 = 0.69) with OC/EC mass ratios obtained using semi-continuous filter based thermo-optical measurements. The calibration procedure established herein represents a significant step toward quantification of OC and EC in sub-micron ambient particles using laser desorption ionization mass spectrometry.  相似文献   

8.

The importance of atmospheric aerosols in regulating the Earth's climate and their potential detrimental impact on air quality and human health has stimulated the need for instrumentation which can provide real-time analysis of size resolved aerosol, mass, and chemical composition. We describe here an aerosol mass spectrometer (AMS) which has been developed in response to these aerosol sampling needs and present results which demonstrate quantitative mea surement capability for a laboratory-generated pure component NH4 NO3 aerosol. The instrument combines standard vacuum and mass spectrometric technologies with recently developed aerosol sampling techniques. A unique aerodynamic aerosol inlet (developed at the University of Minnesota) focuses particles into a narrow beam and efficiently transports them into vacuum where aerodynamic particle size is determined via a particle time-of-flight (TOF) measurement. Time-resolved particle mass detection is performed mass spectrometrically following particle flash vaporization on a resistively heated surface. Calibration data are presented for aerodynamic particle velocity and particle collection efficiency measurements. The capability to measure aerosol size and mass distributions is compared to simultaneous measurements using a differential mobility analyzer (DMA) and condensation particle counter (CPC). Quantitative size classification is demonstrated for pure component NH4 NO3 aerosols having mass concentrations 0.25mu g m -3. Results of fluid dynamics calculations illustrating the performance of the aerodynamic lens are also presented and compared to the measured performance. The utility of this AMS as both a laboratory and field portable instrument is discussed.  相似文献   

9.

This study shows how aerosol organic oxygen data could provide new information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades, atmospheric aerosol organic mass (OM) concentration has been estimated by multiplying the measured carbon content by an assumed (OM)-to-organic carbon (OC) factor, usually 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This large uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health. New examination of organic aerosol speciation data shows that the oxygen content is responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-OC factor for all studied sites (urban and non-urban) averaged 1.13. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6 ± 0.2 for urban and 2.1 ± 0.2 for non-urban areas). This analysis suggests that, when aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1 g per 100 g water.  相似文献   

10.

This study evaluates the influence of denuder sampling methods and filter collection media on the measurement of semi-volatile organic carbon (SVOC) associated with PM2.5. Two types of collection media, charcoal (activated carbon) and XAD, were used both in diffusion denuders and impregnated back-up filters in two different samplers, the VAPS and the PC-BOSS. The two organic diffusion denuders were XAD-coated glass annular denuders and charcoal-impregnated cellulose fiber filter (CIF) denuders. In addition, recently developed XAD-impregnated quartz filters were compared to CIF filters as back-up filter collection media. The two denuder types resulted in equivalent measurement of particulate organic carbon and particle mass. The major difference observed between the XAD and charcoal BOSS denuders is the higher efficiency of charcoal for collection of more volatile carbon. This more volatile carbon does not contribute substantially to the particle mass or SVOC measured as OC on quartz filters downstream of the denuders. This volatile carbon does result in high OC concentrations observed in charcoal filters placed behind quartz filters downstream of the XAD denuders and would result in overestimating the SVOC in that configuration.  相似文献   

11.
Two pressure-controlled inlets (PCI) have been designed and integrated into the Aerodyne Aerosol Mass Spectrometer (AMS) inlet system containing an aerodynamic aerosol lens system for use in airborne measurements. Laboratory experiments show that size calibration and mass flow rate into the AMS are not affected by changes in upstream pressure (P 0 ) of the PCI as long as the pressure within the PCI chamber (P PCI ) is controlled to values lower than P 0 . Numerous experiments were conducted at different P PCI , P 0 , and AMS lens pressures (P Lens ) to determine particle transmission efficiency into the AMS. Based on the results, optimum operating conditions were selected which allow for constant pressure sampling with close to 100% transmission efficiency of particles in the size range of ~ 100–700 nm vacuum aerodynamic diameter (d va ) at altitudes up to ~ 6.5 km. Data from an airborne field study are presented for illustration.  相似文献   

12.
Gas-wall partitioning of organic compounds (OC) that included C 8 –C 16 n-alkanes and 1-alkenes and C 8 –C 13 2-alcohols and 2-ketones was investigated in two Teflon FEP chambers whose walls were either untreated, oxidized in sunlight, or previously exposed to secondary organic aerosol (SOA). Partitioning was nearly independent of chamber treatment, reversible, and obeyed Henry's law. The fraction of an OC that partitioned to the walls at equilibrium ranged from 0 to 65%. Values increased with increasing carbon number within an OC class and for OC with similar vapor pressures increased in the order n-alkanes <1-alkenes <2-alcohols <2-ketones. Estimated time constants for achieving partitioning equilibrium ranged from 60 min for n -alkanes to ? 8 min for 2-ketones. The observations are consistent with a sorption mechanism in which OC dissolve into the film but are restricted to the near-surface region by a sharp permeability gradient that develops in response to OC-induced stresses in polymer chains. When the results were analyzed using a model analogous to one commonly employed for gas-particle partitioning, it was estimated that the sorption properties of the chamber walls were equivalent to organic aerosol mass concentrations of 2, 4, 10, and 24 mg m 3 with respect to the partitioning of n -alkanes, 1-alkenes, 2-alcohols, and 2-ketones. These values are up to 4 orders of magnitude larger than concentrations used in most laboratory studies of SOA, which are typically 1–10 3 μ g m 3 , meaning that if full partitioning equilibrium is established in the chamber then semi-volatile OC will reside overwhelmingly in the chamber walls. Model simulations of gas-particle-wall partitioning were also carried out using the experimental data, and demonstrate quantitatively the large potential effects of Teflon walls on measured yields of gas-phase OC products and SOA.  相似文献   

13.
We report the development and characterization of a proton-transfer-reaction ion trap mass spectrometer for the speciated measurement of organic compounds in atmospheric aerosols and show results from its first field deployment. The instrument uses an aerosol collection inlet to accumulate aerosol mass followed by rapid thermal desorption to volatilize the organic compounds for in situ analysis. We have performed laboratory studies to characterize instrument performance and the instrument was deployed aboard a NOAA research vessel during the Texas Air Quality Study 2006/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS 2006/GoMACCS) in August–September 2006. The laboratory-determined detection limit for glutaric acid in mixed glutaric acid/NH 4 HSO 4 test aerosols was 0.22 ng collected mass, which corresponds to an estimated detection limit of 12 ng m?3 for a 10 min sample based on the instrument sample flow rate of 1.8 L min?1. During TexAQS 2006/GoMACCS, signals well above the detection limit were observed at a number of mass to charge ratios, mostly occurring during an extended period of active pollution photochemistry, but also including detection of possible primary emissions of aerosol-phase pyridine.  相似文献   

14.

Radiocarbon ( 14 C) measurements showed substantial levels of biogenic carbon, 52 to 89%, in PM2.5 samples collected near Tampa, Florida, during May 3–22, 2002. Nighttime biogenic percentages tended to be higher than daytime percentages. The average PM2.5 biogenic carbon concentration was 2.4 μ g m ? 3 . The 14 C (and carbon mass concentration) results were highly reproducible, based on duplicate analyses of samples from collocated samplers. The work includes a first-time treatment of the potential for distortion of the 14C results by organic artifact during sampling, and a re-consideration of the impact on present-day 14 C results of the mid-twentieth century “bomb” effect. Neither was found to have a significant impact on the 14 C results. Concurrent organic and elemental carbon measurements were used to provide estimates of secondary organic aerosol (SOA) in the samples. The results of this study closely resemble those found in other summertime studies near Nashville, Tennesse (1999) and near Houston, Texas (2000) with regard to the joint importance and connection of biogenic PM2.5 and SOA in the Southeastern U.S. during summertime.  相似文献   

15.
The development of a thermal desorption chemical ionization ion trap mass spectrometer for the chemical characterization of ultrafine aerosol particles is reported and first experimental results are presented. Atmospheric particles are size-classified and collected using a unipolar charger, a radial differential mobility analyzer and an electrostatic precipitator, and analyzed after thermal desorption and chemical ionization using an ion trap mass spectrometer. Integration of an ion trap mass spectrometer allows for fast scans of the entire mass spectrum every 0.5 s and bears the potential to identify unknown particulate compounds by tandem mass spectrometry. Particle collection efficiencies range from 90–100% for 25 nm particles to about 50% for 40 nm particles. In the current configuration, the absolute sensitivity of the instrument with regard to ammonium is in the range of 10–100 pg NH + 4 . In ambient samples collected in the Colorado Front Range, NH + 4 was the major signal peak in the positive ion spectrum, and additional minor signals and peak patterns of organic compounds including methylamine were found.  相似文献   

16.
In recent years, Aerodyne aerosol mass spectrometers (AMS) have been used in many locations around the world to study the size-resolved, nonrefractory chemical composition of ambient particles. In order to obtain quantitative data, the mass or (number) of particles detected by the AMS relative to the mass (or number) of particles sampled by the AMS, i.e., the AMS collection efficiency (CE) must be known. Previous studies have proposed and used parameterizations of the AMS CE based on the aerosol composition and sampling line relative humidity. Here, we evaluate these parameterizations by comparing AMS mass concentrations with independent measurements of fine particle volume or particle-into-liquid sampler (PILS) ion chromatography measurements for 3 field campaigns with different dominant aerosol mixtures: (1) acidic sulfate particles, (2) aerosol containing a high mass fraction of ammonium nitrate, and (3) aerosol composed of primarily biomass burning emissions. The use of the default CE of 0.5 for all campaigns resulted in 81–90% of the AMS speciated and total mass concentrations comparing well with fine particle volume or PILS measurements within experimental uncertainties, with positive biases compared with a random error curve. By using composition-dependent CE values (sometimes as a function of size) which increased the CE for the above aerosol types, the fraction of data points within the measurement uncertainties increased to more than 92% and the mass concentrations decreased by ~5–15% on an average. The CE did not appear to be significantly dependent on changes in organic mass fraction although it was substantial in the 3 campaigns (47, 30, and 55%).

Copyright 2012 American Association for Aerosol Research  相似文献   

17.
The Aerodyne Aerosol Mass Spectrometer (AMS) is a useful tool to study ambient particles. To be quantitative, the mass or (number) of particles detected by the AMS relative to the mass (or number) of particles sampled by the AMS, or the AMS collection efficiency (CE), must be known. Here we investigated the effect of particulate phase on AMS CE for ammonium nitrate, ammonium sulfate, mixed ammonium nitrate/ammonium sulfate, and ammonium sulfate particles coated with an organic liquid. Dry, solid ammonium sulfate particles were sampled with a CE of 24 ± 3%. Liquid droplets and solid particles that were thickly coated with a liquid organic were collected with a CE of 100%. Mixed phase particles, solid particles thinly coated with liquid organic, and metastable aqueous ammonium sulfate droplets had intermediate CEs. The higher CEs for liquid particles compared with solid particles were attributed to wet or coated particles tending to stick upon impact with the AMS vaporizer, while a significant fraction of solid particles bounced prior to vaporization/detection. The consistency of single particle signals indicated that the phase (and hence CE) of mixed component particles did not affect the AMS sensitivity to a particular chemical species once volatilization occurred. Particle phase might explain a significant fraction of the variable AMS CEs reported in the literature. For example, ambient particles that were liquid (e.g., composition dominated by ammonium nitrate or acidic sulfate) have been reported to be sampled with 100% CE. In contrast, most ambient particle measurements report CEs of < 100% (typically~ 50%).  相似文献   

18.
We present a new instrument, the Aerosol Chemical Speciation Monitor (ACSM), which routinely characterizes and monitors the mass and chemical composition of non-refractory submicron particulate matter in real time. Under ambient conditions, mass concentrations of particulate organics, sulfate, nitrate, ammonium, and chloride are obtained with a detection limit <0.2 μg/m3 for 30 min of signal averaging. The ACSM is built upon the same technology as the widely used Aerodyne Aerosol Mass Spectrometer (AMS), in which an aerodynamic particle focusing lens is combined with high vacuum thermal particle vaporization, electron impact ionization, and mass spectrometry. Modifications in the ACSM design, however, allow it to be smaller, lower cost, and simpler to operate than the AMS. The ACSM is also capable of routine stable operation for long periods of time (months). Results from a field measurement campaign in Queens, NY where the ACSM operated unattended and continuously for 8 weeks, are presented. ACSM data is analyzed with the same well-developed techniques that are used for the AMS. Trends in the ACSM mass concentrations observed during the Queens, NY study compare well with those from co-located instruments. Positive Matrix Factorization (PMF) of the ACSM organic aerosol spectra extracts two components: hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA). The mass spectra and time trends of both components correlate well with PMF results obtained from a co-located high resolution time-of-flight AMS instrument.  相似文献   

19.
Aerosol carbon concentrations, organic / elemental speciation, and carbon isotopic composition data (13C/12C ratios and 14C content) are reported from the second Rio de Janeiro Aerosol Characterization Study (RIO-JACS II), along with supplemental meteorologic and inorganic aerosol data. These data and their diurnal and weekday / weekend variability are used to identify sources of carbonaceous aerosols in the urban Rio air basin. Specifically, contributions from biogenic sources, anthropogenic emissions (principally transportation sources), and sugar cane-derived alcohol-fueled vehicular emissions to aerosol carbon levels in Rio are estimated from measurements of carbon-14, organic and elemental carbon, and 13C/12C isotopic composition in total aerosol samples collected at two ambient Rio sites and in a heavily traveled tunnel. The major source of elemental (soot) carbon appears to be diesel vehicles, but secondary sources of both biogenic and fossil organic aerosol carbon are indicated.  相似文献   

20.
A vacuum ultraviolet (VUV) photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) has been developed for real-time, quantitative chemical analysis of organic particles in laboratory environments. A nozzle of 0.12 mm orifice combined with an aerodynamic lens assembly and a three stage differential pumping system is used to sample particles at atmospheric pressure. The particles are vaporized on a thermal heater, and then the nascent vapor is photoionized by light generated with a RF-powered VUV lamp. A 0.41 V/cm electric field is used to drive the ions from the ionization region into the ion extraction region where a positive electric pulse repels the ions into a reflectron mass spectrometer. The mass resolution of the spectrometer is ~ 350 and the detection limit is ~ 400 μ m 3 . The signal intensities observed are linear with the mass concentration of aerosols. Oleic acid particles are well quantified with an uncertainty of 15% in mass concentrations ranging from 3.9 mg/m 3 to 392 mg/m 3 . The VUV-ATOFMS has substantial potential for the use in laboratory investigations on organic aerosol chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号