首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report the development and characterization of a proton-transfer-reaction ion trap mass spectrometer for the speciated measurement of organic compounds in atmospheric aerosols and show results from its first field deployment. The instrument uses an aerosol collection inlet to accumulate aerosol mass followed by rapid thermal desorption to volatilize the organic compounds for in situ analysis. We have performed laboratory studies to characterize instrument performance and the instrument was deployed aboard a NOAA research vessel during the Texas Air Quality Study 2006/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS 2006/GoMACCS) in August–September 2006. The laboratory-determined detection limit for glutaric acid in mixed glutaric acid/NH 4 HSO 4 test aerosols was 0.22 ng collected mass, which corresponds to an estimated detection limit of 12 ng m?3 for a 10 min sample based on the instrument sample flow rate of 1.8 L min?1. During TexAQS 2006/GoMACCS, signals well above the detection limit were observed at a number of mass to charge ratios, mostly occurring during an extended period of active pollution photochemistry, but also including detection of possible primary emissions of aerosol-phase pyridine.  相似文献   

2.
A vacuum ultraviolet (VUV) photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) has been developed for real-time, quantitative chemical analysis of organic particles in laboratory environments. A nozzle of 0.12 mm orifice combined with an aerodynamic lens assembly and a three stage differential pumping system is used to sample particles at atmospheric pressure. The particles are vaporized on a thermal heater, and then the nascent vapor is photoionized by light generated with a RF-powered VUV lamp. A 0.41 V/cm electric field is used to drive the ions from the ionization region into the ion extraction region where a positive electric pulse repels the ions into a reflectron mass spectrometer. The mass resolution of the spectrometer is ~ 350 and the detection limit is ~ 400 μ m 3 . The signal intensities observed are linear with the mass concentration of aerosols. Oleic acid particles are well quantified with an uncertainty of 15% in mass concentrations ranging from 3.9 mg/m 3 to 392 mg/m 3 . The VUV-ATOFMS has substantial potential for the use in laboratory investigations on organic aerosol chemistry.  相似文献   

3.
The Aerodyne aerosol mass spectrometer (AMS) employs flash vaporization (600°C) followed by 70-eV electron impact ionization (EI) to detect organic and inorganic aerosols. The signal at mass-to-charge ratio (m/z) 44 (mainly CO 2 + ) is considered the most reliable marker of oxygenated organic aerosol. This study is the first to evaluate the contribution of selected low molecular weight dicarboxylic acids (diacids) and ω-oxocarboxylic acids (ω-oxoacids) to the particle-phase m/z 44 signal of the AMS mass spectrum. Ambient measurements were conducted at a surface site in Tokyo (35°39 N, 139°40 E) during August 3–8, 2003. Diacids and ω-oxoacids were measured using a filter sampling followed by extraction, derivation, and gas chromatograph-flame ionization detector (GC-FID) analysis. The mass concentrations of diacids and ω-oxoacids show tight correlation with the m/z 44 signal (r 2 = 0.85–0.94) during the measurement period. Laboratory experiments were also performed to determine the fragment patterns of selected diacids (C2–C6 diacids and phthalic acids) and ω-oxoacid (glyoxylic acid) in ambient aerosols. Here, we report for the first time that the selected organic acids could account for 14 ± 5% of the observed m/z 44 signal on average during the measurement period. Oxalic acid (C2) is the largest contributor, accounting for 10 ± 4% of the observed m/z 44 signal. These results would be useful for interpreting the m/z 44 signals obtained from ambient measurements in various locations.  相似文献   

4.
Abstract

Atmospheric Aerosols affect Earth’s climate directly by scattering and absorbing solar radiation. In order to study the optical properties of aerosols, we developed a broadband cavity-enhanced spectrometer that uses a supercontinuum laser source and a compact spectrometer, to measure simultaneously the extinction coefficient of aerosols over a broad wavelength region from 420 to 540?nm. The system employs a dual cavity approach with a reference and a sample cavity, accounting for changes in gases background and for laser spectral and intensity fluctuations. We tested the system with aerosolized salt particles and polystyrene latex spheres. We performed calculations using Mie theory and found good agreement with the measured extinction. We also found that the extinction coefficient of non-absorbing aerosol favorably compares with the scattering coefficient measured by a nephelometer. Finally, we generated soot particles and found an extinction Ångström exponent in good agreement with values reported in the literature. Wavelength dependent detection limits (1σ) for the instrument at 5?nm wavelength resolution and for an integration time of ~10?min were found to be in the range ~5?Mm?1 to 13?Mm?1. The broadband dual-cavity extinction spectrometer is simple and robust and might be particularly useful for laboratory measurements of the extinction coefficient of brown carbon aerosol. The laboratory tests suggest that the prototype is promising for future developments of a field-deployable instrument.

Copyright © 2020 American Association for Aerosol Research  相似文献   

5.
The feasibility of UV photoionization for single unipolar charging of nanoparticles at flow rates up to 100 l· min ?1 is demonstrated. The charging level of the aerosol particles can be varied by adjusting the intensity of the UV radiation. The suitability of a UV photocharger followed by a DMA to deliver monodisperse nanoparticles at high aerosol flow rates has been assessed experimentally in comparison to a radioactive bipolar charger ( 85 Kr, 10 mCi). Monodisperse aerosols with particle sizes in the range of 5 to 25 nm and number concentrations between 10 4 and 10 5 cm ?3 have been obtained at flow rates up to 100 l· min ?1 with the two aerosol chargers. In terms of output particle concentration, the UV photoionizer performs better than the radioactive ionizer with increasing aerosol flow rate. Aerosol charging in the UV photoionizer is described by means of a photoelectric charging model that relies on an empirical parameter and of a diffusion charging model based on the Fuchs theory. The UV photocharger behaved as a quasi-unipolar charger for polydisperse aerosols with particles sizes less than 30 nm and number concentrations ~10 7 cm ?3 . Much reduced diffusion charging was observed in the experiments, with respect to the calculations, likely due to ion losses onto the walls caused by unsteady electric fields in the irradiation region.  相似文献   

6.
In this study, aerosol acidity was measured using colorimetry integrated with a Reflectance UV-Visible spectrometer (C-RUV). An inorganic aerosol comprising NH4 +?H+?SO4 2??H2O was generated using an atomizer and introduced into a 2-m3 indoor Teflon film chamber. The produced aerosol was collected on the Teflon-coated glass fiber filter dyed with metanil yellow (MY) as an indicator for measuring proton concentrations in aerosol. A calibration curve for measuring aerosol acidity using the C-RUV technique was obtained through the relationship between the absorbance of the UV-Visible spectrum of the filter sample vs. theoretically calculated proton concentrations using the E-AIM Model II. To develop the C-RUV method under various humidities, the aerosol filter sample was mounted inside a small optical flow chamber controlled for humidity in situ. The humidity effect on the equilibrium thermodynamics of the indicator was theoretically described by inclusion of excess acidity (X) into the calibration curve. The calibration curve obtained from relatively highly acidic aerosols (e.g., H2SO4, NH4H3(SO4)2, and (NH4)7H13(SO4)10) was extrapolated to estimate proton concentrations for weakly acidic aerosols (e.g., NH4HSO4 and (NH4)3H(SO4)2), which is more relevant to the ambient aerosol acidity but has been poorly predicted with typical inorganic thermodynamic models due to the limited experimental data. The C-RUV technique of this study permits one to estimate aerosol acidity for a variety of compositions of the NH4 +?H+?SO4 2??H2O system including both ammonia-poor and ammonia-rich sulfate aerosols.

Copyright 2012 American Association for Aerosol Research  相似文献   

7.
A novel optical instrument has been developed that estimates size segregated aerosol mass concentration (i.e., PM 10 , PM 4 , PM 2.5 , and PM 1 ) over a wide concentration range (0.001–150 mg/m 3 ) in real time. This instrument combines photometric measurement of the particle cloud and optical sizing of single particles in a single optical system. The photometric signal is calibrated to approximate the PM 2.5 fraction of the particulate mass, the size range over which the photometric signal is most sensitive. The electrical pulse heights generated by light scattering from particles larger than 1 micron are calibrated to approximate the aerodynamic diameter of an aerosol of given physical properties, from which the aerosol mass distribution can be inferred. By combining the photometric and optical pulse measurements, this instrument can estimate aerosol mass concentrations higher than typical single particle counting instruments while providing size information and more accurate mass concentration information than traditional photometers. Experiments have shown that this instrument can be calibrated to measure aerosols with very different properties and yet achieve reasonable accuracy.  相似文献   

8.
The development of a thermal desorption chemical ionization ion trap mass spectrometer for the chemical characterization of ultrafine aerosol particles is reported and first experimental results are presented. Atmospheric particles are size-classified and collected using a unipolar charger, a radial differential mobility analyzer and an electrostatic precipitator, and analyzed after thermal desorption and chemical ionization using an ion trap mass spectrometer. Integration of an ion trap mass spectrometer allows for fast scans of the entire mass spectrum every 0.5 s and bears the potential to identify unknown particulate compounds by tandem mass spectrometry. Particle collection efficiencies range from 90–100% for 25 nm particles to about 50% for 40 nm particles. In the current configuration, the absolute sensitivity of the instrument with regard to ammonium is in the range of 10–100 pg NH + 4 . In ambient samples collected in the Colorado Front Range, NH + 4 was the major signal peak in the positive ion spectrum, and additional minor signals and peak patterns of organic compounds including methylamine were found.  相似文献   

9.

The importance of atmospheric aerosols in regulating the Earth's climate and their potential detrimental impact on air quality and human health has stimulated the need for instrumentation which can provide real-time analysis of size resolved aerosol, mass, and chemical composition. We describe here an aerosol mass spectrometer (AMS) which has been developed in response to these aerosol sampling needs and present results which demonstrate quantitative mea surement capability for a laboratory-generated pure component NH4 NO3 aerosol. The instrument combines standard vacuum and mass spectrometric technologies with recently developed aerosol sampling techniques. A unique aerodynamic aerosol inlet (developed at the University of Minnesota) focuses particles into a narrow beam and efficiently transports them into vacuum where aerodynamic particle size is determined via a particle time-of-flight (TOF) measurement. Time-resolved particle mass detection is performed mass spectrometrically following particle flash vaporization on a resistively heated surface. Calibration data are presented for aerodynamic particle velocity and particle collection efficiency measurements. The capability to measure aerosol size and mass distributions is compared to simultaneous measurements using a differential mobility analyzer (DMA) and condensation particle counter (CPC). Quantitative size classification is demonstrated for pure component NH4 NO3 aerosols having mass concentrations 0.25mu g m -3. Results of fluid dynamics calculations illustrating the performance of the aerodynamic lens are also presented and compared to the measured performance. The utility of this AMS as both a laboratory and field portable instrument is discussed.  相似文献   

10.
Aerosols directly affect Earth's climate by scattering and absorbing solar radiation. Although they are ubiquitous in Earth's atmosphere, direct, in situ, wavelength-resolved measurements of aerosol optical properties remain challenging. As a result, the so-called aerosol direct effects are one of the largest uncertainties in predictions of Earth's future climate, and new instrumentation is needed to provide measurements of the absorption of sunlight by atmospheric particles. We have developed a portable, four-wavelength, single-cell photoacoustic spectrometer for simultaneous measurement of aerosol absorption at 406, 532, 662, and 785 nm, with an additional extinction measurement at 662 nm via a built-in cavity ringdown spectrometer. The instrument, dubbed MultiPAS-IV, is compact, robust, has low power requirements, and utilizes a multipass optical arrangement to achieve typical detection limits of 0.6–0.7 Mm?1 for absorption (2σ, 2-min average). Tests with nigrosin aerosols show agreement with Mie theory calculations to within 2%, and comparison with a 7-wavelength aethalometer shows good correlation for ambient (Athens, GA, USA) aerosols. We demonstrate the utility of the broad spectral coverage and sensitivity of the MultiPAS-IV for calculating the absorption Ångström exponent of black carbon (AAEBC, median value of 0.70) in ambient aerosols and use this value to derive the brown carbon contributions to absorption at 406 nm (43%) and 532 nm (13%) and its wavelength dependence (AAEBrC = 6.3).

Copyright © 2018 American Association for Aerosol Research  相似文献   

11.

The first quantitative chemical analysis of polar stratospheric cloud particles has recently been performed using a balloon-borne aerosol composition mass spectrometer (ACMS). A similar spectrometer is presently used in a large cryo-chamber experiment to study low temperature aerosols. All experiments require prior to their employment an accurate calibration to convert mass spectrometer signals into molecular species contained in the aerosols. For the calibration, pure H 2 SO 4 /H 2 O droplets are generated having known composition and diameters between 0.4 w m and 1 w m. The size distribution and the number concentration can be controlled. A flow reactor with a rotating inner glass cylinder placed in a H 2 SO 4 /H 2 O bath solution of known concentration is used to condition the droplets. The residence time of the particles in the flow reactor is long enough that the droplets adopt the composition of the bath solution before entering the ACMS. The result is a linear relationship between the mole ratio of the H 2 SO 4 /H 2 O droplets and the mass spectrometer count rate ratio of water to sulfuric acid. The evaluation takes the dissociation of H 2 SO 4 inside the ACMS into account. The calibration error varies between 3 and 4 wt. % H 2 SO 4 for stratospheric particles with a composition of 30-70 wt. % H 2 SO 4 . Besides the calibration of the instrument, the analysis of the aerosols is a valuable diagnostic tool to investigate impurities in the particles.  相似文献   

12.
A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m?3 can be achieved for most of the elements studied at a flow rate of 1.5 L min?1 with sampling times of 5 min.

Copyright 2012 American Association for Aerosol Research  相似文献   

13.
For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with UV lamps has been constructed and characterized experimentally. The total flow system length is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an “inert” gas (CO 2 ) and particles (atomized NaNO 3 ). Instruments interfaced directly to this flow system include a NO x analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from α-pinene reactions (NO x photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.  相似文献   

14.

In situ atmospheric measurements (notably single-particle mass spectrometry) show that tropospheric aerosols are internally mixed, including both water-soluble and insoluble components. This fact notwithstanding, most process study laboratory work has concentrated on water-soluble electrolytes because the generation of particles composed of both soluble and insoluble components is difficult to achieve in the laboratory. Even so, such an aerosol is essential for accurate process studies of atmospheric aerosols and for the quantitative calibration of single-particle mass spectrometers. In the completed work, particles composed of a (NH4)2SO4-H2SO4-H2O coating on a TiO2, Al2O3, or ZrO2 core are prepared in a novel chemical reactor, which is a tube furnace with a linear-temperature gradient along its longitudinal axis. Reactor controls on the number size distribution are reported, including the linear flow velocity, the SO3 vapor pressure, the NH3 vapor pressure, the reactor temperature gradient, and the presence or the absence of insoluble seed nuclei (viz. TiO2, Al2O3, and ZrO2).  相似文献   

15.

Single particle measurements were made in Baltimore, Maryland from March to December 2002 using a real-time single particle mass spectrometer, RSMS-3. Particle composition classes were identified that indicated how the aerosol composition changed with time. The results were compared with collocated instruments giving particle number concentrations and size distributions, sulfate, nitrate, organic, and elemental carbon mass concentrations and total mass. Examination of these measurements revealed several particulate matter (PM) events in which the 24 h averaged PM 2.5 mass exceeded 30 μ g/m 3 . Three of these events were studied in further detail by comparing number and mass concentrations obtained by RSMS-3 with standard methods. For all three events, the number concentrations obtained with RSMS-3 and a scanning mobility particle sizer were highly correlated (R 2 0.7). For the event characterized by a high sulfate mass concentration, the RSMS-3 provided an accurate measure of time-dependent nitrate and carbon mass concentrations, but not for sulfate and total mass. For the two events characterized by high carbon mass concentrations (one from a transcontinental wildfire and the other from stagnation during a period of high traffic), RSMS-3 provided an accurate measure of time-dependent nitrate mass, carbon mass and total mass when the aerosol was not dominated by particles outside the size limit of RSMS-3. While the time dependencies were strongly correlated, the absolute mass or number concentrations determined by RSMS-3 were sometimes off by a constant value, which permitted the relative detection efficiencies of some particle classes to be estimated. Other factors that inhibit reconciliation of mass- and number- based concentration measurements are discussed including the difficulty of detecting ammonium sulfate by laser ablation/ionization and the varying size ranges of different particle measurement methods.  相似文献   

16.

A continuous 2-step aerosol process is described for the generation of SiO2 supported palladium (Pd/SiO 2 ) catalyst particles from metal-organic (MO) precursors. In a first flow reactor, submicron SiO 2 support particles are generated by chemical vapor synthesis (CVS) from TEOS [tetraethyl(ortho)silicate]. These silica particles are then coated with palladium in a second flow reactor by chemical vapor deposition (CVD) from ( η 3 -allyl)( η 5 -cyclopentadienyl)palladium [Pd(allyl)Cp].

The sublimation and decomposition behavior of both metal-organic precursors was measured by thermo-gravimetric analysis (TGA) and FTIR; the vapor concentration of Pd(allyl)Cp was determined for the range of process conditions used.

Each process step was characterized both with regard to aerosol properties as well as morphology and composition of individual particles. This was done with a variety of on-line and off-line techniques including electrical mobility analysis, TEM, energy-dispersive X-ray analysis, and physisorption methods like BET. The coating thickness was also measured on line by a high-resolution single-stage impactor (SS-LPI) technique.

It is shown that the continuous CVS process can be set to generate constant concentrations and sizes of silica support particles with a specific surface area of 350 m 2 g ?1 , which are carbon free and non-porous. The silica particles can be restructured to spheres if desired. The continuous palladium CVD process was able to generate variable and defined coatings of narrowly distributed Pd nanoparticles with mean sizes between 0.75 and about 3.5 nm. The on-line measurements by SS-LPI showed equivalent coating thicknesses from 0.3 nm up to 3 nm, which were stable over several hours.  相似文献   

17.
This study describes the characterization of a H2O-dispersible, highly-absorbing carbonaceous nanomaterial that mimics the morphological and spectroscopic properties of aged black carbon aerosol (BC). When atomized from aqueous suspension, the material forms particles with a collapsed morphology resembling aged soot or BC. The material is >90 percent elemental carbon and has a mass absorption coefficient (MAC) and spectral dependence consistent with BC values published in the literature. The MAC at a wavelength of 532?nm decreased monotonically from 8.5 to 5.8?m2 g?1 for aerosol with mobility diameters between 150?nm to 500?nm. The single scatter albedo (SSA) at wavelengths of 405?nm and 660?nm was a function of both wavelength and mobility diameter and increased from 0.1 to 0.4 with mobility diameters between 150?nm to 400?nm. The Ångström absorption exponent (AAE) between λ?=?405?nm and 780?nm decreased monotonically from 1.4 to 0.6 for aerosol with mobility diameters between 150?nm to 400?nm. We demonstrate that this material can be used for fast, efficient calibration of aerosol photoacoustic spectrometers and for evaluation of spectroscopic-based measurements of aerosol mass concentration using in-situ photoacoustic spectroscopy (PAS) and filter-based light attenuation measurements for up 50?µg m?3, enabling inter-method and inter-laboratory instrument comparison.

Copyright © 2019 American Association for Aerosol Research  相似文献   

18.

We report the development and first field deployment of a new version of the Aerosol Mass Spectrometer (AMS), which is capable of measuring non-refractory aerosol mass concentrations, chemically speciated mass distributions and single particle information. The instrument was constructed by interfacing the well-characterized Aerodyne AMS vacuum system, particle focusing, sizing, and evaporation/ionization components, with a compact TOFWERK orthogonal acceleration reflectron time-of-flight mass spectrometer. In this time-of-flight aerosol mass spectrometer (TOF-AMS) aerosol particles are focused by an aerodynamic lens assembly as a narrow beam into the vacuum chamber. Non-refractory particle components flash-vaporize after impaction onto the vaporizer and are ionized by electron impact. The ions are continuously guided into the source region of the time-of-flight mass spectrometer, where ions are extracted into the TOF section at a repetition rate of 83.3 kHz. Each extraction generates a complete mass spectrum, which is processed by a fast (sampling rate 1 Gs/s) data acquisition board and a PC. Particle size information is obtained by chopping the particle beam followed by time-resolved detection of the particle evaporation events. Due to the capability of the time-of-flight mass spectrometer of measuring complete mass spectra for every extraction, complete single particle mass spectra can be collected. This mode provides quantitative information on single particle composition. The TOF-AMS allows a direct measurement of internal and external mixture of non-refractory particle components as well as sensitive ensemble average particle composition and chemically resolved size distribution measurements. Here we describe for the first time the TOF-AMS and its operation as well as results from its first field deployment during the PM 2.5 Technology Assessment and Characterization Study—New York (PMTACS-NY) Winter Intensive in January 2004 in Queens, New York. These results show the capability of the TOF-AMS to measure quantitative aerosol composition and chemically resolved size distributions of the ambient aerosol. In addition it is shown that the single particle information collected with the instrument gives direct information about internal and external mixture of particle components.  相似文献   

19.
The collection efficiency (CE) of the aerosol mass spectrometer (AMS) for chamber-generated secondary organic aerosol (SOA) at elevated mass concentrations (range: 19–207 μg m?3; average: 64 μg m?3) and under dry conditions was investigated by comparing AMS measurements to scanning mobility particle sizer (SMPS), Sunset semi-continuous carbon monitor (Sunset), and gravimetric filter measurements. While SMPS and Sunset measurements are consistent with gravimetric filter measurements throughout a series of reactions with varying parent hydrocarbon/oxidant combinations, AMS CE values were highly variable ranging from unity to <15%. The majority of mass discrepancy reflected by low CE values does not appear to be due to particle losses either in the aerodynamic lens system or in the vacuum chamber as the contributions of these mechanisms to CE are low and negligible, respectively. As a result, the largest contribution to CE in the case of chamber-generated SOA appears to be due to particle bounce at the vaporizer surface before volatilization, which is consistent with earlier studies that have investigated the CE of ambient and select laboratory-generated particles. CE values obtained throughout the series of reactions conducted here are also well correlated with the f 44/f 57 ratio, thereby indicating both that the composition of the organic fraction has an important impact on the CE of chamber-generated SOA and that this effect may be linked to the extent to which the organic fraction is oxidized.

Copyright 2013 American Association for Aerosol Research  相似文献   

20.
Abstract

An instrumental trifecta now exists for aerosol separation and classification by aerodynamic diameter (D ae), mobility diameter (D m) and mass (m) utilizing an aerodynamic aerosol classifier (AAC), differential mobility analyzer (DMA) and aerosol particle mass analyzer (APM), respectively. In principle, any combination of two measurements yields the third. These quantities also allow for the derivation of the particle effective density (ρ eff) and dynamic shape factor (χ). Measured and/or derived deviations between tandem measurements are dependent upon the configuration but are generally <10%. Notably, nonphysical values of χ (<1) and ρ eff (>bulk) were determined by the AAC-APM. Harmonization of the results requires the use of χ in the determination of m and D m from the AAC-DMA and AAC-APM requiring either a priori assumptions or determination from another method. Further errors can arise from assuming instead of measuring physical conditions – e.g., temperature and pressure affect the gas viscosity, mean free path and the Cunningham slip correction factor therefore impacting D m and D ae – but are expected to have a smaller impact than χ. Utilizing this triplet of instrumentation in combination allows for quantitative determination of χ and the particle density (ρ p). If the bulk density is known or assumed, then the packing density can be determined. The χ and ρ p were determined to be 1.10?±?0.03 and (1.00?±?0.02) g cm?3, respectively, for a water stabilized black carbon mimic that resembles aged (collapsed) soot in the atmosphere. Assuming ρ bulk = 1.8?g cm?3, a packing density of 0.55?±?0.02 is obtained.

Copyright © 2020 American Association for Aerosol Research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号