首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

High time resolution measurements of nitrate-containing particles were made in Riverside, CA using an automated particle nitrate monitor and an aerosol time-of-flight mass spectrometer. The automated particle nitrate monitor provides quantitative data on the concentration of total particle-bound nitrate with a temporal resolution of 10 min. The aerosol time-of-flight mass spectrometer provides continuous data on aerodynamic size and single particle chemical composition. Data sets acquired with the two instruments are compared for a two-day intensive sampling period in August 1997 as part of the 1997 Southern California Ozone Study-North American Research Strategy for Tropospheric Ozone (SCOS97-NARSTO). Temporal variations in the number of nitrate-containing particles observed by the mass spectrometry system track (R2 0.73) the nitrate mass concentrations measured by the automated particle nitrate monitor. Both systems detected four periods of elevated nitrate concentrations of several hours duration. For these periods, the nitrate mass concentrations as measured by the automated particle nitrate monitor were similar, ranging from 11 to 19 mu g m3. However, the particle size and single particle composition of nitrate-containing particles as measured by the aerosol time-of-flight mass spectrometer were distinctly different. Specifically, the nitrate maxima observed in the midmorning hours were characterized by supermicrometer nitrate particles associated with either ammonium and organic species or sodium. The afternoon maxima were characterized by submicrometer ammonium nitrate particles, most of which contained organic material.  相似文献   

2.

Due to the lake of in-situ aerosol particle analysis systems, aerosol samples are taken and analyzed off-line. For detailed analysis of particle properties such as shape, morphology, and composition, off-line operating analytical tools like light microscopes, scanning electron microscopes (SEM), total reflection x-ray fluorescence (TXRF), and so on are used. The analysis must be performed on a representative sample of particles homogeneously deposited on a flat sample plate. This avoids sample preparation steps which may change the sample. In this paper we describe the design, construction, and evaluation of a continuous sampling device that deposits gasborne particles on an analytically suitable sample plate. The collection efficiency and the deposition pattern were optimized using a numerical model and experiments. It turned out that representative samples appropriate for further analysis can be taken in the particle size range from 0.03 mu m < Dp < 10 mu m. Additionally, the sampling efficiency was investigated for particles smaller than 0.03 mu m using electrical and non-electrical deposition mechanisms like diffusion and thermophoresis. The investigations performed demonstrate that the designed electrostatic precipitator (ESP) is a very useful tool for homogeneous particle deposition on analytically suitable flat sample plates and can be used as a back-up filter. Further, the ESP especially can be used in combination with a differential mobility analyzer (DMA) if detailed investigations of a narrow particle size range of a polydisperse aerosol are required.  相似文献   

3.

An instrument is described that provides real-time chemical analysis of the composition of individual aerosol particles. A differentially pumped aerosol inlet transfers particles from the ambient atmosphere into the source region of a time-of-flight mass spectrometer where they impact on a heated surface and the resulting vapors are ionized by electron ionization prior to mass analysis. Labora tory calibration studies demonstrated that the instrument was capable of detecting particles with diameters greater than approximately 0.4mu m. The instrument was operated on the NASA DC-8 research aircraft as part of the 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission with the intent of studying the chemical composition of upper tropospheric particles. More than 25,000 aerosol particle mass spectra were recorded during 19 mission flights. Although approximately 120 of those spectra showed clear evidence of sulfate, nitrate, and other inorganic materials, the remaining spectra contained only mass peaks consistent with water. Moreover, particles were detected only while traversing clouds. These results are not consistent with expectations of the size, quantity, or composition of upper tropospheric particles. It is likely, however, that a subisokinetic aircraft sampling inlet resulted in the collection of only very large ice particles. This situation would account for both the observed preponder ance of water-only spectra and the apparent lack of particles outside of clouds. Despite the sampling problem, the instrument was able to chemically speciate aerosols directly sampled from a medium altitude aircraft. These represent the first examples of aerosol particles chemically speciated in real time from an airborne platform.  相似文献   

4.

The importance of atmospheric aerosols in regulating the Earth's climate and their potential detrimental impact on air quality and human health has stimulated the need for instrumentation which can provide real-time analysis of size resolved aerosol, mass, and chemical composition. We describe here an aerosol mass spectrometer (AMS) which has been developed in response to these aerosol sampling needs and present results which demonstrate quantitative mea surement capability for a laboratory-generated pure component NH4 NO3 aerosol. The instrument combines standard vacuum and mass spectrometric technologies with recently developed aerosol sampling techniques. A unique aerodynamic aerosol inlet (developed at the University of Minnesota) focuses particles into a narrow beam and efficiently transports them into vacuum where aerodynamic particle size is determined via a particle time-of-flight (TOF) measurement. Time-resolved particle mass detection is performed mass spectrometrically following particle flash vaporization on a resistively heated surface. Calibration data are presented for aerodynamic particle velocity and particle collection efficiency measurements. The capability to measure aerosol size and mass distributions is compared to simultaneous measurements using a differential mobility analyzer (DMA) and condensation particle counter (CPC). Quantitative size classification is demonstrated for pure component NH4 NO3 aerosols having mass concentrations 0.25mu g m -3. Results of fluid dynamics calculations illustrating the performance of the aerodynamic lens are also presented and compared to the measured performance. The utility of this AMS as both a laboratory and field portable instrument is discussed.  相似文献   

5.

We report the development and first field deployment of a new version of the Aerosol Mass Spectrometer (AMS), which is capable of measuring non-refractory aerosol mass concentrations, chemically speciated mass distributions and single particle information. The instrument was constructed by interfacing the well-characterized Aerodyne AMS vacuum system, particle focusing, sizing, and evaporation/ionization components, with a compact TOFWERK orthogonal acceleration reflectron time-of-flight mass spectrometer. In this time-of-flight aerosol mass spectrometer (TOF-AMS) aerosol particles are focused by an aerodynamic lens assembly as a narrow beam into the vacuum chamber. Non-refractory particle components flash-vaporize after impaction onto the vaporizer and are ionized by electron impact. The ions are continuously guided into the source region of the time-of-flight mass spectrometer, where ions are extracted into the TOF section at a repetition rate of 83.3 kHz. Each extraction generates a complete mass spectrum, which is processed by a fast (sampling rate 1 Gs/s) data acquisition board and a PC. Particle size information is obtained by chopping the particle beam followed by time-resolved detection of the particle evaporation events. Due to the capability of the time-of-flight mass spectrometer of measuring complete mass spectra for every extraction, complete single particle mass spectra can be collected. This mode provides quantitative information on single particle composition. The TOF-AMS allows a direct measurement of internal and external mixture of non-refractory particle components as well as sensitive ensemble average particle composition and chemically resolved size distribution measurements. Here we describe for the first time the TOF-AMS and its operation as well as results from its first field deployment during the PM 2.5 Technology Assessment and Characterization Study—New York (PMTACS-NY) Winter Intensive in January 2004 in Queens, New York. These results show the capability of the TOF-AMS to measure quantitative aerosol composition and chemically resolved size distributions of the ambient aerosol. In addition it is shown that the single particle information collected with the instrument gives direct information about internal and external mixture of particle components.  相似文献   

6.

Aerosol particles formed from the bursting of small gas bubbles emitted from the anode and cathode electrodes during electrolytic chrome plating were measured with a laboratory apparatus. The measured aerosol particle emission factors were about 5.15 mg particles/amp-hour or 3.81 mg Cr+ 6/amp hour. The cathode gases generated more particles on a gas volume basis with 20 mg particles/liter hydrogen gas evolved from the cathode compared to 1 mg particles/liter oxygen gas evolved from the anode. With about 35% more cathode hydrogen gas evolved than anode oxygen gas evolved and with the much greater particle emissions caused by the cathode hydrogen on a gas volumetric basis, the aerosol particle emissions from the cathode bubble bursting were about 97% of the total particle mass emissions. The particle size distributions measured from the cathode had a mass median aerodynamic diameter of about 38 μ m whereas the anode mass median particle diameter was about 8 μ m. The anode particle mass size distribution was bimodal with peaks at about 0.6 and 24 μ m diameter. The cathode particle mass size distribution was trimodal with peaks at 2.5, 9, and about 60 μ m diameter.  相似文献   

7.
The goals of the experiments described herein involve determining in real time the size, concentration enrichment, and chemical composition of coarse-mode (<2.5 μm) and fine-mode (>2.5 μm) particles within the nonconcentrated and concentrated flows of a coarse particle concentrator used for human exposure studies. The coarse particle concentrator was intended to concentrate ambient particles in the PM10–2.5 size range before sending them into a human exposure chamber. The aerodynamic size and chemical composition of particles in the upstream and downstream flows of the concentrator were monitored with an aerosol time-of-f1ight mass spectrometer (ATOFMS) for fixed time intervals over the course of three days. Based on the ATOFMS results, it was found that there was no change in the composition of the ten major particle types observed in the upstream and downstream flows of the concentrator under normal operating conditions. Furthermore, no new particle types were detected downstream that were not detected upstream of the concentrator. A characterization of the aerosol chemical composition and its dependence on sampling conditions is also discussed. Aerosol size distributions were measured with three aerodynamic particle-sizing (APS) instruments sampling simultaneously from different regions of the concentrator. The APS size distributions were used to scale ATOFMS data and measure the ambient concentration factors for the coarse particle concentrator and the exposure chamber. The average concentration factor (ratio of inlet number concentration to the outlet number concentration) for the particle concentrator was 60 + 17 for the 2.5–7.2 μm size range before dilution and transport to the exposure chamber. It was observed that not only were coarse particles being concentrated but fine (<2.5 μm) particles were being concentrated as well, with concentration factors ranging from 2–46 for aerodynamic particle sizes from 0.54–2.5 μm.  相似文献   

8.

The chemical reproducibility of single particle mass spectrometry (SPMS) instruments is complicated by numerous factors, including uncertainties in the laser desorption/ionization process leading to shot-to-shot variability in single particle mass spectra, excessive fragmentation of carbonaceous species, as well as a relatively low duty cycle (1-10 Hz). With source apportionment being a major application for these instruments, proper source profiles must be determined from major aerosol sources. This brief communication illustrates, for the first time, the chemical reproducibility of an aerosol time-of-flight mass spectrometer (ATOFMS) sampling highly transient heavy duty diesel (HDD) truck exhaust emissions from a transportable heavy duty vehicle emissions testing laboratory, which includes a dilution tunnel as well as a residence chamber.In addition to examining the reproducibility of ATOFMS using a complex mixture of "real" aerosol particles, the chemical reproducibility of a dynamometer system at the single particle level is tested. The results presented indicate that for future studies, truck-to-truck and source-to-source variations can be attributed to chemical differences and not just to innate variations due to instrumental variability.  相似文献   

9.

The SPAL collector is a versatile impactor-type aerosol collector with rotatable substrate plates and radially aligned slot orifices. The airflow, controlled with a critical orifice at the last stage, becomes choked for an exit pressure of 0.5 atm or less. Monodisperse latex and methylene blue aerosols sampled on coated and uncoated aluminum foil substrates were used to determine the particle cutpoint diameters of each stage (9.0-0.07 mu m aed), loss on walls (3-7% for 0.054 mu m particles), and overall efficiency (97% from 0.3 to 7 mu m). Quantitative measurements were made with a spectrophotometer after recovering aerosols with a water and surfactant solution and with a semiautomated particle counting system using phase contrast microscopy. The experimental cutpoints and mea sured interstage pressures compare well with theory.  相似文献   

10.
We developed a laser induced incandescence–mass spectrometric analyzer (LII-MS) for online measurements quantifying the aerosol chemical compositions with respect to the mixing state of black carbon (BC). The LII-MS is developed as a tandem series comprising an LII chamber to detect and vaporize BC-containing particles and a particle trap laser desorption mass spectrometer (PT-LDMS: Takegawa et al. 2012). The PT-LDMS collects aerosol particles transferred from the LII chamber and quantifies the chemical compositions. A newly designed collection probe, coupled with the sheath-air inlet nozzle of the LII chamber, enables a high throughput of aerosol particles without significant dilution. Total aerosol particles can be analyzed in the PT-LDMS by turning off the laser (MS mode), and the aerosol particles externally mixed with BC can be analyzed by turning on the laser (LII-MS mode). The difference in the PT-LDMS signals between the MS and LII-MS modes yields the chemical composition of materials internally mixed with BC. Performance of the developed instrument was evaluated in the laboratory by generating BC particles internally-mixed with oleic acid (OL) and BC particles externally mixed with ammonium sulfate particles. Preliminary results from ambient measurements are also presented and discussed.

Copyright 2014 American Association for Aerosol Research  相似文献   


11.
We have developed a new analyzer for the online measurement of aerosol composition: a particle trap laser desorption mass spectrometer (PT-LDMS). The main components of the instrument include an aerodynamic lens, a particle trap enclosed by a quartz cell, a quadrupole mass spectrometer (QMS), a vacuum chamber incorporating the above components, and a carbon dioxide (CO2) laser (wavelength 10.6 μm). The aerodynamic lens generates a beam of submicron particles, which is focused on a small area on the particle trap. The particle trap consists of custom-made mesh layers, the structure of which was newly designed using engineering techniques for micro electro mechanical systems (MEMS). A large number of mesh frames are well arranged in the trap, and particles can be efficiently captured after multiple impactions on the frames. The CO2 laser is used to vaporize aerosol compounds captured on the particle trap. The evolved gas confined within the quartz cell is analyzed using an electron impact ionization (EI) QMS to quantify the chemical composition of the particles. The concept of the PT-LDMS and first evaluation of its performance are presented, specifically focusing on the structure and performance of the particle trap.  相似文献   

12.

Understanding the fate of particles indoors is important for human health assessment because deposited particles, unless resuspended, cannot be inhaled. To complement studies in real buildings, where control of variables is often difficult, an experimental test chamber facility (8 m 3 ) was designed to study particle deposition under well-stirred conditions using monodisperse tracer aerosol particles in the range of 0.7 to 5.4 w m. The use of neutron-activatable tracers facilitated simultaneous surface sampling and aerosol concentration decay measurements. Aerosol deposition on both smooth surfaces and regular arrays of three-dimensional roughness elements under 3 different airflow speeds was investigated in the test chamber.It was expected that the texture of the chamber surface would significantly influence particle deposition, but some counterintuitive results were observed: under the lowest airflow condition and for the smallest particle size, particle deposition onto rough samples was found to be less than on the corresponding smooth surfaces. The ratio of particle deposition on rough surfaces relative to smooth surfaces increased with particle size and magnitude of airflow. For the largest particle size and airflow speed, particle deposition on the rough surfaces exceeded that on the smooth surfaces by a factor of 3.  相似文献   

13.
A vacuum ultraviolet (VUV) photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS) has been developed for real-time, quantitative chemical analysis of organic particles in laboratory environments. A nozzle of 0.12 mm orifice combined with an aerodynamic lens assembly and a three stage differential pumping system is used to sample particles at atmospheric pressure. The particles are vaporized on a thermal heater, and then the nascent vapor is photoionized by light generated with a RF-powered VUV lamp. A 0.41 V/cm electric field is used to drive the ions from the ionization region into the ion extraction region where a positive electric pulse repels the ions into a reflectron mass spectrometer. The mass resolution of the spectrometer is ~ 350 and the detection limit is ~ 400 μ m 3 . The signal intensities observed are linear with the mass concentration of aerosols. Oleic acid particles are well quantified with an uncertainty of 15% in mass concentrations ranging from 3.9 mg/m 3 to 392 mg/m 3 . The VUV-ATOFMS has substantial potential for the use in laboratory investigations on organic aerosol chemistry.  相似文献   

14.

Terpene/ozone reactions produce gas- and condensed-phase products and thus contribute to both indoor and outdoor aerosol. These reactions may be important in indoor settings, where terpenes are generated from indoor sources and ambient ozone can reach significant levels. Moreover, airway irritation has been observed in mice exposed to terpene oxidation products (OPs). The aim of this study was to characterize a system for generating and quantifying ultrafine particles formed through terpene/ozone reactions in preparation for inhalation toxicology experiments. Two common monoterpenes, f -pinene and d -limonene, and a hemiterpene, isoprene, were investigated. Ozone and gas-phase terpene were introduced continuously into a reaction flow tube, from which reaction products entered a plexiglass chamber. Particle number, mass, and size distribution (~15-750 nm) were monitored in the chamber for various reactant concentrations and air exchange rates (AERs). In all experiments, ozone was the limiting reagent and the reaction rate was much more rapid than the AER. Particles formed rapidly and in high concentrations in the pinene and limonene systems. Particle formation was slower in the isoprene system and fewer particles were formed; moreover, particle diameters were smaller. In all 3 systems, progressive growth of particles was observed due to condensation and coagulation processes. The isoprene system displayed instability with respect to aerosol characteristics and did not reach steady-state conditions. In the pinene system, ozone concentration was a strong predictor of steady-state particle number and mass concentration and particle diameter. The particle number was greater at higher AERs, but particles were smaller. This study is the first to incorporate measurement of ultrafine particles formed from terpene/ozone reactions into a controlled exposure chamber setting. Following system characterization, we will conduct mouse exposures to further investigate the respiratory effects of gas- and particle-phase terpene OPs.  相似文献   

15.

Laser-induced breakdown spectroscopy (LIBS) was evaluated as a means for quantitative analysis of the size, mass, and composition of individual micron-to submicron-sized aerosol particles over a range of well-characterized experimental conditions. Conditional data analysis was used to identify LIBS spectra that correspond to discrete aerosol particles under low aerosol particle loadings. The size distributions of monodisperse particle source flows were measured using the LIBS technique for calcium- and magnesium-based aerosols. The resulting size distributions were in good agreement with independently measured size distribution data. A lower size detection limit of 175 nm was determined for the calcium- and magnesium-based particles, which corresponds to a detectable mass of approximately 3 femtograms. In addition, the accuracy of the LIBS technique for the interference-free analysis of different particle types was verified using a binary aerosol system of calcium-based and chromium particles.  相似文献   

16.

Previous measurements of the mass absorption efficiency of ambient elemental carbon (EC) indicate that EC optical properties vary with location and imply that the variations may be due to different particle size distributions and composition at different locations (Liousse et al. 1993). For this reason, optical properties appropriate to regional characteristics of EC, determined over the wavelengths of light significant for aerosol extinction, are needed to adequately model the radiative impact of this species. Here we present a method for measuring one of these properties, the mass extinction efficiency (m 2 g -1 ) of EC, as a function of particle size and wavelength of light. In this method, size segregated atmospheric aerosol particles are collected on Nucleopore filters. The filter samples are extracted in a mixture of 30% isopropanol and 70% deionized distilled water to form a suspension of insoluble EC particles. Transmission of light through the extraction liquid is measured over wavelengths from 300 to 800 nm using a spectrophotometer. The transmission measurements taken through the liquid extract are mathematically converted to EC extinction coefficients in air. Although the conversion is a function of a parameter determined from Mie theory, which assumes monodisperse, spherical particles with a known density and refractive index relative to the medium, the method is shown to be reasonably insensitive to these assumptions. Using EC mass concentration obtained from a parallel sample, the EC mass extinction efficiency (in air) is calculated from the extinction coefficient (in air). This method is applied to a rural Midwestern, midcontinental aerosol. In general, the EC mass extinction efficiency in air is highest at lower wavelengths and for smaller particles. For particles with diameters between 0.09 and 2.7 w m and an assumed density of 1.9 g cm -3 , the measured EC mass extinction efficiency at 550 nm ranges from 7.3 to 1.7 m 2 g -1 .  相似文献   

17.

The formation of secondary organic aerosol (SOA) from reactions of O 3 with g -pinene, an exocyclic monoterpene prominent in the ambient atmosphere, was studied in an environmental chamber using a thermal desorption particle beam mass spectrometer for chemical analysis and a scanning mobility particle sizer for aerosol yield measurements. Potential reaction pathways for SOA formation were investigated in a series of experiments conducted using various scavengers for stabilized Criegee intermediates (SCI) and OH radicals, both of which are formed in the reaction. The major particulate products were compounds less volatile than pinic acid, a low-volatility dicarboxylic acid that was identified but was a minor component of the aerosol. The aerosol mass spectrum and yield were relatively insensitive to the identity of the SCI scavenger, indicating that association reactions of scavengers with SCI were not important in SOA formation. The mass spectrum of the aerosol also did not depend on the identity of the OH radical scavenger. SOA yields, on the other hand, were significantly larger when cyclohexane was used as an OH radical scavenger, compared to those measured for reactions conducted using alcohols or aldehydes. This dependence indicates that radical pathways play a major role in SOA formation in this reaction. Furthermore, the results show that reaction of OH radicals with scavengers used in laboratory studies can perturb the radical chemistry in such a way as to significantly impact SOA yields. We propose that this effect is due to increases in the ratio [hydroperoxy radicals]/[organic peroxy radicals] when alcohols or aldehydes are used as OH radical scavengers. This apparently enhances the rate of reaction of hydroperoxy radicals with key radical intermediates in SOA formation, effectively short-circuiting the reaction system into pathways leading to more volatile products.  相似文献   

18.
A key atmospheric process that is studied in laboratory chambers is the oxidation of volatile organic compounds to form low volatility products that condense on existing atmospheric particles (or nucleate) to form organic aerosol, so-called secondary organic aerosol. The laboratory chamber operates as a chemical reactor, in which a number of chemical and physical processes take place: gas-phase chemistry, transport of vapor oxidation products to suspended particles followed by uptake into the particles, deposition of vapors on the walls of the chamber, deposition of particles on the walls of the chamber, and coagulation of suspended particles. Understanding the complex interplay among these simultaneous physicochemical processes is necessary in order to interpret the results of chamber experiments. Here we develop and utilize a comprehensive computational model for dynamics of vapors and particles in a laboratory chamber and analyze chamber behavior over a range of physicochemical conditions.

Copyright © 2018 American Association for Aerosol Research  相似文献   


19.
Particle number, size, and composition information is important for constraining aerosol effects on air quality, climate, and health. The composition of particles, especially from vehicular sources, may contain insoluble black carbon (BC) materials that modify particle nucleating properties. In this study, we develop a method to provide quantitative and real-time information on the water-insoluble components found in near-road aerosol sources. A water-based condensation particle counter (W-CPC) and a butanol-based CPC (B-CPC) were used to measure the particle number concentration. Both instruments were coupled with a scanning mobility particle sizer (SMPS) to record the particle number and size data. Real time water-insoluble particle mass was estimated from the difference in particle number concentration between the two CPCs; theoretical water-insoluble mass was calculated from the ideal hygro- scopicity single parameter κ-values. This online method was calibrated with test compounds and then applied to data collected from a field study. Ambient aerosol was sampled from a monitoring station located 15 m from the I-710 freeway in Long Beach, California. The results show that near-roadway emissions contain water-insoluble (BC and non-BC) components. Particle number and BC concentrations increase after changes in wind direction near the freeway on both weekday and weekend measurements. Particles were less hygroscopic (κ?~?0.2) before changes in wind direction from downwind to upwind of the freeway (κ?>?0.6). Rapid changes in water-solubility can be captured with this technique. By assuming a two-component mixture, the water-insoluble mass fractions were inferred. BC shows a positive correlation with the water-insoluble mass however its presence may not account for the entire water-insoluble mass from the near-roadway source.

Copyright 2014 American Association for Aerosol Research  相似文献   

20.
A model is presented to describe the collection of ultrafine particles by the UNC passive aerosol sampler. In this model, particle deposition velocity is calculated as a function of particle size, shape and other properties, as well as a function of sampler geometry. To validate the model, deposition velocities were measured for ultrafine particles between 15 and 90 nm in diameter. Passive aerosol samplers were placed in a 1 m 3 test chamber and exposed to an ultrafine aerosol of ammonium fluorescein. SEM images of particles collected by the samplers were taken at 125 kX magnification. Experimental values of deposition velocity were then determined using data from these images and from concurrent measurements of particle concentration and size distribution taken with an SMPS. Deposition velocities from the model and from the experiments were compared and found to agree well. These results suggest that the deposition velocity model presented here can be used to extend the use of the UNC passive aerosol sampler into the ultrafine particle size region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号