首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A selective thermal oxidation method was developed for the speciation of carbonaceous aerosols collected on filters into organic carbon (OC) and elemental carbon (EC). The technique is based on studying the thermal oxidation of microcrystalline graphite by MnO2as well as various organic compounds. The procedure uses a modified Dohrmann DC-52 carbon analyzer with a flame ionization detector to detect the CO2resulting from the oxidation as methane after catalytic conversion. The results led to the selection of 525 °C as the optimal temperature for the oxidation of OC while leaving EC intact. After the organic oxidation, the sample is heated at 850° C, at which EC is oxidized rapidly and completely by MnO2. Carbonates that may be present in either the particles or the filter medium are removed by acidification and heating to ~ 120°C prior to performing the organic and EC measurements. Analysis of split ambient particulate samples in which the OC levels had been reduced by solvent extraction produced EC results statistically the same as the original untreated samples. These results suggest that the speciation is not sensitive to the level of organics in the sample. During the Carbonaceous Species Methods Comparison Study (CSMCS) in which the participants analyzed 20 blind samples, with four being triplicates, this technique yielded results in good agreement with the average results of the participants, with coefficients of variation (CV) derived from the triplicate analysis being 2.1%, 2.6%, and 8.1%, respectively, for total, organic, and elemental carbon.  相似文献   

2.

The chemical, physical, and morphological complexity of atmospheric aerosol elemental carbon (EC) presents major problems in assuring measurement accuracy. Since EC and black carbon are often considered equivalent, methods based on thermal-optical analysis (TOA) are widely used for EC in ambient air samples because no prior knowledge of the aerosol's absorption coefficient is required. Nevertheless, different TOA thermal desorption protocols result in wide EC-to-total-carbon (TC) variation. We created three response surfaces with the following response variables: EC/TC, maximum laser attenuation in the He phase ( L max ), and laser attenuation at the end of the He phase ( L He4 ). A two-level central-composite factorial design comprised of four factors considered the temperatures and durations of all desorption steps in TOA's inert (He) phase and the initial step in TOA's oxidizing (O 2 -He) phase. L max was used to assess the positive bias caused by nonvolatile unpyrolized organic carbon (OC char) being measured as native EC. A negative bias that the attenuated laser response does not detect is caused by the loss of native EC in the He phase. L He4 was used as a surrogate indicator for the loss of native EC in the He phase. The intersection between the L max and L He4 surfaces revealed TOA conditions where both the production of OC char in the He phase was maximized and the loss of native EC in the He phase was minimized, therefore leading to an optimized thermal desorption protocol. Based on the sample types used in this study, the following are generalized optimal conditions when TOA is operated in the fixed-step-durations, laser-transmission mode (i.e., TOT): step 1 in He, 190°C for 60 s; step 2 in He, 365°C for 60 s; step 3 in He, 610°C for 60 s; step 4 in He, 835°C for 72 s. For steps 1-4 in O 2 -He, the conditions are 550°C for 180 s, 700°C for 60 s, 850°C for 60 s, and 900°C for 90 s to 120 s, respectively.  相似文献   

3.
Organic carbon (OC) and elemental carbon (EC) are operationally defined due to the lack of definitive standards. Consequently, their quantification is protocol dependent. IMPROVE and NIOSH are the two widely used thermal/optical protocols for OCEC analysis, differing in temperature programs and in the optical method for charring correction. The IMPROVE protocol is often implemented on a DRI analyzer while the NIOSH protocol is often implemented on a Sunset Laboratory Analyzer. Evaluation of the implementation of the IMPROVE protocol on the Sunset Laboratory analyzer or implementation of the NIOSH or NIOSH-derived protocols on the DRI analyzer has rarely been reported. We analyzed OC and EC in about 100 ambient samples collected in the Pearl River Delta in China by implementing the IMPROVE protocol and a NIOSH-derived (ACE-Asia) protocol on both a DRI Model 2001 analyzer and a Sunset Laboratory analyzer. The total carbon (TC) and EC filter loading as determined by the ACE-Asia protocol on the Sunset analyzer varied from 2.6 to 67.0 and 0.2 to 7.4 μg cm?2, respectively. Inter-instrument comparison indicates that the implementation of the IMPROVE protocol on the Sunset analyzer reports TC, EC, and OC measurements to be in good agreement with those made on the DRI analyzer. EC and OC analyzed using the ACE-Asia protocol are also in good agreements for measurements implemented on the Sunset and DRI analyzers. Inter-protocol comparison indicates consistency in TC determination but discrepancies in OC and EC, with the IMPROVE protocol reporting much higher EC than the ACE-Asia protocol. An analysis of different comparison scenarios reveals that the cause of the EC difference could be quantitatively attributed to temperature protocol (thermal effect) and optical pyrolysis correction method (reflectance vs. transmittance). The variation in EC concentrations was more pronounced in samples that produced more charred OC during thermal analysis.

Copyright 2012 American Association for Aerosol Research  相似文献   

4.
The atmospheric abundances of elemental carbon (EC), organic carbon (OC) and water-soluble organic carbon (WSOC) have been measured in aerosol samples collected during wintertime (December–March) from selected sites (urban, rural and high-altitude) in northern India. A characteristic feature of their abundance pattern, at urban sites, is reflected in the OC/EC ratios (range: 2.4–14.5, Av=7.8±2.4, n=77) indicating dominant contribution from biomass burning sources (wood-fuel and agriculture waste). This is in sharp contrast to the OC/EC ratios at a rural site (range: 2.1–4.0, Av=3.1±0.6, n=7) influenced by emissions from coal-fired industries. The long-term measurements made from a high-altitude site (~2000 m amsl) reveal significantly lower abundances of EC and OC; suggesting that boundary layer dynamics (during wintertime) play an important role in efficient trapping of pollutants within the Indo-Gangetic Plain (northern India). The WSOC/OC ratios are fairly uniform (~0.35) in aerosols over urban sites but relatively enhanced contribution of WSOC and higher ratios (~0.5) at a high-altitude site emphasizes the significance of secondary organic aerosols. The comprehensive data set on EC, OC and WSOC/OC ratios from northern India is crucial to improve model parameterization of carbonaceous aerosols for atmospheric scattering and absorption of solar radiation on a regional scale.  相似文献   

5.
Abstract

The physical and chemical properties as well as the oxidative potential (OP) of water soluble components of coal combustion fine particles were examined. A laboratory-scale pulverized-coal burning system was used to produce coal combustion particles at different burning temperatures of 550?°C, 700?°C, 900?°C, and 1,100?°C. Few studies have reported the effects of burning temperature on both the chemistry and toxicity of coal combustion particles. The highest mass emission factor of particulate matter less than 2.5?µm (PM2.5) was found to be produced at 700?°C (3.51?g/kg), owing to strong elemental carbon (EC) emission and ash formation (ions and elements) resulting from the incomplete combustion of tar and char, and mineral fragmentation. The highest organic carbon in PM2.5 was found at 550?°C. At a temperature higher than 700?°C, the fraction of carbonaceous species decreased while the fractions of ions and elements increased owing to ash formation. Sulfate was found to be the dominant ionic species, followed by sodium, calcium, and magnesium. The highest emission of elements (Al, As, Ba, Cd, Co, Cu, Fe, Mn, Ni, Pb, Sr, Ti, V, and Zn) and the highest fractions of Fe and Al were observed at 700?°C. Intrinsic OP activities obtained from dithiothreitol (DTT) and electron spin resonance (ESR) assays showed the highest values at 550?°C, suggesting that fine particles from low-temperature coal combustion had the highest reactive oxygen species generation capability (potentially toxic) among various tested burning temperatures. The results of principal component analysis suggested a correlation between OP-DTT activity and OC, EC, Cd, Co, V, and Zn, while OP-ESR activity was associated with chloride, nitrate, Ba, Pb, Sr, and Ti.

© 2018 American Association for Aerosol Research  相似文献   

6.
We introduce a new method to estimate the mass concentration of particulate organic carbon (POC) collected on quartz filters, demonstrating it using quartz-filter samples collected in greater Pittsburgh. This method combines thermal-optical organic carbon and elemental carbon (OC/EC) analysis and the volatility basis set (VBS) to quantify the mass concentration of semi-volatile POC on the filters. The dataset includes ambient samples collected at a number of sites in both summer and winter as well as samples from a highway tunnel. As a reference we use the two-filter bare-Quartz minus Quartz-Behind-Teflon (Q-QBT) approach to estimate the adsorbed gaseous fraction of organic carbon (OC), finding a substantial fraction in both the gas and particle phases under all conditions. In the new method we use OC fractions measured during different temperature stages of the OC/EC analysis for the single bare-quartz (BQ) filter in combination with partitioning theory to predict the volatility distributions of the measured OC, which we describe with the VBS. The effective volatility bins are consistent for data from both ambient samples and primary organic aerosol (POA)-enriched tunnel samples. Consequently, with the VBS model and total OC fractions measured over different heating stages, particulate OC can be determined by using the BQ filter alone. This method can thus be applied to all quartz filter-based OC/EC analyses to estimate the POC concentration without using backup filters.

© 2016 American Association for Aerosol Research  相似文献   


7.
The Sunset Laboratory Carbon Aerosol Analysis Lab Instrument is widely used for thermal-optical analysis (TOA) of ambient particulate matter samples to measure total carbon (TC), organic carbon (OC), and elemental carbon (EC), and often thermal sub-fractions of OC and EC. TOA operating protocols include a series of plateau temperatures at which the thermal sub-fractions evolve. The temperatures have conventionally been measured by a sensor located in the sample oven but away from the filter sample. However, the TOA protocol used by the Interagency Monitoring of Protected Visual Environments (IMPROVE) network and recently adopted by the U.S. Environmental Protection Agency (EPA) Speciation Trends Network (STN) and Chemical Speciation Network (CSN) specify temperatures to be achieved at the filter. Our goal was to develop a simple calibration method to obtain the target filter temperatures in a Sunset Instrument. This method showed good agreement with the IMPROVE/STN/CSN method and has the advantages of not damaging oven components and of providing a direct comparison of sample oven sensor and filter temperatures at the TOA protocol-specified temperatures. Calibrations performed on four Sunset Instruments yielded different sensor/filter temperature relationships. Ambient PM 2.5 samples analyzed using IMPROVE_A temperatures at the oven sensor compared to IMPROVE_A temperatures at the filter yielded statistically insignificant differences for TC, OC, and EC but statistically significant differences for the carbon sub-fraction concentrations. Temperature calibrations should be performed on each Sunset Instrument to ensure comparability in the carbon sub-fractions being reported, and a simple method has been provided for performing these calibrations.  相似文献   

8.

Particle concentrators are commonly used for controlling exposure levels to ambient ultrafine, fine, and coarse aerosols over a broad range of concentrations. For ultrafine aerosols, these concentrators require water condensation technology to grow and enrich these smaller sized particles (D a < 100 nm). Because the chemistry of the particles is directly related to their toxicity, any changes induced by ultrafine concentrators on ambient particles need to be better characterized in order to fully understand the results obtained in health exposure studies. Using aerosol time-of-flight mass spectrometry (ATOFMS), the size-resolved chemistry was measured of concentrated ultrafine and accumulation mode (50–300 nm) particles from several particle concentrators with different designs. This is the first report detailing the size-resolved distributions of elemental carbon (EC) and organic carbon (OC) particles sampled from concentrators. Experimental measurements of the single particle mixing state of particles in concentrated versus non-concentrated ambient air show transformations of ultrafine EC particles occur as they become coated with organic carbon (OC) species during the concentration process. Based on relative ion intensities, concentrated ultrafine particles showed a 30% increase in the amount of OC on the EC particles for the same aerodynamic size. An increase in the number fraction of aromatic- and polycyclic aromatic hydrocarbon-containing particles was also observed in both the ultrafine and fine size modes. The most likely explanation for such changes is gas-to-particle partitioning of organic components (e.g., water-soluble organic compounds) from the high volume of air used in the concentrator into aqueous phase ultrafine and fine aqueous particles created during the particle enrichment process.  相似文献   

9.
A fine particulate matter (PM2.5) monitoring network of filter-based federal reference methods and federal equivalent methods (FRM/FEMs) is used to assess local ambient air quality by comparison to National Ambient Air Quality Standards (NAAQS) at about 750 sites across the continental United States. Currently, FRM samplers utilize polytetrafluoroethylene (PTFE) filters to gravimetrically determine PM2.5 mass concentrations. At most of these sites, sample composition is unavailable. In this study, we present the proof-of-principle estimation of the carbonaceous fraction of fine aerosols on FRM filters using a nondestructive Fourier transform infrared (FT-IR) method. Previously, a quantitative FT-IR method accurately determined thermal/optical reflectance equivalent organic and elemental carbon (a.k.a., FT-IR organic carbon [OC] and elemental carbon [EC]) on filters collected from the chemical speciation network (CSN). Given the similar configuration of FRM and CSN aerosol samplers, OC and EC were directly determined on FRM filters on a mass-per-filter-area basis using CSN calibrations developed from nine sites during 2013 that have collocated CSN and FRM samplers. FRM OC and EC predictions were found to be comparable to those of the CSN on most figures of merit (e.g., R2) when the type of PTFE filter used for aerosol collection was the same in both networks. Although prediction accuracy remained unaffected, FT-IR OC and EC determined on filters produced by a different manufacturer show marginally increased prediction errors suggesting that PTFE filter type influences extending CSN calibrations to FRM samples. Overall, these findings suggest that quantifying FT-IR OC and EC on FRM samples appears feasible.

© 2018 American Association for Aerosol Research  相似文献   


10.

The Aerodyne Aerosol Mass Spectrometer (AMS) provides size-resolved chemical composition of non-refractory (vaporized at 600°C under vacuum) submicron aerosols with a time resolution of the order of minutes. Ambient measurements were performed in Tokyo between February 2003 and February 2004. We present intercomparisons of the AMS with a Particle-Into-Liquid Sampler combined with an Ion Chromatography analyzer (PILS-IC) and a Sunset Laboratory semi-continuous thermal-optical carbon analyzer. The temperature of the AMS inlet manifold was maintained at > 10 ? C above the ambient dew point to dry particles in the sample air (relative humidity (RH) in the inlet < 53%). Assuming a particle collection efficiency of 0.5 for the AMS, the mass concentrations of inorganic species (nitrate, sulfate, chloride, and ammonium) measured by the AMS agree with those measured by the PILS-IC to within 26%. The mass concentrations of organic compounds measured by the AMS correlate well with organic carbon (OC) mass measured by the Sunset Laboratory carbon analyzer (r 2 = 0.67–0.83). Assuming the same collection efficiency of 0.5 for the AMS organics, the linear regression slope is found to be 1.8 in summer and 1.6 in fall. These values are consistent with expected ratios of organic matter (OM) to OC in urban air.  相似文献   

11.
Evolved Gas Analysis (EGA) profiles are evaluated as a tool to classify carbonaceous aerosols for source apportionment studies. EGA is a method of characterizing carbonaceous aerosols according to their volatility. In this study the stability and additivity of EGA profiles were examined explicitly for the purpose of determining the applicability of EGA characterization to chemical mass balance techniques. Samples collected in a vehicle tunnel were subsequently exposed to particle-free (filtered) and particle-laden ambient air. The EGA profile did not change for tunnel samples exposed to filtered ambient air. By contrast, for tunnel samples exposed to particle-laden (unfiltered) ambient air, the resultant EGA profile was not the direct sum of the ambient and tunnel profiles. Specifically, the low-volatility carbon peak evolved at a lower temperature than the same peak in the unexposed tunnel samples. The change in evolution temperature was independent of carbon mass loading. Although evolution temperatures of characteristic peaks shifted, both the ambient and the tunnel profiles could be classified into three characteristic peaks, corresponding to high-, intermediate-, and low-volatility carbon. Additivity of ambient samples yielded an uncertainty of 13% within a given peak. Additivity of the tunnel samples subsequently loaded with ambient aerosol yielded an uncertainty of 19% within a given peak.  相似文献   

12.
Accurately predicting formation and partitioning of ambient organic aerosols remains a challenge despite decades of sustained effort in this domain. A major source of uncertainty is the poorly characterized volatility of these aerosols. This uncertainty stems in large part from difficulty separating the overlapping effects of aerosol thermodynamic properties and evaporation coefficients in thermodenuder volatility studies. For lack of other information, it is commonly assumed that the evaporation coefficient is unity when interpreting thermodenuder data, leading to potentially large biases in inferred volatility of the sampled aerosol. In this paper, we present a novel thermodenuder-based approach for determining evaporation coefficients of pure compound and complex aerosols without knowledge of their thermodynamic properties. The method involves tracing the normalized dynamic response of an aerosol system to a step change in temperature as it flows through a heated tube. The approach is validated using pure compounds and a mixture of laboratory-generated dicarboxylic acids, and is applied to concentrated ambient aerosols sampled in Beirut, Lebanon. Three valid data sets were obtained from more than 200 h of ambient air sampling during the month of August 2010, yielding values of 0.34, 0.46, and 0.28 for an assumed binary gas diffusion coefficient of 7.8 × 10?6 m2/s at 60°C.

Copyright 2012 American Association for Aerosol Research  相似文献   

13.

Historically, obtaining quantitative chemical information using laser desorption ionization mass spectrometry for analyzing individual aerosol particles has been quite challenging. This is due in large part to fluctuations in the absolute ion signals resulting from inhomogeneities in the laser beam profile, as well as chemical matrix effects. Progress has been made in quantifying atomic species using high laser powers, but very few studies have been performed quantifying molecular species. In this study, promising results are obtained using a new approach to measure the fraction of organic carbon (OC) associated with elemental carbon (EC) in aerosol particles using single particle laser desorption ionization. A tandem differential mobility analyzer (TDMA) is used to generate OC/EC particles by size selecting EC particles of a given mobility diameter and then coating them with known thicknesses of OC measured using a second DMA. The mass spectra of the OC/EC particles exiting the second DMA are measured using an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS). A calibration curve is produced with a linear correlation (R2 = 0.98) over the range of OC/EC ion intensity ratios observed in source and ambient studies. Importantly, the OC/EC values measured in ambient field tests with the UF-ATOFMS show a linear correlation (R2 = 0.69) with OC/EC mass ratios obtained using semi-continuous filter based thermo-optical measurements. The calibration procedure established herein represents a significant step toward quantification of OC and EC in sub-micron ambient particles using laser desorption ionization mass spectrometry.  相似文献   

14.
《分离科学与技术》2012,47(3):354-366
In the present work, commercial-grade activated carbon was modified by steam activation to improve its surface properties for high temperature desulfurization. The modified sample was also further upgraded by impregnating with KOH and KI to promote the chemisorption with of H2S. The H2S adsorption performance was tested under the temperature range of 30–550°C using the temperature program adsorption technique to understand the effect of adsorption temperature on the material adsorption characteristic. It was found that at ambient temperature, the impregnation of activated carbon with KOH can promote the H2S adsorption capacity of activated carbon, whereas the impregnation with KI does not provide a significant beneficial effect. At high adsorption temperature (upto 550°C), both KOH and KI impregnation considerably improve the H2S adsorption performance of activated carbon in terms of the adsorption capacity and breakthrough time. It was revealed from N2 adsorption, SEM and EDS measurement that the chemical reactions between H2S and alkaline compounds (KOH and KI) are promoted at high temperature. Based on all experimental results, the equilibrium adsorption model using the linear isotherm was developed to predict the adsorption behavior of these sorbents in terms of equilibrium isotherm constant and mass transfer coefficient for later scaling-up process.  相似文献   

15.
16.
Summary The thermal properties of trans-polynorbornene, cis-polynorbornene and hydrogenated polynorbornene were examined and its reversibility tested. Trans-polynorbornene samples, formed in various solvents, exhibit a softening range, from ambient temperature until 375 °C. However, syndiotactic cis-polynorbornene samples show a narrower melting range (between 150 and 375 °C). The fusion enthalpies of cis-polynorbornene samples are around 300-400 J/g. The temperature of decomposition is ca. 456 °C (minimum peak DSC) for trans-polynorbornene and ca. 466 °C, 10 °C higher, for cis-polynorbornene. The solvent used for the polymerization of norbornene has a negligible influence in the melting temperature range or in the decomposition temperature. The treatment with 2,6-di-tert-butyl-4-methyl-phenol during the isolation of polynorbornene leads to materials with different thermal properties. Trans-polynorbornene isolated without 2,6-di-tert-butyl-4-methyl-phenol exhibited an exothermic peak accompanied by an slight increase in weight (1-2%), while samples treated with 2,6-di-tert-butyl-4-methyl-phenol do not show these features.  相似文献   

17.
We performed controlled combustion experiments to investigate the dependence of the mass absorption cross-section (MAC) and absorption Ångström exponent (AAE) of combustion carbonaceous aerosol emissions on combustion conditions. Using benzene and toluene as fuels, we obtained a wide range of combustion conditions by varying the combustion temperature and equivalence ratio. We also used nitrogen as a passive diluent to tune the combustion conditions. We calculated MAC and AAE from multi-wavelength light-absorption measurements using a photoacoustic spectrophotometer and aerosol mass loadings estimated from thermal-optical analysis. Starting with relatively low-temperature and fuel-rich combustion conditions and progressively increasing the temperature and/or decreasing the equivalence ratio, we produced emissions with progressive change from weakly absorbing brown carbon (BrC) (MAC at 532?nm (MAC532) = 0.24?m2/g and AAE = 8.6) to strongly absorbing BrC (MAC532 = 2.1?m2/g and AAE = 3.1) to mixtures of black carbon (BC) and strongly absorbing BrC (MAC532 = 7.7?m2/g and AAE = 1.5). These findings indicate that combustion conditions are important in dictating the light-absorption properties of the emitted aerosols. Furthermore, regardless of fuel type and combustion conditions, the emitted aerosols exhibit a unified continuum of light-absorption properties that can be characterized by MAC532 and AAE pairs. The MAC532 and AAE pairs are well-correlated with the elemental carbon-to-organic carbon ratio (EC/OC), which is a proxy of combustion conditions, confirming previous findings that EC/OC is a practical basis for parameterizing the light-absorption properties of combustion carbonaceous aerosols.

Copyright © 2019 American Association for Aerosol Research  相似文献   


18.
The DSC thermograms of P-PHA show a large endothermic peak at 450–550°C. As the annealing temperature increases from 250°C to 400°C, the endothermic peaks become smaller and then disappear for samples annealed above 450°C. As observed for P-PHA, the endothermic enthalpy of PHA and PAA became smaller with an increasing annealing temperature. The cyclization onset temperature (T1) of the three precursors increases linearly with an increasing annealing temperature at a constant annealing time (30 min). Otherwise, the initial decomposition onset temperature (T2) was shown to be constant. T2 of P-PHA, PHA, and PAA were observed in the temperature ranges of 601–603°C, 576–577°C, and 532–534°C, respectively. These TGA results confirm that all of the samples are thermally stable. Increasing the annealing temperature of the three precursor polymers significantly increases the tensile properties of the films. The tensile properties of all annealed precursors were much higher than those of the unannealed films. In contrast, the initial modulus of PAA is improved only slightly when compared with the other two polymers regardless of the heat treatment. The biaxial stresses in the PHA and PAA films were investigated by holographic interferometry. The stresses in the films were 6.85–7.61 MPa for PHA and 27.01–27.70 MPa for PAA.  相似文献   

19.
Supported-NiO catalysts were tested in the synthesis of carbon nanotubes and carbon nanofibers by catalytic decomposition of methane at 550 °C and 700 °C. Catalytic activity was characterized by the conversion levels of methane and the amount of carbons accumulated on the catalysts. Selectivity of carbon nanotubes and carbon nanofiber formation were determined using transmission electron microscopy (TEM). The catalytic performance of the supported-NiO catalysts and the types of filamentous carbons produced were discussed based on the X-ray diffraction (XRD) results and the TEM images of the used catalysts. The experimental results show that the catalytic performance of supported-NiO catalysts decreased in the order of NiO/SiO2 > NiO/HZSM-5 > NiO/CeO2 > NiO/Al2O3 at both reaction temperatures. The structures of the carbons formed by decomposition of methane were dependent on the types of catalyst supports used and the reaction temperatures conducted. It was found that Al2O3 was crucial to the dispersion of smaller NiO crystallites, which gave rise to the formation of multi-walled carbon nanotubes at the reaction temperature of 550 °C and a mixture of multi-walled carbon nanotubes and single-walled carbon nanotubes at 700 °C. Other than NiO/Al2O3 catalyst, all the tested supported-NiO catalysts formed carbon nanofibers at 550 °C and multi-walled carbon nanotubes at 700 °C except for NiO/HZSM-5 catalyst, which grew carbon nanofibers at both 550 °C and 700 °C.  相似文献   

20.

Measurement methods for fine carbonaceous aerosol were compared under field sampling conditions in Flushing, New York during the period of January and early February 2004. In-situ 5- to 60-minute average PM 2.5 organic carbon (OC), elemental carbon (EC), and black carbon (BC) concentrations were obtained by the following methods: Sunset Laboratory field OC/EC analyzer, Rupprecht and Patashnick (R&P) series 5400 ambient carbon particulate monitor, Aerodyne aerosol mass spectrometer (AMS) for total organic matter (OM), and a two-wavelength AE-20 Aethalometer. Twenty-four hour averaged PM 2.5 filter measurements for OC and EC were also made with a Speciation Trends Network (STN) sampler. The diurnal variations in OC/EC/BC concentrations peaked during the morning and afternoon rush hours indicating the dominant influence of vehicle emissions. BC/EC slopes are found to range between 0.86 and 1.23 with reasonably high correlations (r > 0.75). Low mixing heights and absence of significant transported carbonaceous aerosol are indicated by the measurements. Strong correlations are observed between BC and thermal EC as measured by the Sunset instrument and between Sunset BC and Aethalometer BC. Reasonable correlations are observed among collocated OC/EC measurements by the various instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号